A Neural Network Structure for System Identification

Establishing a dynamic process model is the first step toward implementing a modern control algorithm. Because of the complexity of chemical processes, most models are identified, that is, determined from a known input/output sequence. Furthermore, models are usually linear and time invariant. This...

Full description

Saved in:
Bibliographic Details
Published in1990 American Control Conference pp. 2460 - 2465
Main Authors Haesloop, Dan, Holt, Bradley R.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.1990
Subjects
Online AccessGet full text
DOI10.23919/ACC.1990.4791170

Cover

Abstract Establishing a dynamic process model is the first step toward implementing a modern control algorithm. Because of the complexity of chemical processes, most models are identified, that is, determined from a known input/output sequence. Furthermore, models are usually linear and time invariant. This research focuses on the application of neural networks to the development of dynamic models. In particular, this paper presents a modification of the layered structure used most commonly with the Backward Error Propagation algorithm The modification is the addition of a set of weights connected directly from the input to the output layer, weights which contribute in a linear manner to the network output. This creates a number of advantageous compared to traditional structures, including initialization of network parameters based on process knowledge, additional insight to the leaning algorithm, and enhanced extrapolation outside of examples the learning data set.
AbstractList Establishing a dynamic process model is the first step toward implementing a modern control algorithm. Because of the complexity of chemical processes, most models are identified, that is, determined from a known input/output sequence. Furthermore, models are usually linear and time invariant. This research focuses on the application of neural networks to the development of dynamic models. In particular, this paper presents a modification of the layered structure used most commonly with the Backward Error Propagation algorithm The modification is the addition of a set of weights connected directly from the input to the output layer, weights which contribute in a linear manner to the network output. This creates a number of advantageous compared to traditional structures, including initialization of network parameters based on process knowledge, additional insight to the leaning algorithm, and enhanced extrapolation outside of examples the learning data set.
Author Holt, Bradley R.
Haesloop, Dan
Author_xml – sequence: 1
  givenname: Dan
  surname: Haesloop
  fullname: Haesloop, Dan
  organization: Department of Chemical Engineering, University of Washington, BF-10, Seattle, WA 98195
– sequence: 2
  givenname: Bradley R.
  surname: Holt
  fullname: Holt, Bradley R.
  organization: Department of Chemical Engineering, University of Washington, BF-10, Seattle, WA 98195
BookMark eNotzr1OwzAUQGEPMEDhARCLXyDBN7bj3DGK-KlUlaHdK9u5V7JoE-Q6Qn17kOj0bUfnXtxM80RCPIGqG42AL_0w1ICoauMQwKk7YXq5pSX74x_lZ85fclfyEsuSSfKc5e5yLnSS65GmkjhFX9I8PYhb9sczPV5dif3b6374qDaf7-uh31Sp60oVOLBvjGXjnLORWrTcQfTkKShACJEtjaDM2HpQndWjDoguMnNL3LR6JZ7_s4mIDt85nXy-HK7r-hd_20BD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/ACC.1990.4791170
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EndPage 2465
ExternalDocumentID 4791170
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i88t-bfbfa245f47775ce695f81caeaeb0191bcf5ed104d6a10853d3b997cfff6ef263
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:44 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i88t-bfbfa245f47775ce695f81caeaeb0191bcf5ed104d6a10853d3b997cfff6ef263
PageCount 6
ParticipantIDs ieee_primary_4791170
PublicationCentury 1900
PublicationDate 1990-May
PublicationDateYYYYMMDD 1990-05-01
PublicationDate_xml – month: 05
  year: 1990
  text: 1990-May
PublicationDecade 1990
PublicationTitle 1990 American Control Conference
PublicationTitleAbbrev ACC
PublicationYear 1990
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.2425444
Snippet Establishing a dynamic process model is the first step toward implementing a modern control algorithm. Because of the complexity of chemical processes, most...
SourceID ieee
SourceType Publisher
StartPage 2460
SubjectTerms Chemical processes
Extrapolation
Modems
Neural networks
Power system modeling
Process control
Surges
System identification
Tellurium
Vectors
Title A Neural Network Structure for System Identification
URI https://ieeexplore.ieee.org/document/4791170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7NtmmyeRxLsRShIliht5LHDIjSirQXf32T3bWiePCUEALJJId5ft8QcqNE1KidYUpzYNKgYFaBYIPoJDdBcJQZjTx7UNNneb8oFy1yu8fCAEBVfAZFnla5_LgO2xwq60ttc6OUNmlro2qsVp2oHArLbX80Hmfw3aBo9v1omFLpi8khmX2dVJeJvBbbjS_C5y8Sxv9e5Yj0vpF59HGvc45JC1ZdIkc0c2y4tzRURd30qWKF3X4ATTYprVnJaY3JxSZI1yPzyd18PGVNNwT2YsyGefTohrJEqbUuAyhbouHBgQOfzDTuA5YQk3MVlcuIAhGFt1YHRFSAQyVOSGe1XsEpocJIzzlmMrdSJofMCSyTV-eFiQMvuD8j3Szw8r3mu1g2sp7_vXxBDvKj10WAl6STBISrpKg3_rr6oR2Wq5T9
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qPehJpRXf7sGju22a5x5LsVRti2CF3kqyOwOitCLdi7_eZHetKB48JYRAMsxhnt83AFeK55q0NbHSDGNhiMepQh53cyuYyTgjEdDIk6kaPYm7uZw34HqDhUHEsvkMk7Ata_n5KitCqqwjdBoGpWzBthRCyAqtVZUqezxlaac_GAT4XTepb_4YmVJajOEeTL7eqhpFXpJi7ZLs4xcN438_sw_tb2xe9LCxOgfQwGULRD8KLBv21S9lW3f0WPLCFu8Yea80qnjJowqVS3Warg2z4c1sMIrreQjxszHr2JEj2xOShNZaZqhSSYZlFi0676gxl5HE3IdXubIBU8Bz7tJUZ0SkkHqKH0JzuVriEUTcCMcYBTo3KXxIZjlJH9c5bvKu48wdQysIvHirGC8Wtawnfx9fws5oNhkvxrfT-1PYDQqoWgLPoOmFxXNvttfuotTWJ5V4mEo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=1990+American+Control+Conference&rft.atitle=A+Neural+Network+Structure+for+System+Identification&rft.au=Haesloop%2C+Dan&rft.au=Holt%2C+Bradley+R.&rft.date=1990-05-01&rft.pub=IEEE&rft.spage=2460&rft.epage=2465&rft_id=info:doi/10.23919%2FACC.1990.4791170&rft.externalDocID=4791170