Automatic path test data generation based on GA-PSO

Automatic test data generation is a key issue to achieve test automation. The path test data generation is a hot point in the research field of software test investigation. The previous approaches of generating test data are mostly based on Genetic Algorithms (GA) and its improved algorithm. These a...

Full description

Saved in:
Bibliographic Details
Published in2010 IEEE International Conference on Intelligent Computing and Intelligent Systems Vol. 1; pp. 142 - 146
Main Authors Sheng Zhang, Ying Zhang, Hong Zhou, Qingquan He
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2010
Subjects
Online AccessGet full text
ISBN9781424465828
1424465826
DOI10.1109/ICICISYS.2010.5658735

Cover

Abstract Automatic test data generation is a key issue to achieve test automation. The path test data generation is a hot point in the research field of software test investigation. The previous approaches of generating test data are mostly based on Genetic Algorithms (GA) and its improved algorithm. These approaches have tow shortcomings: one is too complex to use and difficult to set parameters. The other is weak local search and slow convergence. We propose a hybrid algorithm (GA-PSO) which combines Genetic Algorithm and Particle Swarm Optimization (PSO) in this paper. The new algorithm is proved effective by a representative test of the "triangle type of discrimination". The experiment shows that the new algorithm has higher performance when the value of Φ is 20%.
AbstractList Automatic test data generation is a key issue to achieve test automation. The path test data generation is a hot point in the research field of software test investigation. The previous approaches of generating test data are mostly based on Genetic Algorithms (GA) and its improved algorithm. These approaches have tow shortcomings: one is too complex to use and difficult to set parameters. The other is weak local search and slow convergence. We propose a hybrid algorithm (GA-PSO) which combines Genetic Algorithm and Particle Swarm Optimization (PSO) in this paper. The new algorithm is proved effective by a representative test of the "triangle type of discrimination". The experiment shows that the new algorithm has higher performance when the value of Φ is 20%.
Author Ying Zhang
Sheng Zhang
Hong Zhou
Qingquan He
Author_xml – sequence: 1
  surname: Sheng Zhang
  fullname: Sheng Zhang
  email: zwxzsl68@126.com
  organization: Sch. of Inf. Eng., Nanchang Hangkong Univ., Nanchang, China
– sequence: 2
  surname: Ying Zhang
  fullname: Ying Zhang
  email: yzhang4776@163.com
  organization: Sch. of Inf. Eng., Nanchang Hangkong Univ., Nanchang, China
– sequence: 3
  surname: Hong Zhou
  fullname: Hong Zhou
  email: mfkxauwl@yahoo.com.cn
  organization: Sch. of Inf. Eng., Nanchang Hangkong Univ., Nanchang, China
– sequence: 4
  surname: Qingquan He
  fullname: Qingquan He
  email: heqq_92@126.com
  organization: Sch. of Inf. Eng., Nanchang Hangkong Univ., Nanchang, China
BookMark eNo1T8tOwzAQNAIkaMkXICT_QIpfie1jFEGpVKlI6YVTtbY3EESTKjYH_h5LlJ3DzuyOdjULcjVOIxLywNmKc2YfN21G99atBMujqq6MltUFWXAllMpKiUtSWG3-tTA3pIjxk-XK7my_JbL5TtMR0uDpCdIHTRgTDZCAvuOIc15MI3UQMdBM1k352u3uyHUPXxGLc1-S_fPTvn0pt7v1pm225WBZKvPX0FsTgkFXe2mE9jII71XtJK_B8-BRVAhC-cC1YpYr7J3rK83BSuHkktz_nR0Q8XCahyPMP4dzTPkL4t9ICA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICICISYS.2010.5658735
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1424465842
1424465850
9781424465842
9781424465859
EndPage 146
ExternalDocumentID 5658735
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-142df98dd8eb6c3827c3d2cc46b316ac1dce25ea24cd1740914efbbf571a932b3
IEDL.DBID RIE
ISBN 9781424465828
1424465826
IngestDate Wed Aug 27 02:55:15 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-142df98dd8eb6c3827c3d2cc46b316ac1dce25ea24cd1740914efbbf571a932b3
PageCount 5
ParticipantIDs ieee_primary_5658735
PublicationCentury 2000
PublicationDate 2010-Oct.
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-Oct.
PublicationDecade 2010
PublicationTitle 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems
PublicationTitleAbbrev ICICISYS
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000565587
Score 1.51554
Snippet Automatic test data generation is a key issue to achieve test automation. The path test data generation is a hot point in the research field of software test...
SourceID ieee
SourceType Publisher
StartPage 142
SubjectTerms GA-PSO Algorithm
Gallium
Genetic Algorithm
Particle Swarm Optimization
Security
test data generation
Title Automatic path test data generation based on GA-PSO
URI https://ieeexplore.ieee.org/document/5658735
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXi03dKkaXocwzmF6WAT5mnkx6uIsIm0F_96X9JuoniQXtKklDxy-L4k7_seIVfIYAFxORjd8khkykRaMBv5DZDjOOKCXdP0QU6exP0yXbbI9U4LAwAh-Qxi3wx3-W5jK39U1kfyoTKetkk7U7LWau3OUxDIUxzdarfwy0RuLZ2ad9UoeNgg79-N8Jk_z-vkrubHPyqsBIAZ75Ppdmp1XslbXJUmtp-_XBv_O_cD0vuW8tHZDqQOSQvWXcKHVbkJXq3UVySmSDdL6nNF6UtwofaLRT2-OYqN22E0mz_2yGJ8sxhNoqZ6QvSaD8oIo3ZFrpxTYKTlKsksd4m1QhrOpLbMWUhS0ImwDnclSBsEFMYUacY0cjrDj0hnvVnDMaE6Z6mTHAolcsE1qJxprZ3OnHbIGOwJ6fp4V--1P8aqCfX07-4zshdu4ENC3DnplB8VXCCwl-YyrOgXqNWdTw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOhJDRh_24NHB25tt-5IiAgKSAImeCL9NWNMwJjt4l_vazcwGg9ml65dlr708H1t3_c9gCtksBZx2Rvd0oAlQgWShTpwGyBDccR4u6bROO4_sfs5n9fgeqOFsdb65DPbck1_l29WunBHZW0kHyKhfAu2OWOMl2qtzYkKQjnH8bV6C7-N4rWpU_UuKg1PeJO2B118ps_TMr2r-vWPGiseYnp7MFpPrswseWsVuWrpz1--jf-d_T40v8V8ZLKBqQOo2WUDaKfIV96tlbiaxAQJZ05ctih58T7UbrmIQzhDsHHXCSbTxybMerezbj-o6icEr-lNHmDUJkuFMcKqWFMRJZqaSGsWKxrGUodG24hbGTFtcF-CxIHZTKmMJ6FEVqfoIdSXq6U9AiLTkJuY2kywlFFpRRpKKY1MjDTIGfQxNFy8i_fSIWNRhXryd_cl7PRno-FiOBg_nMKuv4_36XFnUM8_CnuOMJ-rC7-6Xx1BoJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+International+Conference+on+Intelligent+Computing+and+Intelligent+Systems&rft.atitle=Automatic+path+test+data+generation+based+on+GA-PSO&rft.au=Sheng+Zhang&rft.au=Ying+Zhang&rft.au=Hong+Zhou&rft.au=Qingquan+He&rft.date=2010-10-01&rft.pub=IEEE&rft.isbn=9781424465828&rft.volume=1&rft.spage=142&rft.epage=146&rft_id=info:doi/10.1109%2FICICISYS.2010.5658735&rft.externalDocID=5658735
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465828/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465828/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465828/sc.gif&client=summon&freeimage=true