Towards emotion recognition from electroencephalographic signals
During the last decades, information about the emotional state of users has become more and more important in human-computer interaction. Automatic emotion recognition enables the computer to recognize a user's emotional state and thus allows for appropriate reaction, which may pave the way for...
Saved in:
Published in | 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops pp. 1 - 6 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2009
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424448005 142444800X |
ISSN | 2156-8103 |
DOI | 10.1109/ACII.2009.5349316 |
Cover
Abstract | During the last decades, information about the emotional state of users has become more and more important in human-computer interaction. Automatic emotion recognition enables the computer to recognize a user's emotional state and thus allows for appropriate reaction, which may pave the way for computers to act emotionally in the future. In the current study, we investigate different feature sets to build an emotion recognition system from electroencephalo-graphic signals. We used pictures from the International Affective Picture System to induce three emotional states: pleasant, neutral, and unpleasant. We designed a headband with four build-in electrodes at the forehead, which was used to record data from five subjects. Compared to standard EEG-caps, the headband is comfortable to wear and easy to attach, which makes it more suitable for everyday life conditions. To solve the recognition task we developed a system based on support vector machines. With this system we were able to achieve an average recognition rate up to 66.7% on subject dependent recognition, solely based on EEG signals. |
---|---|
AbstractList | During the last decades, information about the emotional state of users has become more and more important in human-computer interaction. Automatic emotion recognition enables the computer to recognize a user's emotional state and thus allows for appropriate reaction, which may pave the way for computers to act emotionally in the future. In the current study, we investigate different feature sets to build an emotion recognition system from electroencephalo-graphic signals. We used pictures from the International Affective Picture System to induce three emotional states: pleasant, neutral, and unpleasant. We designed a headband with four build-in electrodes at the forehead, which was used to record data from five subjects. Compared to standard EEG-caps, the headband is comfortable to wear and easy to attach, which makes it more suitable for everyday life conditions. To solve the recognition task we developed a system based on support vector machines. With this system we were able to achieve an average recognition rate up to 66.7% on subject dependent recognition, solely based on EEG signals. |
Author | Schultz, T. Schaaff, K. |
Author_xml | – sequence: 1 givenname: K. surname: Schaaff fullname: Schaaff, K. organization: Univ. of Karlsruhe (TH), Karlsruhe, Germany – sequence: 2 givenname: T. surname: Schultz fullname: Schultz, T. organization: Univ. of Karlsruhe (TH), Karlsruhe, Germany |
BookMark | eNotUM1qwkAY3FKFqvUBSi95gaTft7_ZW0VqKwi9eJfN5kvckmRlI5S-fW31NDMwMzAzZ5MhDsTYE0KBCPZltd5uCw5gCyWkFajv2Bwll1Iaa_k9W1pTXnUJoCZsxlHpvEQQUzb_y1lQwqgHthzHLwBAq6As1Yy97uO3S_WYUR_PIQ5ZIh_bIfzzJsU-o478OUUaPJ2Orottcqdj8NkY2sF14yObNheg5Q0XbL95268_8t3n-3a92uXBwjlHVyPnla9kJTiid9YJQK8VopPeoC9lpUH7i09ytLKWZBvUpjHkL5MqsWDP19pARIdTCr1LP4fbGeIXrZxQyQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ACII.2009.5349316 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1424447992 9781424447992 |
EndPage | 6 |
ExternalDocumentID | 5349316 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-1ad122bcb4b3211ca9a301c6511a4c71c84b606c1ad42194d4e9f167f7ec480b3 |
IEDL.DBID | RIE |
ISBN | 9781424448005 142444800X |
ISSN | 2156-8103 |
IngestDate | Wed Aug 27 02:37:54 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2009905375 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-1ad122bcb4b3211ca9a301c6511a4c71c84b606c1ad42194d4e9f167f7ec480b3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_5349316 |
PublicationCentury | 2000 |
PublicationDate | 2009-Sept. |
PublicationDateYYYYMMDD | 2009-09-01 |
PublicationDate_xml | – month: 09 year: 2009 text: 2009-Sept. |
PublicationDecade | 2000 |
PublicationTitle | 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops |
PublicationTitleAbbrev | ACII |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001950885 ssj0000452947 |
Score | 1.6905793 |
Snippet | During the last decades, information about the emotional state of users has become more and more important in human-computer interaction. Automatic emotion... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Bioelectric phenomena Data mining Electroencephalography Emotion recognition Feature extraction Frequency Heart rate Humans Skin Support vector machines |
Title | Towards emotion recognition from electroencephalographic signals |
URI | https://ieeexplore.ieee.org/document/5349316 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21nZgKtIhvZWDEbRLbcbyBKqoWqYihSN0q23FEhdRWkCz8es6JEwRiYHMiK4lPju_d3bs7gBsh4zRDRUoSnlHCrAgJwghBVBzmnKfaJrmL6C6ektkLe1zxVQdu21wYa21FPrMjN6xi-dnOlM5VNuaUSRolXegKIetcrdaf4kqDSw-NK_9K1d7UMRhRqSUkjULa5HUxBEmrptyTv-Y-4hmFcnw_mc_rSpb-hT86r1SKZ9qHRfPJNd_kbVQWemQ-f1Vz_O-aDmH4neIXPLfK6wg6dnsM_abHQ-B_-QHcLSte7Udg634_Qcs4wrHLTQl8Ix03ff-qfAnsjQkcMwT39hCW04flZEZ81wWykWFBIpVFcayNZpqicWiUVHgGmASBmWJGRCZlGo0eg_MYnnYsY1bmUSJyYQ0KUtMT6G13W3sKAWWCZkzH1qgU1R5H0y7Pc3wiV4jqVHgGAyeP9b6uq7H2ojj_-_YFHNSRHMfvuoRe8V7aKwQEhb6udsIX35utjw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsBUoEV8k4ERt0lsx8kGqqhaaCuGIHWrbMcRFVJbQbrw6zknbhCIgc2JrCQ-Ob53d-_uAG5EEsYZKlIS8YwSZoRPEEYIIkM_5zxWJsptRHcyjYYv7HHGZw24rXNhjDEl-cx07bCM5WcrvbGush6nLKFBtAO7HK0KUWVr1R4VWxw8ceC49LCUDU4thxHVWkTiwKfbzC6GMGm2LfjkrrmLeQZ-0rvvj0ZVLUv3yh-9V0rVM2jBZPvRFePkrbspVFd__qrn-N9VHUDnO8nPe67V1yE0zPIIWtsuD5776dtwl5bM2g_PVB1_vJpzhGObneK5Vjp2-vpVuiLYC-1Zbgju7g6kg4e0PySu7wJZJH5BApkFYai0YoqieahlIvEU0BFCM8m0CHTMFJo9GucxPO9YxkySB5HIhdEoSEWPoblcLc0JeJQJmjEVGi1jVHwcjbs8z_GJXCKuk_4ptK085uuqssbcieLs79vXsDdMJ-P5eDR9Oof9Kq5j2V4X0CzeN-YS4UGhrspd8QU1KbDg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+3rd+International+Conference+on+Affective+Computing+and+Intelligent+Interaction+and+Workshops&rft.atitle=Towards+emotion+recognition+from+electroencephalographic+signals&rft.au=Schaaff%2C+K.&rft.au=Schultz%2C+T.&rft.date=2009-09-01&rft.pub=IEEE&rft.isbn=9781424448005&rft.issn=2156-8103&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FACII.2009.5349316&rft.externalDocID=5349316 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-8103&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-8103&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-8103&client=summon |