Hybrid Swarm Intelligence Algorithms with Ensemble Machine Learning for Medical Diagnosis
Disease Diagnosis still an open problem in current research. The main characteristic of diseases diagnostic model is that it helps physicians to make quick decisions and minimize errors in diagnosis. Current existing techniques are not consistent with all diseases datasets. While they achieve a good...
Saved in:
| Published in | 2018 4th International Conference on Computer and Information Sciences (ICCOINS) pp. 1 - 6 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.08.2018
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/ICCOINS.2018.8510615 |
Cover
| Abstract | Disease Diagnosis still an open problem in current research. The main characteristic of diseases diagnostic model is that it helps physicians to make quick decisions and minimize errors in diagnosis. Current existing techniques are not consistent with all diseases datasets. While they achieve a good accuracy on specific dataset, their performance drops on other diseases datasets. Therefore, this paper proposed a hybrid Dynamic ant colony system three update levels, with wavelets transform, and singular value decomposition integrating support vector machine. The proposed method will be evaluated using five benchmark medical datasets of various diseases from the UCI repository. The expected outcome of the proposed method seeks to minimize subset of features to attain a satisfactory disease diagnosis on a wide range of diseases with the highest accuracy, sensitivity, and specificity |
|---|---|
| AbstractList | Disease Diagnosis still an open problem in current research. The main characteristic of diseases diagnostic model is that it helps physicians to make quick decisions and minimize errors in diagnosis. Current existing techniques are not consistent with all diseases datasets. While they achieve a good accuracy on specific dataset, their performance drops on other diseases datasets. Therefore, this paper proposed a hybrid Dynamic ant colony system three update levels, with wavelets transform, and singular value decomposition integrating support vector machine. The proposed method will be evaluated using five benchmark medical datasets of various diseases from the UCI repository. The expected outcome of the proposed method seeks to minimize subset of features to attain a satisfactory disease diagnosis on a wide range of diseases with the highest accuracy, sensitivity, and specificity |
| Author | Al-Tashi, Qasem Abdulkadir, Said Jadid Rais, Helmi |
| Author_xml | – sequence: 1 givenname: Qasem surname: Al-Tashi fullname: Al-Tashi, Qasem organization: Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, 32610, Malaysia – sequence: 2 givenname: Helmi surname: Rais fullname: Rais, Helmi organization: Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, 32610, Malaysia – sequence: 3 givenname: Said Jadid surname: Abdulkadir fullname: Abdulkadir, Said Jadid organization: Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, 32610, Malaysia |
| BookMark | eNotj7FOwzAUAI0EA235Ahj8Awl-dpzYYxUKjZTSoV2YKjt5SS05DnIiVf17KtHppjvpFuQxjAEJeQOWAjD9XpXlvvo-pJyBSpUEloN8IAuQQuVZkWXimfxsrza6lh4uJg60CjN673oMDdK178fo5vMw0csNdBMmHKxHujPN2QWkNZoYXOhpN0a6w9Y1xtMPZ_owTm5akafO-Alf7lyS4-fmWG6Tev9Vles6cZrNCYgOoe1YUXDdWoatzMAiIuegbK6KRkqjlVEdSGS6gbxgVnPLlRWWC6vEkrz-Z93NOv1GN5h4Pd1nxR90YE-n |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICCOINS.2018.8510615 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1538647443 9781538647448 |
| EndPage | 6 |
| ExternalDocumentID | 8510615 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-13fe1df07729db0ed541beee2218b687c55a98a8f15e09c1670b92b28b3b23b83 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:39:21 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-13fe1df07729db0ed541beee2218b687c55a98a8f15e09c1670b92b28b3b23b83 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_8510615 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Aug. |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-Aug. |
| PublicationDecade | 2010 |
| PublicationTitle | 2018 4th International Conference on Computer and Information Sciences (ICCOINS) |
| PublicationTitleAbbrev | ICCOINS |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.6919714 |
| Snippet | Disease Diagnosis still an open problem in current research. The main characteristic of diseases diagnostic model is that it helps physicians to make quick... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Discrete wavelets transform Disease diagnosis Diseases Dynamic ant colony system three update levels Feature extraction Feature selection Heart Machine learning Medical diagnosis Medical diagnostic imaging singular Value Decomposition Support vector machines |
| Title | Hybrid Swarm Intelligence Algorithms with Ensemble Machine Learning for Medical Diagnosis |
| URI | https://ieeexplore.ieee.org/document/8510615 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J08qrfgmB4_uNrvbbJKj1JZWqApWqKeS2Z3UYruVPhD99Sa7a33gwVsIgYQZwjeZfN8MIec8Ah0j116oIPWakWGeFlp4oUhiCLg22rh8R_8m7j40r4d8WCEXGy0MIubkM_TdMP_LT-fJ2qXKGjY6cAi8RbaEjAutVqmGC5hq9FqtW_vidXQt6ZdLf_RMySGjs0P6n5sVTJFnf70CP3n_VYfxv6fZJfUvcR6928DOHqlgViOP3TcnvaL3r3oxo71vdTbp5XQ8X0xWT7MldUlX2s6WOIMp0n7Oo0RallgdUxu_0vLjhl4VFLzJsk4Gnfag1fXKrgneRDHXWt5gkBrmouYUGKa8GYA9e2ixHGIpEs61klqagCNTSRALBiqEUEIEYQQy2ifVbJ7hAaHG3lBQjDPt2HwIUgkVpDaEceJWYdQhqTmrjF6Kuhij0iBHf08fk23nmYI8d0Kqq8UaTy2gr-As9-QHNV-jdA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pSA8Zve_DoRvfRbT0ahAxlaCImeCJ9WwtEGAZGjP71ttvEj3jw1jRN2ryX5vf6-vu9h9AFdYB7gnLDZpAYriOJwX3uG7Yfe2BRLrnU-Y6o54WP7s2ADirocq2FEULk5DNh6mH-l5_M45VOlTVUdKAReANtUtd1aaHWKvVwFmGNTrN5p968mrAVmOXiH11TctBo76Doc7uCK_JsrjIw4_dflRj_e55dVP-S5-H7NfDsoYpIa-gpfNPiK_zwyhcz3PlWaRNfTUfzxSQbz5ZYp11xK12KGUwFjnImpcBlkdURVhEsLr9u8HVBwpss66jfbvWboVH2TTAmjOjm8lJYiSQ6bk6AiIS6Fqiz2wrNwQv8mFLOAh5IiwrCYsvzCTAb7AAcsB0InH1UTeepOEBYqjsKjFDCNZ9PQMB8ZiUqiNHyVl-yQ1TTVhm-FJUxhqVBjv6ePkdbYT_qDrud3u0x2tZeKqh0J6iaLVbiVMF7Bme5Vz8A8sSmwQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+4th+International+Conference+on+Computer+and+Information+Sciences+%28ICCOINS%29&rft.atitle=Hybrid+Swarm+Intelligence+Algorithms+with+Ensemble+Machine+Learning+for+Medical+Diagnosis&rft.au=Al-Tashi%2C+Qasem&rft.au=Rais%2C+Helmi&rft.au=Abdulkadir%2C+Said+Jadid&rft.date=2018-08-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICCOINS.2018.8510615&rft.externalDocID=8510615 |