Multi-scale module-based algorithm for skin cancer image segmentation

For the problems of intra-class variability, inter-class similarity, and unbalanced dataset of skin cancer images, this paper proposes a segmentation method based on attention fusion network. The segmentation network is based on U-Net network as a segmentation network, and the segmentation accuracy...

Full description

Saved in:
Bibliographic Details
Published inIEEE ... Information Technology and Mechatronics Engineering Conference (ITOEC ... ) (Online) Vol. 7; pp. 320 - 323
Main Authors Shen, Tongping, Menchita, Dumlao
Format Conference Proceeding
LanguageEnglish
Published IEEE 15.09.2023
Subjects
Online AccessGet full text
ISSN2693-289X
DOI10.1109/ITOEC57671.2023.10291203

Cover

Abstract For the problems of intra-class variability, inter-class similarity, and unbalanced dataset of skin cancer images, this paper proposes a segmentation method based on attention fusion network. The segmentation network is based on U-Net network as a segmentation network, and the segmentation accuracy is enhanced by multi-scale modules that fuse features at different levels during feature extraction and give certain weights to important target features, thus strengthening the importance of channel and spatial pixel features in the decoder. The proposed model was trained and tested on the ISIC2018 dataset, and the experimental results achieved an overall excellent result with Precision reaching 0.9, Recall reaching 0.9, and F1 reaching 92.1%.
AbstractList For the problems of intra-class variability, inter-class similarity, and unbalanced dataset of skin cancer images, this paper proposes a segmentation method based on attention fusion network. The segmentation network is based on U-Net network as a segmentation network, and the segmentation accuracy is enhanced by multi-scale modules that fuse features at different levels during feature extraction and give certain weights to important target features, thus strengthening the importance of channel and spatial pixel features in the decoder. The proposed model was trained and tested on the ISIC2018 dataset, and the experimental results achieved an overall excellent result with Precision reaching 0.9, Recall reaching 0.9, and F1 reaching 92.1%.
Author Menchita, Dumlao
Shen, Tongping
Author_xml – sequence: 1
  givenname: Tongping
  surname: Shen
  fullname: Shen, Tongping
  email: shen.tongpin@auf.edu.ph
  organization: Angeles University Foundation,Graduate School,Angeles,Philippines,2009
– sequence: 2
  givenname: Dumlao
  surname: Menchita
  fullname: Menchita, Dumlao
  email: dumlao.menchita@auf.edu.ph
  organization: Angeles University Foundation,Graduate School,Angeles,Philippines,2009
BookMark eNo1j8tOwzAQRQ0CiVL6Byz8Aykz4zS2lygKtFJRN1mwq9x4XAx5oDhd8PdUPFZnc3V0z6246oeehZAIS0SwD5t6V5UrXWhcEpBaIpBFAnUhFlZbo1agVE4Il2JGhVUZGft6IxYpvQOAOg-tsTNRvZzaKWapcS3LbvCnlrODS-yla4_DGKe3ToZhlOkj9rJxfcOjjJ07skx87Lif3BSH_k5cB9cmXvxxLuqnqi7X2Xb3vCkft1k0lGfW5waJGkLOjQKvVQ5Bs9YULK9cQO2RjHb-4KwrjLE_HcjooeCgvJqL-19tZOb953g-Mn7t_8PVN9jITso
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ITOEC57671.2023.10291203
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350334210
EISSN 2693-289X
EndPage 323
ExternalDocumentID 10291203
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i824-9d48122c21e4830d7340f7e772f9e5af17d1287adba9a6889979831e1d06ef3d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:35:48 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i824-9d48122c21e4830d7340f7e772f9e5af17d1287adba9a6889979831e1d06ef3d3
PageCount 4
ParticipantIDs ieee_primary_10291203
PublicationCentury 2000
PublicationDate 2023-Sept.-15
PublicationDateYYYYMMDD 2023-09-15
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-15
  day: 15
PublicationDecade 2020
PublicationTitle IEEE ... Information Technology and Mechatronics Engineering Conference (ITOEC ... ) (Online)
PublicationTitleAbbrev ITOEC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203989
Score 1.8474835
Snippet For the problems of intra-class variability, inter-class similarity, and unbalanced dataset of skin cancer images, this paper proposes a segmentation method...
SourceID ieee
SourceType Publisher
StartPage 320
SubjectTerms Attention Mechanism
Decoding
Feature extraction
Fuses
Image segmentation
Interference
Mechatronics
Segmentation
Semantics
skin cancer
U-Net
Title Multi-scale module-based algorithm for skin cancer image segmentation
URI https://ieeexplore.ieee.org/document/10291203
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA66kycVJ36Tg9fW5qNNcx4bU3B6mLDbyMfbWba2srUXf71Jt04UBG8lJZD0JXmeJ32fNwjdS0mNdCItsDTNAk61CpQR0kkVzayyyqi2WPXzJBm_8adZPNuZ1VsvDAC0yWcQ-sf2X76tTOOPytwKp5JQX9vzUKTJ1qy1P1Bh7oVMZZetE8mHx-nLcOD4tPA6kLKw6_7jIpUWR0bHaNKNYJs-sgybWofm81dxxn8P8QT1vy17-HUPRqfoAMozNGzttcHGxQFwUdlmBYGHLYvValGt8_q9wI604s0yL7Hx8V_jvHA7DN7Aoti5kso-mo6G08E42N2bEOQp5YG03KE2NZQAT1lkBeNRJsDR6ExCrDIirAMloaxWUiWpE1xCpowAsVECGbPsHPXKqoQLhDWJlM6ASa6BCx0px3ZIrLzuEsYxnUvU959g_rGtjDHvZn_1R_s1OvKR8PkWJL5BvXrdwK0D9VrftcH8ArmHoLQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwGG2MHvSkxhl_24PXIrRlpedly6bb9IDJbktLPybZBmaDi3-9LRszmph4a2hC2n7Ae6987ytCD1LSRFqRRgyNUsKpVkQlQlqpoplRRiWqLlY9Grf7b_xpEk62ZvXaCwMAdfIZeK5Z_8s3RVK5rTL7hlMZUFfb8yDknIcbu9ZuS4XZLhnJJl_Hl4-D-KXbsYxaOCVImdfc4MdRKjWS9I7RuBnDJoFk7lWl9pLPX-UZ_z3IE9T6Nu3h1x0cnaI9yM9QtzbYkrWNBOBlYaoFEAdcBqvFrFhl5fsSW9qK1_Msx4l7AlY4W9pvDF7DbLn1JeUtFPe6cadPticnkCyinEjDLW7ThAbAI-YbwbifCrBEOpUQqjQQxsKSUEYrqdqRlVxCRiyAwPhtSJlh52g_L3K4QFgHvtIpMMk1cKF9ZflOECqnvERiuc4larklmH5samNMm9lf_XH9Hh3249FwOhyMn6_RkYuKy74Iwhu0X64quLUQX-q7OrBfV8akAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+...+Information+Technology+and+Mechatronics+Engineering+Conference+%28ITOEC+...+%29+%28Online%29&rft.atitle=Multi-scale+module-based+algorithm+for+skin+cancer+image+segmentation&rft.au=Shen%2C+Tongping&rft.au=Menchita%2C+Dumlao&rft.date=2023-09-15&rft.pub=IEEE&rft.eissn=2693-289X&rft.volume=7&rft.spage=320&rft.epage=323&rft_id=info:doi/10.1109%2FITOEC57671.2023.10291203&rft.externalDocID=10291203