Learning BOLD Response in fMRI by Reservoir Computing

This work proposes a model-free approach to fMRI-based brain mapping where the BOLD response is learnt from data rather than assumed in advance. For each voxel, a paired sequence of stimuli and fMRI recording is given to a supervised learning process. The result is a voxel-wise model of the expected...

Full description

Saved in:
Bibliographic Details
Published in2011 International Workshop on Pattern Recognition in Neuroimaging pp. 57 - 60
Main Authors Avesani, P., Hazan, H., Koilis, E., Manevitz, L., Sona, D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2011
Subjects
Online AccessGet full text
ISBN9781457701115
1457701111
DOI10.1109/PRNI.2011.16

Cover

Abstract This work proposes a model-free approach to fMRI-based brain mapping where the BOLD response is learnt from data rather than assumed in advance. For each voxel, a paired sequence of stimuli and fMRI recording is given to a supervised learning process. The result is a voxel-wise model of the expected BOLD response related to a set of stimuli. Differently from standard brain mapping techniques, where voxel relevance is assessed by fitting an hemodynamic response function, we argue that relevant voxels can be filtered according to the prediction accuracy of a learning model. In this work we present a computational architecture based on reservoir computing which combines a Liquid State Machine with a Multi-Layer Perceptron. An empirical analysis on synthetic data shows how the learning process can be robust with respect to noise artificially added to the signal. A similar investigation on real fMRI data provides a prediction of BOLD response whose accuracy allows for discriminating between relevant and irrelevant voxels.
AbstractList This work proposes a model-free approach to fMRI-based brain mapping where the BOLD response is learnt from data rather than assumed in advance. For each voxel, a paired sequence of stimuli and fMRI recording is given to a supervised learning process. The result is a voxel-wise model of the expected BOLD response related to a set of stimuli. Differently from standard brain mapping techniques, where voxel relevance is assessed by fitting an hemodynamic response function, we argue that relevant voxels can be filtered according to the prediction accuracy of a learning model. In this work we present a computational architecture based on reservoir computing which combines a Liquid State Machine with a Multi-Layer Perceptron. An empirical analysis on synthetic data shows how the learning process can be robust with respect to noise artificially added to the signal. A similar investigation on real fMRI data provides a prediction of BOLD response whose accuracy allows for discriminating between relevant and irrelevant voxels.
Author Sona, D.
Manevitz, L.
Hazan, H.
Avesani, P.
Koilis, E.
Author_xml – sequence: 1
  givenname: P.
  surname: Avesani
  fullname: Avesani, P.
  organization: NeuroInformatics Lab. (NILab), Fondazione Bruno Kessler, Trento, Italy
– sequence: 2
  givenname: H.
  surname: Hazan
  fullname: Hazan, H.
  organization: Dept. of Comput. Sci., Univ. of Haifa, Haifa, Israel
– sequence: 3
  givenname: E.
  surname: Koilis
  fullname: Koilis, E.
  organization: Dept. of Comput. Sci., Univ. of Haifa, Haifa, Israel
– sequence: 4
  givenname: L.
  surname: Manevitz
  fullname: Manevitz, L.
  organization: Dept. of Comput. Sci., Univ. of Haifa, Haifa, Israel
– sequence: 5
  givenname: D.
  surname: Sona
  fullname: Sona, D.
  organization: NeuroInformatics Lab. (NILab), Fondazione Bruno Kessler, Trento, Italy
BookMark eNotjM1KxDAURiMq6IzduXPTF2jNTXqTuUutf4XqSJn90LQ3EnDS0o7CvL0juvrgnMO3EGdxiCzENcgcQNLte_NW5UoC5GBOxEJaQ1hoIjwVCdkVFGjt0QJeiGSeg5PKWGOxoEuBNbdTDPEjvV_XD2nD8zjEmdMQU__aVKk7_DKevocwpeWwG7_2x_hKnPv2c-bkf5di8_S4KV-yev1clXd1FkjuMw1WeerQeYsr7x076A1T4Ug50xF51aIpoPcSqNfUduj7Dql3HTJZ5_VS3PzdBmbejlPYtdNhi2RAodY_XaJHTw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PRNI.2011.16
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 0769543995
9780769543994
EndPage 60
ExternalDocumentID 5961253
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-3172f9c5bf758ffbeb1d6e94b92b6c99f2a5641df019d39ac5fdc59dbc5e97bf3
IEDL.DBID RIE
ISBN 9781457701115
1457701111
IngestDate Wed Aug 27 03:12:24 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-3172f9c5bf758ffbeb1d6e94b92b6c99f2a5641df019d39ac5fdc59dbc5e97bf3
PageCount 4
ParticipantIDs ieee_primary_5961253
PublicationCentury 2000
PublicationDate 2011-May
PublicationDateYYYYMMDD 2011-05-01
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-May
PublicationDecade 2010
PublicationTitle 2011 International Workshop on Pattern Recognition in Neuroimaging
PublicationTitleAbbrev prni
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026767549
ssj0000669476
Score 1.471187
Snippet This work proposes a model-free approach to fMRI-based brain mapping where the BOLD response is learnt from data rather than assumed in advance. For each...
SourceID ieee
SourceType Publisher
StartPage 57
SubjectTerms brain mapping
Brain modeling
Computational modeling
Correlation
Data models
model-free HRF
Noise
reservoir computing
Reservoirs
Visualization
Title Learning BOLD Response in fMRI by Reservoir Computing
URI https://ieeexplore.ieee.org/document/5961253
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwED4BU6e2gqpveejYQEhim1v7QFAVihCV2JCfFaoUEApD--trx4FWVYdusZUhp9h3vvN33wdwk7ijkJbSRNIYjDJrM7fneiKKmeYyZVTExtchR2M2eM2e5nReg9t9L4wxpgSfmbZ_LO_y9UptfamsQ9HH47QOdc4x9Grt1k5SEo9VqUTwwgwzzspeLsq5l1Tv7iieqjHdA-GxM5mOh4HQ0yuf_xBaKeNM_xBGuy8M8JL39raQbfX5i7zxvyYcQeu7o49M9rHqGGombwKtyFXfyN3L8wOZBrisIcuc2NF0SOSHn3POZLXckCD_4F5uwaz_OLsfRJWMQrTEuHBOlicWFZXWpQbWSuecNTOYSUwkU4g2EZRlXW3dYU-nKBS1WlHUUlGDXNr0BBr5KjenQKiknmLNZViJ8PBQ0RNMCyus28Qq7mVn0PQWL9aBKGNRGXv-9_QFHIQCrUcPXkKj2GzNlYvwhbwuf-0XuQ2gcg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsAEqEW88cBI2jTxo155qYWmVFWRulV-ogopRVU6wK_HjtOCEANbbGXIKfad7_zd9wFcJe4opKU0kTSGR9ha7PZcV0Qx1UymlIjY-DpkNqS9F_w4JdMaXG96YYwxJfjMtPxjeZevF2rlS2Vtwn08Trdgm7isgoVurfXqSUrqsSqZCH6Ycsxo2c1FGPOi6p01yVM1JhsoPG-PxsN-oPT02uc_pFbKSPOwB9n6GwPA5K21KmRLff6ib_yvEfvQ_O7pQ6NNtDqAmskbQCp61Vd08zy4Q-MAmDVoniObjftIfvg5504W8yUKAhDu5SZMHu4nt72oElKI5jwunJtlieWKSOuSA2ulc8-aGo4lTyRVnNtEEIo72rrjnk65UMRqRbiWihjOpE0PoZ4vcnMEiEjiSdZcjpUIDxAVXUG1sMK6baziLj6Ghrd49h6oMmaVsSd_T1_CTm-SDWaD_vDpFHZDudZjCc-gXixX5tzF-0JelL_5C2FVo8M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+International+Workshop+on+Pattern+Recognition+in+Neuroimaging&rft.atitle=Learning+BOLD+Response+in+fMRI+by+Reservoir+Computing&rft.au=Avesani%2C+P.&rft.au=Hazan%2C+H.&rft.au=Koilis%2C+E.&rft.au=Manevitz%2C+L.&rft.date=2011-05-01&rft.pub=IEEE&rft.isbn=9781457701115&rft.spage=57&rft.epage=60&rft_id=info:doi/10.1109%2FPRNI.2011.16&rft.externalDocID=5961253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457701115/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457701115/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457701115/sc.gif&client=summon&freeimage=true