A theoretical framework for runtime analysis of ant colony optimization

Ant colony optimization (ACO) is one of the most famous bio-inspired algorithms. Its theoretical research contains convergence proof and runtime analysis. The convergence of ACO has been proved since several years ago, but there are less results of runtime analysis of ACO algorithm except for some s...

Full description

Saved in:
Bibliographic Details
Published in2010 International Conference on Machine Learning and Cybernetics Vol. 4; pp. 1817 - 1822
Main Authors Zhong-Ming Yang, Han Huang, Zhaoquan Cai, Yong Qin
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2010
Subjects
Online AccessGet full text
ISBN9781424465262
1424465265
ISSN2160-133X
DOI10.1109/ICMLC.2010.5580959

Cover

Abstract Ant colony optimization (ACO) is one of the most famous bio-inspired algorithms. Its theoretical research contains convergence proof and runtime analysis. The convergence of ACO has been proved since several years ago, but there are less results of runtime analysis of ACO algorithm except for some special and simple cases. The present paper proposes a theoretical framework of a class of ACO algorithms. The ACO algorithm is modeled as an absorbing Markov chain. Afterward its convergence can be analyzed based on the model, and the runtime of ACO algorithm is evaluated with the convergence time which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Moreover, the runtime analysis result is advanced as an estimation method, which is used to study a binary ACO algorithm as a case study.
AbstractList Ant colony optimization (ACO) is one of the most famous bio-inspired algorithms. Its theoretical research contains convergence proof and runtime analysis. The convergence of ACO has been proved since several years ago, but there are less results of runtime analysis of ACO algorithm except for some special and simple cases. The present paper proposes a theoretical framework of a class of ACO algorithms. The ACO algorithm is modeled as an absorbing Markov chain. Afterward its convergence can be analyzed based on the model, and the runtime of ACO algorithm is evaluated with the convergence time which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Moreover, the runtime analysis result is advanced as an estimation method, which is used to study a binary ACO algorithm as a case study.
Author Yong Qin
Zhong-Ming Yang
Han Huang
Zhaoquan Cai
Author_xml – sequence: 1
  surname: Zhong-Ming Yang
  fullname: Zhong-Ming Yang
  email: yzm8008@126.com
  organization: Center of Inf. & Network, Maoming Univ., Maoming, China
– sequence: 2
  surname: Han Huang
  fullname: Han Huang
  email: bssthh@163.com
  organization: Sch. of Software Eng., South China Univ. of Technol., Guangzhou, China
– sequence: 3
  surname: Zhaoquan Cai
  fullname: Zhaoquan Cai
  organization: Network Center, Huizhou Univ., Huizhou, China
– sequence: 4
  surname: Yong Qin
  fullname: Yong Qin
  organization: Center of Inf. & Network, Maoming Univ., Maoming, China
BookMark eNpVkMFOwzAQRI0oEqXkB-DiH0hZb7xO9lhFUCoFcemBW-WkjjCkceUEofL1RKIX5jLzNNIc5kbM-tA7Ie4ULJUCftiUL1W5RJiYqAAmvhAJ54XSqLUhJLr8xwZnYo7KQKqy7O1aJMPwAZM0oWKai_VKju8uRDf6xnayjfbgvkP8lG2IMn71oz84aXvbnQY_yNBOeZRN6EJ_kuE4tf7Hjj70t-Kqtd3gkrMvxPbpcVs-p9XrelOuqtQzjClmucaaNbZGEeXN3lCdI1pg4xhqrSwYRw0TFjlnxkFj0dXAoNUeuYVsIe7_Zr1zbneM_mDjaXd-IvsFPBFQ3w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2010.5580959
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781424465255
1424465273
1424465257
9781424465279
EndPage 1822
ExternalDocumentID 5580959
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-23742b942f61557cd65b722a096e90b41a06e5c95287936e0ca2eb09041d29f03
IEDL.DBID RIE
ISBN 9781424465262
1424465265
ISSN 2160-133X
IngestDate Wed Aug 27 03:02:56 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-23742b942f61557cd65b722a096e90b41a06e5c95287936e0ca2eb09041d29f03
PageCount 6
ParticipantIDs ieee_primary_5580959
PublicationCentury 2000
PublicationDate 2010-July
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-July
PublicationDecade 2010
PublicationTitle 2010 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452195
ssj0000744891
Score 1.4514114
Snippet Ant colony optimization (ACO) is one of the most famous bio-inspired algorithms. Its theoretical research contains convergence proof and runtime analysis. The...
SourceID ieee
SourceType Publisher
StartPage 1817
SubjectTerms Algorithm design and analysis
Ant colony optimization
Bio-inspired Algorithm
Convergence
Convergence time
Markov processes
Optimization
Runtime
runtime analysis
Title A theoretical framework for runtime analysis of ant colony optimization
URI https://ieeexplore.ieee.org/document/5580959
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21TEwFWsS3PDCS1nFiOx5RRSmIIoYidavs2JYq1AShdIBfj5045UMMbHaWOLZj37u79w7g0pI81VJ73laaRKm1PFI20VEuqbZZzASv_R2zRzZ9Tu8XdNGBqy0XxhhTJ5-ZoW_WsXxd5hvvKhtRmnm3VRe6PGMNV2vrT_HS4HHgmNZ97oBHXTCPxAxHDootWl4X85LwrdxT6JOWUIPF6G48exg3WV_hjT9Kr9Q3z6QHs3bMTcLJy3BTqWH-8UvO8b8ftQeDL44fetreXvvQMcUB9NoiDyj88324vUbfyI7ItslcyFm7yMsWrNYGySBtgkrr2hXyUtjFOyrdebQORM8BzCc38_E0CtUXopXAVUQSB5qVSIn1kUuea0YVJ0Q6yGMEVmksMTM0F9RBLpEwg3NJjMICp7EmwuLkEHaKsjBHgChRUrgFEZmzfzLLFdcWS7c5YqaNs9iOoe-nZfna6Gssw4yc_P34FHabCL5PmT2DneptY86dYVCpi3pHfAJiya-O
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCZzHvQ0dTP-loNHu1EKtBzN4tx0XTzMZLcFCiTGrDWmO-hfL7R0_ogHb9BLKVB433vv-x4AVwZnRAnleFskCogxcSBNpIJMUGWSkPG48nekMzZ-IvcLumiB6w0XRmtdJZ_pvmtWsXxVZGvnKhtQmji31RbYpoQQWrO1Nh4VJw4eepZp1Y8t9KhK5uGQocCCsUXD7GJOFL4RfPJ93FBqEB9Mhul0WOd9-Xf-KL5S3T2jDkibUdcpJy_9dSn72ccvQcf_ftYe6H2x_ODj5v7aBy2dH4BOU-YB-r--C-5u4De6IzRNOhe09i50wgXPKw2FFzeBhbHtEjox7PwdFvZEWnmqZw_MR7fz4Tjw9ReCZ47KAEcWNktOsHGxyzhTjMoYY2FBj-ZIklAgpmnGqQVdPGIaZQJriTgiocLcoOgQtPMi10cAUiwFtwvCE2sBJSaWsTJI2O0RMqWtzXYMum5alq-1wsbSz8jJ348vwc54nk6X08ns4RTs1vF8l0B7Btrl21qfWzOhlBfV7vgEzY-y2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=A+theoretical+framework+for+runtime+analysis+of+ant+colony+optimization&rft.au=Zhong-Ming+Yang&rft.au=Han+Huang&rft.au=Zhaoquan+Cai&rft.au=Yong+Qin&rft.date=2010-07-01&rft.pub=IEEE&rft.isbn=9781424465262&rft.issn=2160-133X&rft.volume=4&rft.spage=1817&rft.epage=1822&rft_id=info:doi/10.1109%2FICMLC.2010.5580959&rft.externalDocID=5580959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon