A Genetic algorithm based feature selection technique for classification of multiple-subject fMRI data

Functional Magnetic Resonance Imaging (fMRI) is a neuroimaging technique used to capture images of brain activity. These images have high spatial resolution and hence are very high dimensional. Each scan consists of more than one hundred thousand voxels. All of the scanned voxels are not activated f...

Full description

Saved in:
Bibliographic Details
Published in2015 IEEE International Advance Computing Conference (IACC) pp. 948 - 952
Main Authors Accamma, I. V., Suma, H. N., Dakshayini, M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2015
Subjects
Online AccessGet full text
DOI10.1109/IADCC.2015.7154844

Cover

Abstract Functional Magnetic Resonance Imaging (fMRI) is a neuroimaging technique used to capture images of brain activity. These images have high spatial resolution and hence are very high dimensional. Each scan consists of more than one hundred thousand voxels. All of the scanned voxels are not activated for every stimulus. Therefore, finding the informative voxels with respect to stimulus becomes a prerequisite for any machine learning solution using fMRI data. The specific problem attempted to be solved in this paper is that of decoding cognitive states from multiple-subject fMRI data. Decoding multiple-subject data is challenging owing to the difference in the shape and size of the brain of different subjects. A Genetic algorithm based technique is proposed here for selection of voxels that capture commonality across subjects. Some popular feature selection techniques are compared against Genetic algorithms. It is observed that feature selection using Genetic algorithms perform consistently and predictably better than other techniques.
AbstractList Functional Magnetic Resonance Imaging (fMRI) is a neuroimaging technique used to capture images of brain activity. These images have high spatial resolution and hence are very high dimensional. Each scan consists of more than one hundred thousand voxels. All of the scanned voxels are not activated for every stimulus. Therefore, finding the informative voxels with respect to stimulus becomes a prerequisite for any machine learning solution using fMRI data. The specific problem attempted to be solved in this paper is that of decoding cognitive states from multiple-subject fMRI data. Decoding multiple-subject data is challenging owing to the difference in the shape and size of the brain of different subjects. A Genetic algorithm based technique is proposed here for selection of voxels that capture commonality across subjects. Some popular feature selection techniques are compared against Genetic algorithms. It is observed that feature selection using Genetic algorithms perform consistently and predictably better than other techniques.
Author Suma, H. N.
Accamma, I. V.
Dakshayini, M.
Author_xml – sequence: 1
  givenname: I. V.
  surname: Accamma
  fullname: Accamma, I. V.
  email: accamma@gmail.com
  organization: Visvesvaraya Technol. Univ., Belgaum, India
– sequence: 2
  givenname: H. N.
  surname: Suma
  fullname: Suma, H. N.
  organization: Dept. of Med. Electron., BMS Coll. of Eng., Bangalore, India
– sequence: 3
  givenname: M.
  surname: Dakshayini
  fullname: Dakshayini, M.
  organization: Dept. of Inf. Sci., BMS Coll. of Eng., Bangalore, India
BookMark eNotj8tOwzAUBY0ECyj9Adj4B1L8SmwvowAlUhES6r66dq6pUR4ldhb8PQi6OovRjHRuyOU4jUjIHWcbzpl9aOvHptkIxsuN5qUySl2QtdWGK22tYaoy1yTUdIsj5ugp9B_THPNxoA4SdjQg5GVGmrBHn-M00oz-OMavBWmYZup7SCmG6OEPToEOS5_jqcciLe7z16Hh9b2lHWS4JVcB-oTr867I_vlp37wUu7dt29S7IlqWC8GCLDUXleiY02C1kzqYinnpkTHQVgEH7mVwsmKyEijBaaW9KYX1FRq5Ivf_2YiIh9McB5i_D-fz8gdUOVQ-
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IADCC.2015.7154844
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès ENAC - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479980468
1479980471
1479980463
9781479980475
EndPage 952
ExternalDocumentID 7154844
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-20f3571262d0b7a97b37f860c3ce00a794a1a1c3fb360362e3ab747c8529c6e83
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:45 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-20f3571262d0b7a97b37f860c3ce00a794a1a1c3fb360362e3ab747c8529c6e83
PageCount 5
ParticipantIDs ieee_primary_7154844
PublicationCentury 2000
PublicationDate 2015-June
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-June
PublicationDecade 2010
PublicationTitle 2015 IEEE International Advance Computing Conference (IACC)
PublicationTitleAbbrev IADCC
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.5869952
Snippet Functional Magnetic Resonance Imaging (fMRI) is a neuroimaging technique used to capture images of brain activity. These images have high spatial resolution...
SourceID ieee
SourceType Publisher
StartPage 948
SubjectTerms Accuracy
Biomedical imaging
Decoding
Face
Genetic algorithms
Magnetic resonance imaging
Mutual information
Title A Genetic algorithm based feature selection technique for classification of multiple-subject fMRI data
URI https://ieeexplore.ieee.org/document/7154844
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA1tT55UWvGbHDy6281mNx_HUi2tUBGp0FtJsomK2hW7e_HXm8m2FcWDtxACCZmEN5O8eYPQReEylUnNIsWghFlB0khSqyMFWiACXFYDgeL0lo0fspt5Pm-hy20ujLU2kM9sDM3wl1-Upoansj4H_zrL2qjNBWtytTZ5MInsTwZXwyGQtfJ4PfBHxZQAGKNdNN1M1fBEXuK60rH5_KXC-N-17KHed2oevtuCzj5q2WUXuQEG-Wh_BrB6fSx9vP_0hgGfCuxsUO7Eq1DvxhsBb1VbsfdXsQHvGehCwUK4dHhDMYxWtYZHGuym9xMMTNIemo2uZ8NxtC6gED3LpPIXwNGck5SlRaK5klxT7gRLDDU2SZS_iYooYqjTlAGQWaq0jy6MyFNpmBX0AHWW5dIeIqw0kUKYlDspMmW1VITo3PAidblQTh-hLmzR4r2RyFisd-f47-4TtANmahhXp6hTfdT2zGN7pc-DUb8AqZ2nZA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCZzHvSkZjP-loNH27UFWjgu02XTdTFmJrstQEGNuhrXXvzr5bXbjMaDN0JIIDzI9x5873sIXWSWSipU7MkYSphlYeQJYpQnQQuEg8uqIVBMx_Hggd5M2bSBLte5MMaYinxmfGhWf_lZrkt4Kusk4F9TuoE2GaWU1dlaq0yYQHSG3ateD-hazF8O_VEzpYKM_g5KV5PVTJEXvyyUrz9_6TD-dzW7qP2dnIfv1rCzhxpm3kK2i0FA2p0CLF8fcxfxP71hQKgMW1Npd-JFVfHGmQGvdVux81ixBv8ZCEOVjXBu8Ypk6C1KBc802Kb3Qwxc0jaa9K8nvYG3LKHgPYugcFfAEpaEURxlgUqkSBRJLI8DTbQJAunuogxlqIlVJAYoM0QqF19oziKhY8PJPmrO87k5QFiqUHCuo8QKTqVRQoahYjrJIsu4tOoQtWCLZu-1SMZsuTtHf3efo63BJB3NRsPx7THaBpPV_KsT1Cw-SnPqkL5QZ5WBvwCZDqqx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Advance+Computing+Conference+%28IACC%29&rft.atitle=A+Genetic+algorithm+based+feature+selection+technique+for+classification+of+multiple-subject+fMRI+data&rft.au=Accamma%2C+I.+V.&rft.au=Suma%2C+H.+N.&rft.au=Dakshayini%2C+M.&rft.date=2015-06-01&rft.pub=IEEE&rft.spage=948&rft.epage=952&rft_id=info:doi/10.1109%2FIADCC.2015.7154844&rft.externalDocID=7154844