Finding the Best Feature Detector-Descriptor Combination

Addressing the image correspondence problem by feature matching is a central part of computer vision and 3D inference from images. Consequently, there is a substantial amount of work on evaluating feature detection and feature description methodology. However, the performance of the feature matching...

Full description

Saved in:
Bibliographic Details
Published in2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission pp. 318 - 325
Main Authors Dahl, A. L., Aanæs, H., Pedersen, K. S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2011
Subjects
Online AccessGet full text
ISBN1612844294
9781612844299
ISSN1550-6185
DOI10.1109/3DIMPVT.2011.47

Cover

Abstract Addressing the image correspondence problem by feature matching is a central part of computer vision and 3D inference from images. Consequently, there is a substantial amount of work on evaluating feature detection and feature description methodology. However, the performance of the feature matching is an interplay of both detector and descriptor methodology. Our main contribution is to evaluate the performance of some of the most popular descriptor and detector combinations on the DTU Robot dataset, which is a very large dataset with massive amounts of systematic data aimed at two view matching. The size of the dataset implies that we can also reasonably make deductions about the statistical significance of our results. We conclude, that the MSER and Difference of Gaussian (DoG) detectors with a SIFT or DAISY descriptor are the top performers. This performance is, however, not statistically significantly better than some other methods. As a byproduct of this investigation, we have also tested various DAISY type descriptors, and found that the difference among their performance is statistically insignificant using this dataset. Furthermore, we have not been able to produce results collaborating that using affine invariant feature detectors carries a statistical significant advantage on general scene types.
AbstractList Addressing the image correspondence problem by feature matching is a central part of computer vision and 3D inference from images. Consequently, there is a substantial amount of work on evaluating feature detection and feature description methodology. However, the performance of the feature matching is an interplay of both detector and descriptor methodology. Our main contribution is to evaluate the performance of some of the most popular descriptor and detector combinations on the DTU Robot dataset, which is a very large dataset with massive amounts of systematic data aimed at two view matching. The size of the dataset implies that we can also reasonably make deductions about the statistical significance of our results. We conclude, that the MSER and Difference of Gaussian (DoG) detectors with a SIFT or DAISY descriptor are the top performers. This performance is, however, not statistically significantly better than some other methods. As a byproduct of this investigation, we have also tested various DAISY type descriptors, and found that the difference among their performance is statistically insignificant using this dataset. Furthermore, we have not been able to produce results collaborating that using affine invariant feature detectors carries a statistical significant advantage on general scene types.
Author Pedersen, K. S.
Dahl, A. L.
Aanæs, H.
Author_xml – sequence: 1
  givenname: A. L.
  surname: Dahl
  fullname: Dahl, A. L.
  email: abd@imm.dtu.dk
  organization: DTU Inf., Tech. Univ. of Denmark, Lyngby, Denmark
– sequence: 2
  givenname: H.
  surname: Aanæs
  fullname: Aanæs, H.
  email: haa@imm.dtu.dk
  organization: DTU Inf., Tech. Univ. of Denmark, Lyngby, Denmark
– sequence: 3
  givenname: K. S.
  surname: Pedersen
  fullname: Pedersen, K. S.
  email: kimstp@diku.dk
  organization: Dept. of Comput. Sci., DIKU Univ. of Copenhagen, Copenhagen, Denmark
BookMark eNotjD1PwzAURY0oEk3pzMCSP5Bgx37-GCEhUKkIhoi1spNnMKJOlZiBf08kuMs9dzg3I6s4RiTkmtGSMWpuebN7fn3ryooyVgp1RjKqpAHBpeHnJGOSVVqIyogVWTMAWkim4ZJs5_mTLpGVUsDXRLchDiG-5-kD83ucU96iTd8T5g0m7NM4FQ3O_RROC-b1eHQh2hTGeEUuvP2acfvfG9K1D139VOxfHnf13b4IhqaCDc6Z3mukynhmnVTaLgusRid6BYMHA9xxcFp7rpw2BvrKg7JcO26Bb8jN321AxMNpCkc7_RwWCbhS_BfwcEqU
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/3DIMPVT.2011.47
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 0769543693
9780769543697
EndPage 325
ExternalDocumentID 5955377
Genre orig-research
GroupedDBID 29O
6IE
6IK
6IL
AAJGR
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIL
RNS
ID FETCH-LOGICAL-i90t-1dbb9cf8e079f1ab678af8e5a8eb4c75df5953b35b88f37b8995c2f57a38b3a53
IEDL.DBID RIE
ISBN 1612844294
9781612844299
ISSN 1550-6185
IngestDate Wed Aug 27 03:14:34 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-1dbb9cf8e079f1ab678af8e5a8eb4c75df5953b35b88f37b8995c2f57a38b3a53
PageCount 8
ParticipantIDs ieee_primary_5955377
PublicationCentury 2000
PublicationDate 2011-May
PublicationDateYYYYMMDD 2011-05-01
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-May
PublicationDecade 2010
PublicationTitle 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission
PublicationTitleAbbrev 3dimpvt
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000627753
ssib015832685
ssj0037847
Score 1.9942427
Snippet Addressing the image correspondence problem by feature matching is a central part of computer vision and 3D inference from images. Consequently, there is a...
SourceID ieee
SourceType Publisher
StartPage 318
SubjectTerms Cameras
Combined descriptor detector evaluation
Detectors
Feature evaluation
Feature extraction
Geometry
Interest point descriptor
Interest point detector
Layout
Pixel
Robots
Title Finding the Best Feature Detector-Descriptor Combination
URI https://ieeexplore.ieee.org/document/5955377
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6AkydUML7Tg0cLLN3ZtldFgiYYDmi4kbbbJsQEDO5e_PVOuwsmxIO37SZNuu3sN4_OfEPInc8NoCLWTPIEWIpKgBmpM5aDFc4nufHxBn_6mk3e0pcFLBrkfl8L45yLyWeuFx7jXX6-sWUIlfVBAXAhmqQphKpqtXaykwCKZlbzsFQoPBTRFK9QmQsZm40FixzdJQmhyCsL4IyAnNbcT7uxqjmAkoHq89HzdPY-r8g-D5qwRB00bpPpbvVV6slHryxMz34fEDv-9_OOSfe32o_O9nrshDTc-pS0a_OU1j__V4fI8SqWwFC0GekDahMa7Mdy6-jIFTH4z9CLjSi02VIEGnS647l3yXz8NH-csLrxAlupQcHwhIyyXrqBUD7RBvWZxhFo6UxqBeQeV8oNByOl58KgywZ26EFoLg3XwM9Ia71Zu3NCdYYz0AvOLZg0t1oNjTIiDbdxWWKHyQXphH1YflbUGst6Cy7_fn1FjqqQbsg3vCatYlu6G7QJCnMbheEHLuutyw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeZGAkbRP7YmflUbXQVB0C6lbZjiNVSC0qycKv5-ykRaoY2OJIlhz78t3Dd98RcpdnClARS1_QAHyGSsBXQkZ-BpqbPMhU7m7wk0k0fGMvM5g1yP22FsYY45LPTNc-urv8bKVLGyrrQQxAOd8j-8AYD6tqrY30BIDCGdVMLBUOh9wZ4xUuUy5cuzFrk6PDJMCWeUUWnhGSWc3-tBnHNQtQ0I979GmUTN_Tiu5zpw2L00KDFkk266-STz66ZaG6-nuH2vG_H3hEOr_1ft50q8mOScMsT0irNlC9-vf_ahMxWLgiGA-tRu8B9YlnLchybbwnU7jwv49-rMOh1dpDqEG32518h6SD5_Rx6NetF_xF3C98PCMV61yYPo_zQCrUaBJHIIVRTHPIclwpVRSUEDnlCp020GEOXFKhqAR6SprL1dKcEU9GOAP94EyDYpmWcahixZm9j4sCHQbnpG33Yf5ZkWvM6y24-Pv1LTkYpsl4Ph5NXi_JYRXgtdmHV6RZrEtzjRZCoW6cYPwAfgKxFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+International+Conference+on+3D+Imaging%2C+Modeling%2C+Processing%2C+Visualization+and+Transmission&rft.atitle=Finding+the+Best+Feature+Detector-Descriptor+Combination&rft.au=Dahl%2C+A.+L.&rft.au=Aan%C3%A6s%2C+H.&rft.au=Pedersen%2C+K.+S.&rft.date=2011-05-01&rft.pub=IEEE&rft.isbn=9781612844299&rft.issn=1550-6185&rft.spage=318&rft.epage=325&rft_id=info:doi/10.1109%2F3DIMPVT.2011.47&rft.externalDocID=5955377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-6185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-6185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-6185&client=summon