A Neural Network Structure for System Identification
Establishing a dynamic process model is the first step toward implementing a modern control algorithm. Because of the complexity of chemical processes, most models are identified, that is, determined from a known input/output sequence. Furthermore, models are usually linear and time invariant. This...
        Saved in:
      
    
          | Published in | 1990 American Control Conference pp. 2460 - 2465 | 
|---|---|
| Main Authors | , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.05.1990
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.23919/ACC.1990.4791170 | 
Cover
| Abstract | Establishing a dynamic process model is the first step toward implementing a modern control algorithm. Because of the complexity of chemical processes, most models are identified, that is, determined from a known input/output sequence. Furthermore, models are usually linear and time invariant. This research focuses on the application of neural networks to the development of dynamic models. In particular, this paper presents a modification of the layered structure used most commonly with the Backward Error Propagation algorithm The modification is the addition of a set of weights connected directly from the input to the output layer, weights which contribute in a linear manner to the network output. This creates a number of advantageous compared to traditional structures, including initialization of network parameters based on process knowledge, additional insight to the leaning algorithm, and enhanced extrapolation outside of examples the learning data set. | 
    
|---|---|
| AbstractList | Establishing a dynamic process model is the first step toward implementing a modern control algorithm. Because of the complexity of chemical processes, most models are identified, that is, determined from a known input/output sequence. Furthermore, models are usually linear and time invariant. This research focuses on the application of neural networks to the development of dynamic models. In particular, this paper presents a modification of the layered structure used most commonly with the Backward Error Propagation algorithm The modification is the addition of a set of weights connected directly from the input to the output layer, weights which contribute in a linear manner to the network output. This creates a number of advantageous compared to traditional structures, including initialization of network parameters based on process knowledge, additional insight to the leaning algorithm, and enhanced extrapolation outside of examples the learning data set. | 
    
| Author | Holt, Bradley R. Haesloop, Dan  | 
    
| Author_xml | – sequence: 1 givenname: Dan surname: Haesloop fullname: Haesloop, Dan organization: Department of Chemical Engineering, University of Washington, BF-10, Seattle, WA 98195 – sequence: 2 givenname: Bradley R. surname: Holt fullname: Holt, Bradley R. organization: Department of Chemical Engineering, University of Washington, BF-10, Seattle, WA 98195  | 
    
| BookMark | eNotzr1OwzAUQGEPMEDhARCLXyDBN7bj3DGK-KlUlaHdK9u5V7JoE-Q6Qn17kOj0bUfnXtxM80RCPIGqG42AL_0w1ICoauMQwKk7YXq5pSX74x_lZ85fclfyEsuSSfKc5e5yLnSS65GmkjhFX9I8PYhb9sczPV5dif3b6374qDaf7-uh31Sp60oVOLBvjGXjnLORWrTcQfTkKShACJEtjaDM2HpQndWjDoguMnNL3LR6JZ7_s4mIDt85nXy-HK7r-hd_20BD | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.23919/ACC.1990.4791170 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EndPage | 2465 | 
    
| ExternalDocumentID | 4791170 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IL CBEJK RIE RIL  | 
    
| ID | FETCH-LOGICAL-i88t-bfbfa245f47775ce695f81caeaeb0191bcf5ed104d6a10853d3b997cfff6ef263 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Thu Jun 29 18:39:44 EDT 2023 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i88t-bfbfa245f47775ce695f81caeaeb0191bcf5ed104d6a10853d3b997cfff6ef263 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_4791170 | 
    
| PublicationCentury | 1900 | 
    
| PublicationDate | 1990-May | 
    
| PublicationDateYYYYMMDD | 1990-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 1990 text: 1990-May  | 
    
| PublicationDecade | 1990 | 
    
| PublicationTitle | 1990 American Control Conference | 
    
| PublicationTitleAbbrev | ACC | 
    
| PublicationYear | 1990 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| Score | 1.2425444 | 
    
| Snippet | Establishing a dynamic process model is the first step toward implementing a modern control algorithm. Because of the complexity of chemical processes, most... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 2460 | 
    
| SubjectTerms | Chemical processes Extrapolation Modems Neural networks Power system modeling Process control Surges System identification Tellurium Vectors  | 
    
| Title | A Neural Network Structure for System Identification | 
    
| URI | https://ieeexplore.ieee.org/document/4791170 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7NtmmyeRxLsRShIliht5LHDIjSirQXf32T3bWiePCUEALJJId5ft8QcqNE1KidYUpzYNKgYFaBYIPoJDdBcJQZjTx7UNNneb8oFy1yu8fCAEBVfAZFnla5_LgO2xwq60ttc6OUNmlro2qsVp2oHArLbX80Hmfw3aBo9v1omFLpi8khmX2dVJeJvBbbjS_C5y8Sxv9e5Yj0vpF59HGvc45JC1ZdIkc0c2y4tzRURd30qWKF3X4ATTYprVnJaY3JxSZI1yPzyd18PGVNNwT2YsyGefTohrJEqbUuAyhbouHBgQOfzDTuA5YQk3MVlcuIAhGFt1YHRFSAQyVOSGe1XsEpocJIzzlmMrdSJofMCSyTV-eFiQMvuD8j3Szw8r3mu1g2sp7_vXxBDvKj10WAl6STBISrpKg3_rr6oR2Wq5T9 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qPehJpRXf7sGju22a5x5LsVRti2CF3kqyOwOitCLdi7_eZHetKB48JYRAMsxhnt83AFeK55q0NbHSDGNhiMepQh53cyuYyTgjEdDIk6kaPYm7uZw34HqDhUHEsvkMk7Ata_n5KitCqqwjdBoGpWzBthRCyAqtVZUqezxlaac_GAT4XTepb_4YmVJajOEeTL7eqhpFXpJi7ZLs4xcN438_sw_tb2xe9LCxOgfQwGULRD8KLBv21S9lW3f0WPLCFu8Yea80qnjJowqVS3Warg2z4c1sMIrreQjxszHr2JEj2xOShNZaZqhSSYZlFi0676gxl5HE3IdXubIBU8Bz7tJUZ0SkkHqKH0JzuVriEUTcCMcYBTo3KXxIZjlJH9c5bvKu48wdQysIvHirGC8Wtawnfx9fws5oNhkvxrfT-1PYDQqoWgLPoOmFxXNvttfuotTWJ5V4mEo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=1990+American+Control+Conference&rft.atitle=A+Neural+Network+Structure+for+System+Identification&rft.au=Haesloop%2C+Dan&rft.au=Holt%2C+Bradley+R.&rft.date=1990-05-01&rft.pub=IEEE&rft.spage=2460&rft.epage=2465&rft_id=info:doi/10.23919%2FACC.1990.4791170&rft.externalDocID=4791170 |