Co-clustering for queries and corresponding advertisement
Both documents clustering and words clustering are well studied problems. Most existing algorithms cluster documents (advertisement) and words (query) separately but not simultaneously. In this paper we present a novel idea of analyzing both queries and advertisements which occur with queries at the...
Saved in:
| Published in | 2009 International Conference on Machine Learning and Cybernetics Vol. 4; pp. 2296 - 2299 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.07.2009
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781424437023 1424437024 |
| ISSN | 2160-133X |
| DOI | 10.1109/ICMLC.2009.5212131 |
Cover
| Abstract | Both documents clustering and words clustering are well studied problems. Most existing algorithms cluster documents (advertisement) and words (query) separately but not simultaneously. In this paper we present a novel idea of analyzing both queries and advertisements which occur with queries at the same time. We present an innovative co-clustering algorithm that suggests queries by co-clustering advertisements and queries. We pose the co-clustering problem as an optimization problem in information theory - the optimal co-clustering maximizes the mutual information between the clustered random variables subject to constraints on the number of row and column clusters. |
|---|---|
| AbstractList | Both documents clustering and words clustering are well studied problems. Most existing algorithms cluster documents (advertisement) and words (query) separately but not simultaneously. In this paper we present a novel idea of analyzing both queries and advertisements which occur with queries at the same time. We present an innovative co-clustering algorithm that suggests queries by co-clustering advertisements and queries. We pose the co-clustering problem as an optimization problem in information theory - the optimal co-clustering maximizes the mutual information between the clustered random variables subject to constraints on the number of row and column clusters. |
| Author | Xizhao Wang Fan Yang Bin An |
| Author_xml | – sequence: 1 surname: Fan Yang fullname: Fan Yang organization: Dept. of Comput. Sci., Univ. of California, Santa Cruz, CA, USA – sequence: 2 surname: Bin An fullname: Bin An – sequence: 3 surname: Xizhao Wang fullname: Xizhao Wang |
| BookMark | eNo1UMtOwzAQNKKVaEp-AC75gQSv13biI4p4VAri0gO3yok3KKh1ip0i8fcEUeYyMxrtSjMJW_jRE2M3wAsAbu429UtTF4JzUygBAhAuWAJSSIklR3HJUlNW_17ggq0EaJ4D4tuSJfNdZQCMElcsjfGDz5BKlBpXzNRj3u1PcaIw-PesH0P2eZo1xcx6l3VjCBSPo3e_qXVfFKYh0oH8dM2Wvd1HSs-8ZtvHh239nDevT5v6vskHw6dcUNdqLCWvuFbSQdU5Yx1hpRxq1TvVkisdtrwFSZ2S2KPtxFxK9xxsKXDNbv_eDkS0O4bhYMP37rwC_gAwTU4x |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICMLC.2009.5212131 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISBN | 1424437032 9781424437030 |
| EndPage | 2299 |
| ExternalDocumentID | 5212131 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i90t-2ecb6374080654d18cd9ade385d365fd5bed7d3b0b14ec543f3ac27036f01a723 |
| IEDL.DBID | RIE |
| ISBN | 9781424437023 1424437024 |
| ISSN | 2160-133X |
| IngestDate | Wed Aug 27 02:20:37 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCN | 2008911952 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-2ecb6374080654d18cd9ade385d365fd5bed7d3b0b14ec543f3ac27036f01a723 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_5212131 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-July |
| PublicationDateYYYYMMDD | 2009-07-01 |
| PublicationDate_xml | – month: 07 year: 2009 text: 2009-July |
| PublicationDecade | 2000 |
| PublicationTitle | 2009 International Conference on Machine Learning and Cybernetics |
| PublicationTitleAbbrev | ICMLC |
| PublicationYear | 2009 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000452763 ssj0000744891 |
| Score | 1.4212816 |
| Snippet | Both documents clustering and words clustering are well studied problems. Most existing algorithms cluster documents (advertisement) and words (query)... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2296 |
| SubjectTerms | Advertising Clustering algorithms Co-Clustering Computer science Cybernetics DBSCAN Intrusion detection K-mean clustering Machine learning Machine learning algorithms Mathematics Online advertisement Query Random variables Search engines Singular Value Decomposition |
| Title | Co-clustering for queries and corresponding advertisement |
| URI | https://ieeexplore.ieee.org/document/5212131 |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwGG3mTnqZbjP-Tg8e7Qa0tPRMXKYR42Emuy39mRgNLAoX_3rbAjMaD94ohFBayNfX73vvAXBNEuUuKI2YzTAinHIkBSNIcmU0Y1xb4QnOxSNdPpP7dboegJsdF8YYE4rPzMwfhly-rlTjt8rmnmcae9L0Hstoy9Xa7ad4aXDWSUmFNnPAIxjmJTGNkINi657XhZkLTL3cU9fGPaEm4vO7vHjIWynL7ok_rFdC5FmMQNH3uS04eZ01tZypz19yjv99qUMw_eb4wadd9DoCA1OOwag3eYDdPz8GB8VO2PVjAnheIfXWeHUFdxd0K17oAouH21CUGqrg9bGtAlUGit7s2fdgClaL21W-RJ37AnrhUY0SoyTFjEQ-80p0nCnNhTY4SzWmqdWpdHOpsYxkTIxKCbZYqMTLedkoFizBx2BYVqU5AZC5OTc2EjSjhhDNZWQdjHE4Syttk8ycgokfls221dfYdCNy9vfpc7DfZnR8yewFGNbvjbl0C4NaXoUv4gvCh7Ef |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLWqMgBLoS3ijQdG3DqxE8dzRNVCUzEUqVvlVyQESipIFr4eOy8EYmCLE0Vx7ETXx_eecwC4pb6yF5RGLI0IojzkSApGkeTKaMa4ToUjOCercP5MHzbBpgfuOi6MMaYqPjMTd1jl8nWuSrdVNnU8U8-RpvcCSmlQs7W6HRUnDs4aMamqzSz0qCzzfC_EyIKxTcvsIsyGplbwqWmTllKD-XQRJ8u4FrNsnvnDfKWKPbMBSNpe1yUnr5OykBP1-UvQ8b-vdQTG3yw_-NTFr2PQM9kQDFqbB9j89UNwmHTSrh8jwOMcqbfS6SvYu6Bd80IbWhzghiLTUFVuH7u8IstA0do9ux6MwXp2v47nqPFfQC8cF8g3SoaEUexyr1R7kdJcaEOiQJMwSHUg7WxqIrH0qFEBJSkRyneCXin2BPPJCehneWZOAWR21k2KRRiFhlLNJU4tkLFISyud-pE5AyM3LNtdrbCxbUbk_O_TN2B_vk6W2-Vi9XgBDur8jiugvQT94r00V3aZUMjr6uv4AkDitGw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Co-clustering+for+queries+and+corresponding+advertisement&rft.au=Fan+Yang&rft.au=Bin+An&rft.au=Xizhao+Wang&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=4&rft.spage=2296&rft.epage=2299&rft_id=info:doi/10.1109%2FICMLC.2009.5212131&rft.externalDocID=5212131 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |