Automatic path test data generation based on GA-PSO
Automatic test data generation is a key issue to achieve test automation. The path test data generation is a hot point in the research field of software test investigation. The previous approaches of generating test data are mostly based on Genetic Algorithms (GA) and its improved algorithm. These a...
Saved in:
| Published in | 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems Vol. 1; pp. 142 - 146 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.10.2010
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781424465828 1424465826 |
| DOI | 10.1109/ICICISYS.2010.5658735 |
Cover
| Abstract | Automatic test data generation is a key issue to achieve test automation. The path test data generation is a hot point in the research field of software test investigation. The previous approaches of generating test data are mostly based on Genetic Algorithms (GA) and its improved algorithm. These approaches have tow shortcomings: one is too complex to use and difficult to set parameters. The other is weak local search and slow convergence. We propose a hybrid algorithm (GA-PSO) which combines Genetic Algorithm and Particle Swarm Optimization (PSO) in this paper. The new algorithm is proved effective by a representative test of the "triangle type of discrimination". The experiment shows that the new algorithm has higher performance when the value of Φ is 20%. |
|---|---|
| AbstractList | Automatic test data generation is a key issue to achieve test automation. The path test data generation is a hot point in the research field of software test investigation. The previous approaches of generating test data are mostly based on Genetic Algorithms (GA) and its improved algorithm. These approaches have tow shortcomings: one is too complex to use and difficult to set parameters. The other is weak local search and slow convergence. We propose a hybrid algorithm (GA-PSO) which combines Genetic Algorithm and Particle Swarm Optimization (PSO) in this paper. The new algorithm is proved effective by a representative test of the "triangle type of discrimination". The experiment shows that the new algorithm has higher performance when the value of Φ is 20%. |
| Author | Ying Zhang Sheng Zhang Hong Zhou Qingquan He |
| Author_xml | – sequence: 1 surname: Sheng Zhang fullname: Sheng Zhang email: zwxzsl68@126.com organization: Sch. of Inf. Eng., Nanchang Hangkong Univ., Nanchang, China – sequence: 2 surname: Ying Zhang fullname: Ying Zhang email: yzhang4776@163.com organization: Sch. of Inf. Eng., Nanchang Hangkong Univ., Nanchang, China – sequence: 3 surname: Hong Zhou fullname: Hong Zhou email: mfkxauwl@yahoo.com.cn organization: Sch. of Inf. Eng., Nanchang Hangkong Univ., Nanchang, China – sequence: 4 surname: Qingquan He fullname: Qingquan He email: heqq_92@126.com organization: Sch. of Inf. Eng., Nanchang Hangkong Univ., Nanchang, China |
| BookMark | eNo1T8tOwzAQNAIkaMkXICT_QIpfie1jFEGpVKlI6YVTtbY3EESTKjYH_h5LlJ3DzuyOdjULcjVOIxLywNmKc2YfN21G99atBMujqq6MltUFWXAllMpKiUtSWG3-tTA3pIjxk-XK7my_JbL5TtMR0uDpCdIHTRgTDZCAvuOIc15MI3UQMdBM1k352u3uyHUPXxGLc1-S_fPTvn0pt7v1pm225WBZKvPX0FsTgkFXe2mE9jII71XtJK_B8-BRVAhC-cC1YpYr7J3rK83BSuHkktz_nR0Q8XCahyPMP4dzTPkL4t9ICA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICICISYS.2010.5658735 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1424465842 1424465850 9781424465842 9781424465859 |
| EndPage | 146 |
| ExternalDocumentID | 5658735 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i90t-142df98dd8eb6c3827c3d2cc46b316ac1dce25ea24cd1740914efbbf571a932b3 |
| IEDL.DBID | RIE |
| ISBN | 9781424465828 1424465826 |
| IngestDate | Wed Aug 27 02:55:15 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-142df98dd8eb6c3827c3d2cc46b316ac1dce25ea24cd1740914efbbf571a932b3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_5658735 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-Oct. |
| PublicationDateYYYYMMDD | 2010-10-01 |
| PublicationDate_xml | – month: 10 year: 2010 text: 2010-Oct. |
| PublicationDecade | 2010 |
| PublicationTitle | 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems |
| PublicationTitleAbbrev | ICICISYS |
| PublicationYear | 2010 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000565587 |
| Score | 1.51554 |
| Snippet | Automatic test data generation is a key issue to achieve test automation. The path test data generation is a hot point in the research field of software test... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 142 |
| SubjectTerms | GA-PSO Algorithm Gallium Genetic Algorithm Particle Swarm Optimization Security test data generation |
| Title | Automatic path test data generation based on GA-PSO |
| URI | https://ieeexplore.ieee.org/document/5658735 |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXi03dKkaXocwzmF6WAT5mnkx6uIsIm0F_96X9JuoniQXtKklDxy-L4k7_seIVfIYAFxORjd8khkykRaMBv5DZDjOOKCXdP0QU6exP0yXbbI9U4LAwAh-Qxi3wx3-W5jK39U1kfyoTKetkk7U7LWau3OUxDIUxzdarfwy0RuLZ2ad9UoeNgg79-N8Jk_z-vkrubHPyqsBIAZ75Ppdmp1XslbXJUmtp-_XBv_O_cD0vuW8tHZDqQOSQvWXcKHVbkJXq3UVySmSDdL6nNF6UtwofaLRT2-OYqN22E0mz_2yGJ8sxhNoqZ6QvSaD8oIo3ZFrpxTYKTlKsksd4m1QhrOpLbMWUhS0ImwDnclSBsEFMYUacY0cjrDj0hnvVnDMaE6Z6mTHAolcsE1qJxprZ3OnHbIGOwJ6fp4V--1P8aqCfX07-4zshdu4ENC3DnplB8VXCCwl-YyrOgXqNWdTw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOhJDRh_24NHB25tt-5IiAgKSAImeCL9NWNMwJjt4l_vazcwGg9ml65dlr708H1t3_c9gCtksBZx2Rvd0oAlQgWShTpwGyBDccR4u6bROO4_sfs5n9fgeqOFsdb65DPbck1_l29WunBHZW0kHyKhfAu2OWOMl2qtzYkKQjnH8bV6C7-N4rWpU_UuKg1PeJO2B118ps_TMr2r-vWPGiseYnp7MFpPrswseWsVuWrpz1--jf-d_T40v8V8ZLKBqQOo2WUDaKfIV96tlbiaxAQJZ05ctih58T7UbrmIQzhDsHHXCSbTxybMerezbj-o6icEr-lNHmDUJkuFMcKqWFMRJZqaSGsWKxrGUodG24hbGTFtcF-CxIHZTKmMJ6FEVqfoIdSXq6U9AiLTkJuY2kywlFFpRRpKKY1MjDTIGfQxNFy8i_fSIWNRhXryd_cl7PRno-FiOBg_nMKuv4_36XFnUM8_CnuOMJ-rC7-6Xx1BoJw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+International+Conference+on+Intelligent+Computing+and+Intelligent+Systems&rft.atitle=Automatic+path+test+data+generation+based+on+GA-PSO&rft.au=Sheng+Zhang&rft.au=Ying+Zhang&rft.au=Hong+Zhou&rft.au=Qingquan+He&rft.date=2010-10-01&rft.pub=IEEE&rft.isbn=9781424465828&rft.volume=1&rft.spage=142&rft.epage=146&rft_id=info:doi/10.1109%2FICICISYS.2010.5658735&rft.externalDocID=5658735 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465828/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465828/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465828/sc.gif&client=summon&freeimage=true |