Finding the Best Feature Detector-Descriptor Combination
Addressing the image correspondence problem by feature matching is a central part of computer vision and 3D inference from images. Consequently, there is a substantial amount of work on evaluating feature detection and feature description methodology. However, the performance of the feature matching...
Saved in:
Published in | 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission pp. 318 - 325 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2011
|
Subjects | |
Online Access | Get full text |
ISBN | 1612844294 9781612844299 |
ISSN | 1550-6185 |
DOI | 10.1109/3DIMPVT.2011.47 |
Cover
Abstract | Addressing the image correspondence problem by feature matching is a central part of computer vision and 3D inference from images. Consequently, there is a substantial amount of work on evaluating feature detection and feature description methodology. However, the performance of the feature matching is an interplay of both detector and descriptor methodology. Our main contribution is to evaluate the performance of some of the most popular descriptor and detector combinations on the DTU Robot dataset, which is a very large dataset with massive amounts of systematic data aimed at two view matching. The size of the dataset implies that we can also reasonably make deductions about the statistical significance of our results. We conclude, that the MSER and Difference of Gaussian (DoG) detectors with a SIFT or DAISY descriptor are the top performers. This performance is, however, not statistically significantly better than some other methods. As a byproduct of this investigation, we have also tested various DAISY type descriptors, and found that the difference among their performance is statistically insignificant using this dataset. Furthermore, we have not been able to produce results collaborating that using affine invariant feature detectors carries a statistical significant advantage on general scene types. |
---|---|
AbstractList | Addressing the image correspondence problem by feature matching is a central part of computer vision and 3D inference from images. Consequently, there is a substantial amount of work on evaluating feature detection and feature description methodology. However, the performance of the feature matching is an interplay of both detector and descriptor methodology. Our main contribution is to evaluate the performance of some of the most popular descriptor and detector combinations on the DTU Robot dataset, which is a very large dataset with massive amounts of systematic data aimed at two view matching. The size of the dataset implies that we can also reasonably make deductions about the statistical significance of our results. We conclude, that the MSER and Difference of Gaussian (DoG) detectors with a SIFT or DAISY descriptor are the top performers. This performance is, however, not statistically significantly better than some other methods. As a byproduct of this investigation, we have also tested various DAISY type descriptors, and found that the difference among their performance is statistically insignificant using this dataset. Furthermore, we have not been able to produce results collaborating that using affine invariant feature detectors carries a statistical significant advantage on general scene types. |
Author | Pedersen, K. S. Dahl, A. L. Aanæs, H. |
Author_xml | – sequence: 1 givenname: A. L. surname: Dahl fullname: Dahl, A. L. email: abd@imm.dtu.dk organization: DTU Inf., Tech. Univ. of Denmark, Lyngby, Denmark – sequence: 2 givenname: H. surname: Aanæs fullname: Aanæs, H. email: haa@imm.dtu.dk organization: DTU Inf., Tech. Univ. of Denmark, Lyngby, Denmark – sequence: 3 givenname: K. S. surname: Pedersen fullname: Pedersen, K. S. email: kimstp@diku.dk organization: Dept. of Comput. Sci., DIKU Univ. of Copenhagen, Copenhagen, Denmark |
BookMark | eNotjD1PwzAURY0oEk3pzMCSP5Bgx37-GCEhUKkIhoi1spNnMKJOlZiBf08kuMs9dzg3I6s4RiTkmtGSMWpuebN7fn3ryooyVgp1RjKqpAHBpeHnJGOSVVqIyogVWTMAWkim4ZJs5_mTLpGVUsDXRLchDiG-5-kD83ucU96iTd8T5g0m7NM4FQ3O_RROC-b1eHQh2hTGeEUuvP2acfvfG9K1D139VOxfHnf13b4IhqaCDc6Z3mukynhmnVTaLgusRid6BYMHA9xxcFp7rpw2BvrKg7JcO26Bb8jN321AxMNpCkc7_RwWCbhS_BfwcEqU |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/3DIMPVT.2011.47 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 0769543693 9780769543697 |
EndPage | 325 |
ExternalDocumentID | 5955377 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IK 6IL AAJGR ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIL RNS |
ID | FETCH-LOGICAL-i90t-1dbb9cf8e079f1ab678af8e5a8eb4c75df5953b35b88f37b8995c2f57a38b3a53 |
IEDL.DBID | RIE |
ISBN | 1612844294 9781612844299 |
ISSN | 1550-6185 |
IngestDate | Wed Aug 27 03:14:34 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-1dbb9cf8e079f1ab678af8e5a8eb4c75df5953b35b88f37b8995c2f57a38b3a53 |
PageCount | 8 |
ParticipantIDs | ieee_primary_5955377 |
PublicationCentury | 2000 |
PublicationDate | 2011-May |
PublicationDateYYYYMMDD | 2011-05-01 |
PublicationDate_xml | – month: 05 year: 2011 text: 2011-May |
PublicationDecade | 2010 |
PublicationTitle | 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission |
PublicationTitleAbbrev | 3dimpvt |
PublicationYear | 2011 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000627753 ssib015832685 ssj0037847 |
Score | 1.9942427 |
Snippet | Addressing the image correspondence problem by feature matching is a central part of computer vision and 3D inference from images. Consequently, there is a... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 318 |
SubjectTerms | Cameras Combined descriptor detector evaluation Detectors Feature evaluation Feature extraction Geometry Interest point descriptor Interest point detector Layout Pixel Robots |
Title | Finding the Best Feature Detector-Descriptor Combination |
URI | https://ieeexplore.ieee.org/document/5955377 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6AkydUML7Tg0cLLN3ZtldFgiYYDmi4kbbbJsQEDO5e_PVOuwsmxIO37SZNuu3sN4_OfEPInc8NoCLWTPIEWIpKgBmpM5aDFc4nufHxBn_6mk3e0pcFLBrkfl8L45yLyWeuFx7jXX6-sWUIlfVBAXAhmqQphKpqtXaykwCKZlbzsFQoPBTRFK9QmQsZm40FixzdJQmhyCsL4IyAnNbcT7uxqjmAkoHq89HzdPY-r8g-D5qwRB00bpPpbvVV6slHryxMz34fEDv-9_OOSfe32o_O9nrshDTc-pS0a_OU1j__V4fI8SqWwFC0GekDahMa7Mdy6-jIFTH4z9CLjSi02VIEGnS647l3yXz8NH-csLrxAlupQcHwhIyyXrqBUD7RBvWZxhFo6UxqBeQeV8oNByOl58KgywZ26EFoLg3XwM9Ia71Zu3NCdYYz0AvOLZg0t1oNjTIiDbdxWWKHyQXphH1YflbUGst6Cy7_fn1FjqqQbsg3vCatYlu6G7QJCnMbheEHLuutyw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeZGAkbRP7YmflUbXQVB0C6lbZjiNVSC0qycKv5-ykRaoY2OJIlhz78t3Dd98RcpdnClARS1_QAHyGSsBXQkZ-BpqbPMhU7m7wk0k0fGMvM5g1yP22FsYY45LPTNc-urv8bKVLGyrrQQxAOd8j-8AYD6tqrY30BIDCGdVMLBUOh9wZ4xUuUy5cuzFrk6PDJMCWeUUWnhGSWc3-tBnHNQtQ0I979GmUTN_Tiu5zpw2L00KDFkk266-STz66ZaG6-nuH2vG_H3hEOr_1ft50q8mOScMsT0irNlC9-vf_ahMxWLgiGA-tRu8B9YlnLchybbwnU7jwv49-rMOh1dpDqEG32518h6SD5_Rx6NetF_xF3C98PCMV61yYPo_zQCrUaBJHIIVRTHPIclwpVRSUEDnlCp020GEOXFKhqAR6SprL1dKcEU9GOAP94EyDYpmWcahixZm9j4sCHQbnpG33Yf5ZkWvM6y24-Pv1LTkYpsl4Ph5NXi_JYRXgtdmHV6RZrEtzjRZCoW6cYPwAfgKxFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+International+Conference+on+3D+Imaging%2C+Modeling%2C+Processing%2C+Visualization+and+Transmission&rft.atitle=Finding+the+Best+Feature+Detector-Descriptor+Combination&rft.au=Dahl%2C+A.+L.&rft.au=Aan%C3%A6s%2C+H.&rft.au=Pedersen%2C+K.+S.&rft.date=2011-05-01&rft.pub=IEEE&rft.isbn=9781612844299&rft.issn=1550-6185&rft.spage=318&rft.epage=325&rft_id=info:doi/10.1109%2F3DIMPVT.2011.47&rft.externalDocID=5955377 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-6185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-6185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-6185&client=summon |