Learning BOLD Response in fMRI by Reservoir Computing
This work proposes a model-free approach to fMRI-based brain mapping where the BOLD response is learnt from data rather than assumed in advance. For each voxel, a paired sequence of stimuli and fMRI recording is given to a supervised learning process. The result is a voxel-wise model of the expected...
Saved in:
Published in | 2011 International Workshop on Pattern Recognition in Neuroimaging pp. 57 - 60 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2011
|
Subjects | |
Online Access | Get full text |
ISBN | 9781457701115 1457701111 |
DOI | 10.1109/PRNI.2011.16 |
Cover
Abstract | This work proposes a model-free approach to fMRI-based brain mapping where the BOLD response is learnt from data rather than assumed in advance. For each voxel, a paired sequence of stimuli and fMRI recording is given to a supervised learning process. The result is a voxel-wise model of the expected BOLD response related to a set of stimuli. Differently from standard brain mapping techniques, where voxel relevance is assessed by fitting an hemodynamic response function, we argue that relevant voxels can be filtered according to the prediction accuracy of a learning model. In this work we present a computational architecture based on reservoir computing which combines a Liquid State Machine with a Multi-Layer Perceptron. An empirical analysis on synthetic data shows how the learning process can be robust with respect to noise artificially added to the signal. A similar investigation on real fMRI data provides a prediction of BOLD response whose accuracy allows for discriminating between relevant and irrelevant voxels. |
---|---|
AbstractList | This work proposes a model-free approach to fMRI-based brain mapping where the BOLD response is learnt from data rather than assumed in advance. For each voxel, a paired sequence of stimuli and fMRI recording is given to a supervised learning process. The result is a voxel-wise model of the expected BOLD response related to a set of stimuli. Differently from standard brain mapping techniques, where voxel relevance is assessed by fitting an hemodynamic response function, we argue that relevant voxels can be filtered according to the prediction accuracy of a learning model. In this work we present a computational architecture based on reservoir computing which combines a Liquid State Machine with a Multi-Layer Perceptron. An empirical analysis on synthetic data shows how the learning process can be robust with respect to noise artificially added to the signal. A similar investigation on real fMRI data provides a prediction of BOLD response whose accuracy allows for discriminating between relevant and irrelevant voxels. |
Author | Sona, D. Manevitz, L. Hazan, H. Avesani, P. Koilis, E. |
Author_xml | – sequence: 1 givenname: P. surname: Avesani fullname: Avesani, P. organization: NeuroInformatics Lab. (NILab), Fondazione Bruno Kessler, Trento, Italy – sequence: 2 givenname: H. surname: Hazan fullname: Hazan, H. organization: Dept. of Comput. Sci., Univ. of Haifa, Haifa, Israel – sequence: 3 givenname: E. surname: Koilis fullname: Koilis, E. organization: Dept. of Comput. Sci., Univ. of Haifa, Haifa, Israel – sequence: 4 givenname: L. surname: Manevitz fullname: Manevitz, L. organization: Dept. of Comput. Sci., Univ. of Haifa, Haifa, Israel – sequence: 5 givenname: D. surname: Sona fullname: Sona, D. organization: NeuroInformatics Lab. (NILab), Fondazione Bruno Kessler, Trento, Italy |
BookMark | eNotjM1KxDAURiMq6IzduXPTF2jNTXqTuUutf4XqSJn90LQ3EnDS0o7CvL0juvrgnMO3EGdxiCzENcgcQNLte_NW5UoC5GBOxEJaQ1hoIjwVCdkVFGjt0QJeiGSeg5PKWGOxoEuBNbdTDPEjvV_XD2nD8zjEmdMQU__aVKk7_DKevocwpeWwG7_2x_hKnPv2c-bkf5di8_S4KV-yev1clXd1FkjuMw1WeerQeYsr7x076A1T4Ug50xF51aIpoPcSqNfUduj7Dql3HTJZ5_VS3PzdBmbejlPYtdNhi2RAodY_XaJHTw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/PRNI.2011.16 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 0769543995 9780769543994 |
EndPage | 60 |
ExternalDocumentID | 5961253 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-3172f9c5bf758ffbeb1d6e94b92b6c99f2a5641df019d39ac5fdc59dbc5e97bf3 |
IEDL.DBID | RIE |
ISBN | 9781457701115 1457701111 |
IngestDate | Wed Aug 27 03:12:24 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-3172f9c5bf758ffbeb1d6e94b92b6c99f2a5641df019d39ac5fdc59dbc5e97bf3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_5961253 |
PublicationCentury | 2000 |
PublicationDate | 2011-May |
PublicationDateYYYYMMDD | 2011-05-01 |
PublicationDate_xml | – month: 05 year: 2011 text: 2011-May |
PublicationDecade | 2010 |
PublicationTitle | 2011 International Workshop on Pattern Recognition in Neuroimaging |
PublicationTitleAbbrev | prni |
PublicationYear | 2011 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib026767549 ssj0000669476 |
Score | 1.471187 |
Snippet | This work proposes a model-free approach to fMRI-based brain mapping where the BOLD response is learnt from data rather than assumed in advance. For each... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 57 |
SubjectTerms | brain mapping Brain modeling Computational modeling Correlation Data models model-free HRF Noise reservoir computing Reservoirs Visualization |
Title | Learning BOLD Response in fMRI by Reservoir Computing |
URI | https://ieeexplore.ieee.org/document/5961253 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwED4BU6e2gqpveejYQEhim1v7QFAVihCV2JCfFaoUEApD--trx4FWVYdusZUhp9h3vvN33wdwk7ijkJbSRNIYjDJrM7fneiKKmeYyZVTExtchR2M2eM2e5nReg9t9L4wxpgSfmbZ_LO_y9UptfamsQ9HH47QOdc4x9Grt1k5SEo9VqUTwwgwzzspeLsq5l1Tv7iieqjHdA-GxM5mOh4HQ0yuf_xBaKeNM_xBGuy8M8JL39raQbfX5i7zxvyYcQeu7o49M9rHqGGombwKtyFXfyN3L8wOZBrisIcuc2NF0SOSHn3POZLXckCD_4F5uwaz_OLsfRJWMQrTEuHBOlicWFZXWpQbWSuecNTOYSUwkU4g2EZRlXW3dYU-nKBS1WlHUUlGDXNr0BBr5KjenQKiknmLNZViJ8PBQ0RNMCyus28Qq7mVn0PQWL9aBKGNRGXv-9_QFHIQCrUcPXkKj2GzNlYvwhbwuf-0XuQ2gcg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsAEqEW88cBI2jTxo155qYWmVFWRulV-ogopRVU6wK_HjtOCEANbbGXIKfad7_zd9wFcJe4opKU0kTSGR9ha7PZcV0Qx1UymlIjY-DpkNqS9F_w4JdMaXG96YYwxJfjMtPxjeZevF2rlS2Vtwn08Trdgm7isgoVurfXqSUrqsSqZCH6Ycsxo2c1FGPOi6p01yVM1JhsoPG-PxsN-oPT02uc_pFbKSPOwB9n6GwPA5K21KmRLff6ib_yvEfvQ_O7pQ6NNtDqAmskbQCp61Vd08zy4Q-MAmDVoniObjftIfvg5504W8yUKAhDu5SZMHu4nt72oElKI5jwunJtlieWKSOuSA2ulc8-aGo4lTyRVnNtEEIo72rrjnk65UMRqRbiWihjOpE0PoZ4vcnMEiEjiSdZcjpUIDxAVXUG1sMK6baziLj6Ghrd49h6oMmaVsSd_T1_CTm-SDWaD_vDpFHZDudZjCc-gXixX5tzF-0JelL_5C2FVo8M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+International+Workshop+on+Pattern+Recognition+in+Neuroimaging&rft.atitle=Learning+BOLD+Response+in+fMRI+by+Reservoir+Computing&rft.au=Avesani%2C+P.&rft.au=Hazan%2C+H.&rft.au=Koilis%2C+E.&rft.au=Manevitz%2C+L.&rft.date=2011-05-01&rft.pub=IEEE&rft.isbn=9781457701115&rft.spage=57&rft.epage=60&rft_id=info:doi/10.1109%2FPRNI.2011.16&rft.externalDocID=5961253 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457701115/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457701115/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457701115/sc.gif&client=summon&freeimage=true |