A theoretical framework for runtime analysis of ant colony optimization
Ant colony optimization (ACO) is one of the most famous bio-inspired algorithms. Its theoretical research contains convergence proof and runtime analysis. The convergence of ACO has been proved since several years ago, but there are less results of runtime analysis of ACO algorithm except for some s...
        Saved in:
      
    
          | Published in | 2010 International Conference on Machine Learning and Cybernetics Vol. 4; pp. 1817 - 1822 | 
|---|---|
| Main Authors | , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.07.2010
     | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 9781424465262 1424465265  | 
| ISSN | 2160-133X | 
| DOI | 10.1109/ICMLC.2010.5580959 | 
Cover
| Abstract | Ant colony optimization (ACO) is one of the most famous bio-inspired algorithms. Its theoretical research contains convergence proof and runtime analysis. The convergence of ACO has been proved since several years ago, but there are less results of runtime analysis of ACO algorithm except for some special and simple cases. The present paper proposes a theoretical framework of a class of ACO algorithms. The ACO algorithm is modeled as an absorbing Markov chain. Afterward its convergence can be analyzed based on the model, and the runtime of ACO algorithm is evaluated with the convergence time which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Moreover, the runtime analysis result is advanced as an estimation method, which is used to study a binary ACO algorithm as a case study. | 
    
|---|---|
| AbstractList | Ant colony optimization (ACO) is one of the most famous bio-inspired algorithms. Its theoretical research contains convergence proof and runtime analysis. The convergence of ACO has been proved since several years ago, but there are less results of runtime analysis of ACO algorithm except for some special and simple cases. The present paper proposes a theoretical framework of a class of ACO algorithms. The ACO algorithm is modeled as an absorbing Markov chain. Afterward its convergence can be analyzed based on the model, and the runtime of ACO algorithm is evaluated with the convergence time which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Moreover, the runtime analysis result is advanced as an estimation method, which is used to study a binary ACO algorithm as a case study. | 
    
| Author | Yong Qin Zhong-Ming Yang Han Huang Zhaoquan Cai  | 
    
| Author_xml | – sequence: 1 surname: Zhong-Ming Yang fullname: Zhong-Ming Yang email: yzm8008@126.com organization: Center of Inf. & Network, Maoming Univ., Maoming, China – sequence: 2 surname: Han Huang fullname: Han Huang email: bssthh@163.com organization: Sch. of Software Eng., South China Univ. of Technol., Guangzhou, China – sequence: 3 surname: Zhaoquan Cai fullname: Zhaoquan Cai organization: Network Center, Huizhou Univ., Huizhou, China – sequence: 4 surname: Yong Qin fullname: Yong Qin organization: Center of Inf. & Network, Maoming Univ., Maoming, China  | 
    
| BookMark | eNpVkMFOwzAQRI0oEqXkB-DiH0hZb7xO9lhFUCoFcemBW-WkjjCkceUEofL1RKIX5jLzNNIc5kbM-tA7Ie4ULJUCftiUL1W5RJiYqAAmvhAJ54XSqLUhJLr8xwZnYo7KQKqy7O1aJMPwAZM0oWKai_VKju8uRDf6xnayjfbgvkP8lG2IMn71oz84aXvbnQY_yNBOeZRN6EJ_kuE4tf7Hjj70t-Kqtd3gkrMvxPbpcVs-p9XrelOuqtQzjClmucaaNbZGEeXN3lCdI1pg4xhqrSwYRw0TFjlnxkFj0dXAoNUeuYVsIe7_Zr1zbneM_mDjaXd-IvsFPBFQ3w | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/ICMLC.2010.5580959 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISBN | 9781424465255 1424465273 1424465257 9781424465279  | 
    
| EndPage | 1822 | 
    
| ExternalDocumentID | 5580959 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL  | 
    
| ID | FETCH-LOGICAL-i90t-23742b942f61557cd65b722a096e90b41a06e5c95287936e0ca2eb09041d29f03 | 
    
| IEDL.DBID | RIE | 
    
| ISBN | 9781424465262 1424465265  | 
    
| ISSN | 2160-133X | 
    
| IngestDate | Wed Aug 27 03:02:56 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i90t-23742b942f61557cd65b722a096e90b41a06e5c95287936e0ca2eb09041d29f03 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_5580959 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2010-July | 
    
| PublicationDateYYYYMMDD | 2010-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2010 text: 2010-July  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 2010 International Conference on Machine Learning and Cybernetics | 
    
| PublicationTitleAbbrev | ICMLC | 
    
| PublicationYear | 2010 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0000452195 ssj0000744891  | 
    
| Score | 1.4514114 | 
    
| Snippet | Ant colony optimization (ACO) is one of the most famous bio-inspired algorithms. Its theoretical research contains convergence proof and runtime analysis. The... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1817 | 
    
| SubjectTerms | Algorithm design and analysis Ant colony optimization Bio-inspired Algorithm Convergence Convergence time Markov processes Optimization Runtime runtime analysis  | 
    
| Title | A theoretical framework for runtime analysis of ant colony optimization | 
    
| URI | https://ieeexplore.ieee.org/document/5580959 | 
    
| Volume | 4 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21TEwFWsS3PDCS1nFiOx5RRSmIIoYidavs2JYq1AShdIBfj5045UMMbHaWOLZj37u79w7g0pI81VJ73laaRKm1PFI20VEuqbZZzASv_R2zRzZ9Tu8XdNGBqy0XxhhTJ5-ZoW_WsXxd5hvvKhtRmnm3VRe6PGMNV2vrT_HS4HHgmNZ97oBHXTCPxAxHDootWl4X85LwrdxT6JOWUIPF6G48exg3WV_hjT9Kr9Q3z6QHs3bMTcLJy3BTqWH-8UvO8b8ftQeDL44fetreXvvQMcUB9NoiDyj88324vUbfyI7ItslcyFm7yMsWrNYGySBtgkrr2hXyUtjFOyrdebQORM8BzCc38_E0CtUXopXAVUQSB5qVSIn1kUuea0YVJ0Q6yGMEVmksMTM0F9RBLpEwg3NJjMICp7EmwuLkEHaKsjBHgChRUrgFEZmzfzLLFdcWS7c5YqaNs9iOoe-nZfna6Gssw4yc_P34FHabCL5PmT2DneptY86dYVCpi3pHfAJiya-O | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCZzHvQ0dTP-loNHu1EKtBzN4tx0XTzMZLcFCiTGrDWmO-hfL7R0_ogHb9BLKVB433vv-x4AVwZnRAnleFskCogxcSBNpIJMUGWSkPG48nekMzZ-IvcLumiB6w0XRmtdJZ_pvmtWsXxVZGvnKhtQmji31RbYpoQQWrO1Nh4VJw4eepZp1Y8t9KhK5uGQocCCsUXD7GJOFL4RfPJ93FBqEB9Mhul0WOd9-Xf-KL5S3T2jDkibUdcpJy_9dSn72ccvQcf_ftYe6H2x_ODj5v7aBy2dH4BOU-YB-r--C-5u4De6IzRNOhe09i50wgXPKw2FFzeBhbHtEjox7PwdFvZEWnmqZw_MR7fz4Tjw9ReCZ47KAEcWNktOsHGxyzhTjMoYY2FBj-ZIklAgpmnGqQVdPGIaZQJriTgiocLcoOgQtPMi10cAUiwFtwvCE2sBJSaWsTJI2O0RMqWtzXYMum5alq-1wsbSz8jJ348vwc54nk6X08ns4RTs1vF8l0B7Btrl21qfWzOhlBfV7vgEzY-y2w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=A+theoretical+framework+for+runtime+analysis+of+ant+colony+optimization&rft.au=Zhong-Ming+Yang&rft.au=Han+Huang&rft.au=Zhaoquan+Cai&rft.au=Yong+Qin&rft.date=2010-07-01&rft.pub=IEEE&rft.isbn=9781424465262&rft.issn=2160-133X&rft.volume=4&rft.spage=1817&rft.epage=1822&rft_id=info:doi/10.1109%2FICMLC.2010.5580959&rft.externalDocID=5580959 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |