A guide to the genomics of ecological speciation in natural animal populations

Ecology Letters (2011) 14: 9–18 Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under deb...

Full description

Saved in:
Bibliographic Details
Published inEcology letters Vol. 14; no. 1; pp. 9 - 18
Main Authors Rice, Amber M., Rudh, Andreas, Ellegren, Hans, Qvarnström, Anna
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.01.2011
Blackwell
Subjects
Online AccessGet full text
ISSN1461-023X
1461-0248
1461-0248
DOI10.1111/j.1461-0248.2010.01546.x

Cover

Abstract Ecology Letters (2011) 14: 9–18 Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under debate. What is the relative importance of natural selection vs. neutral processes? How does adaptation generate reproductive isolation? Can ecological speciation occur despite homogenizing gene flow? These questions can be addressed using genomic approaches, and with the rapid development of genomic technology, will become more answerable in studies of wild populations than ever before. In this article, we identify open questions in ecological speciation theory and suggest useful genomic methods for addressing these questions in natural animal populations. We aim to provide a practical guide for ecologists interested in incorporating genomic methods into their research programs. An increased integration between ecological research and genomics has the potential to shed novel light on the origin of species.
AbstractList Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under debate. What is the relative importance of natural selection vs. neutral processes? How does adaptation generate reproductive isolation? Can ecological speciation occur despite homogenizing gene flow? These questions can be addressed using genomic approaches, and with the rapid development of genomic technology, will become more answerable in studies of wild populations than ever before. In this article, we identify open questions in ecological speciation theory and suggest useful genomic methods for addressing these questions in natural animal populations. We aim to provide a practical guide for ecologists interested in incorporating genomic methods into their research programs. An increased integration between ecological research and genomics has the potential to shed novel light on the origin of species.
Ecology Letters (2011) 14: 9–18 Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under debate. What is the relative importance of natural selection vs. neutral processes? How does adaptation generate reproductive isolation? Can ecological speciation occur despite homogenizing gene flow? These questions can be addressed using genomic approaches, and with the rapid development of genomic technology, will become more answerable in studies of wild populations than ever before. In this article, we identify open questions in ecological speciation theory and suggest useful genomic methods for addressing these questions in natural animal populations. We aim to provide a practical guide for ecologists interested in incorporating genomic methods into their research programs. An increased integration between ecological research and genomics has the potential to shed novel light on the origin of species.
Ecology Letters (2011) 14: 9-18 Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under debate. What is the relative importance of natural selection vs. neutral processes? How does adaptation generate reproductive isolation? Can ecological speciation occur despite homogenizing gene flow? These questions can be addressed using genomic approaches, and with the rapid development of genomic technology, will become more answerable in studies of wild populations than ever before. In this article, we identify open questions in ecological speciation theory and suggest useful genomic methods for addressing these questions in natural animal populations. We aim to provide a practical guide for ecologists interested in incorporating genomic methods into their research programs. An increased integration between ecological research and genomics has the potential to shed novel light on the origin of species.
Ecology Letters (2011) 14: 9-18 ABSTRACT: Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under debate. What is the relative importance of natural selection vs. neutral processes? How does adaptation generate reproductive isolation? Can ecological speciation occur despite homogenizing gene flow? These questions can be addressed using genomic approaches, and with the rapid development of genomic technology, will become more answerable in studies of wild populations than ever before. In this article, we identify open questions in ecological speciation theory and suggest useful genomic methods for addressing these questions in natural animal populations. We aim to provide a practical guide for ecologists interested in incorporating genomic methods into their research programs. An increased integration between ecological research and genomics has the potential to shed novel light on the origin of species.
Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under debate. What is the relative importance of natural selection vs. neutral processes? How does adaptation generate reproductive isolation? Can ecological speciation occur despite homogenizing gene flow? These questions can be addressed using genomic approaches, and with the rapid development of genomic technology, will become more answerable in studies of wild populations than ever before. In this article, we identify open questions in ecological speciation theory and suggest useful genomic methods for addressing these questions in natural animal populations. We aim to provide a practical guide for ecologists interested in incorporating genomic methods into their research programs. An increased integration between ecological research and genomics has the potential to shed novel light on the origin of species. [PUBLICATION ABSTRACT]
Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under debate. What is the relative importance of natural selection vs. neutral processes? How does adaptation generate reproductive isolation? Can ecological speciation occur despite homogenizing gene flow? These questions can be addressed using genomic approaches, and with the rapid development of genomic technology, will become more answerable in studies of wild populations than ever before. In this article, we identify open questions in ecological speciation theory and suggest useful genomic methods for addressing these questions in natural animal populations. We aim to provide a practical guide for ecologists interested in incorporating genomic methods into their research programs. An increased integration between ecological research and genomics has the potential to shed novel light on the origin of species.Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under debate. What is the relative importance of natural selection vs. neutral processes? How does adaptation generate reproductive isolation? Can ecological speciation occur despite homogenizing gene flow? These questions can be addressed using genomic approaches, and with the rapid development of genomic technology, will become more answerable in studies of wild populations than ever before. In this article, we identify open questions in ecological speciation theory and suggest useful genomic methods for addressing these questions in natural animal populations. We aim to provide a practical guide for ecologists interested in incorporating genomic methods into their research programs. An increased integration between ecological research and genomics has the potential to shed novel light on the origin of species.
Author Ellegren, Hans
Qvarnström, Anna
Rudh, Andreas
Rice, Amber M.
Author_xml – sequence: 1
  givenname: Amber M.
  surname: Rice
  fullname: Rice, Amber M.
  email: amber.rice@ebc.uu.se
  organization: E-mail: amber.rice@ebc.uu.se
– sequence: 2
  givenname: Andreas
  surname: Rudh
  fullname: Rudh, Andreas
  organization: Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
– sequence: 3
  givenname: Hans
  surname: Ellegren
  fullname: Ellegren, Hans
  organization: Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
– sequence: 4
  givenname: Anna
  surname: Qvarnström
  fullname: Qvarnström, Anna
  organization: Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23735045$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21070555$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-143678$$DView record from Swedish Publication Index
BookMark eNqFkk2P0zAQhi20iP2Av4AsJAQHUvzt5LCHqpSFVbQIia-b5SROcUntEMfa7r_H2ZYgcQBfxpr3mZE9856DE-edAQBitMDpvN4uMBM4Q4TlC4JSFmHOxGL_AJzNwsl8p99OwXkIW4QwKSR-BE4JRhJxzs_AzRJuom0MHD0cvxu4Mc7vbB2gb6Gpfec3ttYdDL2prR6td9A66PQYh5TVzu5S6H0fu3sxPAYPW90F8-QYL8Dnt-tPq3dZ-eHq_WpZZpZLKTJR45pVSDMtsCRNLjVpC9TmVS0qhI3mjRY0rxpNONWFYS1pMW6SQKlkyDT0Arw69A23po-V6of0kuFOeW3VG_tlqfywUTEqzKiQecJfHPB-8D-jCaPa2VCbrtPO-BhUzoWUHBf0_yTOGSIE80S-_CeJOcJUCFawhD77C936OLg0oNRPMonSFBL09AjFamea-Uu_d5WA50dAh7STdtCutuEPRyXliE3c5YG7tZ25m3WM1OQdtVWTLdRkETV5R917R-3VulxPt1SfHeptGM1-rtfDDyUklVx9vblSq4_X7LooS7WivwBQSsYH
ContentType Journal Article
Copyright 2010 Blackwell Publishing Ltd/CNRS
2015 INIST-CNRS
2010 Blackwell Publishing Ltd/CNRS.
Copyright_xml – notice: 2010 Blackwell Publishing Ltd/CNRS
– notice: 2015 INIST-CNRS
– notice: 2010 Blackwell Publishing Ltd/CNRS.
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7S9
L.6
7X8
8FD
FR3
P64
RC3
ADTPV
AOWAS
DF2
DOI 10.1111/j.1461-0248.2010.01546.x
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE

Genetics Abstracts
AGRICOLA
Entomology Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1461-0248
EndPage 18
ExternalDocumentID oai_DiVA_org_uu_143678
2212126481
21070555
23735045
ELE1546
ark_67375_WNG_CQJ4J9LL_C
Genre article
Research Support, Non-U.S. Gov't
Guideline
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7S9
L.6
7X8
8FD
FR3
P64
RC3
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-i5776-6c1c4b0a4a6172d87a2f90f8bc6b01ea5da638bda253a9e4f2f11d1ea33740ed3
IEDL.DBID DR2
ISSN 1461-023X
1461-0248
IngestDate Thu Aug 21 07:07:06 EDT 2025
Fri Jul 11 08:24:07 EDT 2025
Thu Jul 10 23:09:50 EDT 2025
Fri Jul 11 01:07:36 EDT 2025
Fri Jul 25 10:41:42 EDT 2025
Mon Jul 21 05:54:25 EDT 2025
Mon Jul 21 09:18:14 EDT 2025
Sun Sep 21 06:26:43 EDT 2025
Tue Sep 09 05:32:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Natural population
Reproductive isolation
ecological speciation
next-generation sequencing
Genomics
genome scan
Ecology
Gene expression
Natural selection
Gene flow
mapping approaches
Genetics
Genome
Animal population
Sequencing
Speciation
Language English
License CC BY 4.0
2010 Blackwell Publishing Ltd/CNRS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i5776-6c1c4b0a4a6172d87a2f90f8bc6b01ea5da638bda253a9e4f2f11d1ea33740ed3
Notes ArticleID:ELE1546
istex:5C8E5F68C0BA8AA9525E91AC15CABECF7635AEC7
ark:/67375/WNG-CQJ4J9LL-C
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Instructional Material/Guideline-1
ObjectType-Feature-3
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1461-0248.2010.01546.x
PMID 21070555
PQID 817470617
PQPubID 32390
PageCount 10
ParticipantIDs swepub_primary_oai_DiVA_org_uu_143678
proquest_miscellaneous_856775193
proquest_miscellaneous_818402215
proquest_miscellaneous_1501366494
proquest_journals_817470617
pubmed_primary_21070555
pascalfrancis_primary_23735045
wiley_primary_10_1111_j_1461_0248_2010_01546_x_ELE1546
istex_primary_ark_67375_WNG_CQJ4J9LL_C
PublicationCentury 2000
PublicationDate January 2011
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: January 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
– name: Paris
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Ball, A.D., Stapley, J., Dawson, D.A., Birkhead, T.R., Burke, T. & Slate, J. (2010). A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata). BMC Genomics, 11, 218.
Rusk, N. (2009). Cheap third-generation sequencing. Nat. Met., 6, 244-245.
Sæther, S.A., Saetre, G.P., Borge, T., Wiley, C., Svedin, N., Andersson, G. et al. (2007). Sex chromosome-linked species recognition and evolution of reproductive isolation in flycatchers. Science, 318, 95-97.
Qvarnström, A., Rice, A.M. & Ellegren, H.. (2010). Speciation in Ficedula flycatchers. Philos. Trans. R. Soc. Lond. B Biol. Sci., 365, 1841-1852.
Matsubayashi, K.W., Ohshima, I. & Nosil, P. (2010). Ecological speciation in phytophagous insects. Entomol. Exp. App., 134, 1-27.
Ellegren, H. & Sheldon, B.C. (2008). Genetic basis of fitness differences in natural populations. Nature, 452, 169-175.
Malmberg, R.L. & Mauricio, R. (2005). QTL-based evidence for the role of epistasis in evolution. Genet. Res., 86, 89-95.
Steiner, C.C., Weber, J.N. & Hoekstra, H.E. (2007). Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biol., 5, e219.
Wang, Z., Gerstein, M. & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Gen., 10, 57-63.
Sætre, G.-P., Borge, T., Lindroos, K., Haavie, J., Sheldon, B.C., Primmer, C.R. et al. (2003). Sex chromosome evolution and speciation in Ficedula flycatchers. Proc. R. Soc. B-Biol. Sci., 270, 53-59.
Schluter, D. (1993). Adaptive radiation in sticklebacks: size, shape, and habitat use efficiency. Ecology, 74, 699-709.
Servedio, M.R. & Noor, M.A.F. (2003). The role of reinforcement in speciation: theory and data. Ann. Rev. Ecol. Evol. Syst., 34, 339-364.
Baird, N.A., Etter, P.D., Atwood, T.S., Currey, M.C., Shiver, A.L., Lewis, Z.A. et al. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE, 3, e3376.
Bar-Or, C., Czosnek, H. & Koltai, H. (2007). Cross-species microarray hybridizations: a developing tool for studying species diversity. Trends Genet., 23, 200-207.
Grant, P.R. & Grant, B.R. (2002). Unpredictable evolution in a 30-year study of Darwin's finches. Science, 296, 707-711.
Hudson, M.E. (2008). Sequencing breakthroughs for genomic ecology and evolutionary biology. Mol. Ecol. Resour., 8, 3-17.
Schluter, D. (2001). Ecology and the origin of species. Trends Ecol. Evol., 16, 372-380.
Jiggins, C.D., Estrada, C. & Rodrigues, A. (2004). Mimicry and the evolution of premating isolation in Heliconius melpomene Linnaeus. J. Evol. Biol., 17, 680-691.
Baxter, S.W., Nadeau, N.J., Maroja, L.S., Wilkinson, P., Counterman, B.A., Dawson, A. et al. (2010). Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in the Heliconius melpomene clade. PLoS Genet., 6, e1000794.
Pfennig, D.W. & Rice, A.M. (2007). An experimental test of character displacement's role in promoting postmating isolation between conspecific populations in contrasting competitive environments. Evolution, 61, 2433-2443.
Matsumura, H., Yoshida, K., Luo, S., Kimura, E., Fujibe, T., Albertyn, Z. et al. (2010). High-throughput SuperSAGE for digital gene expression analysis of multiple samples using next generation sequencing. PLoS ONE, 5, e12010.
Filchak, K.E., Roethele, J.B. & Feder, J.L. (2000). Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature, 407, 739-742.
Chamberlain, N.L., Hill, R.I., Kapan, D.D., Gilbert, L.E. & Kronforst, M.R. (2009). Polymorphic butterfly reveals the missing link in ecological speciation. Science, 326, 847-850.
Hohenlohe, P.A., Bassham, S., Etter, P.D., Stiffler, N., Johnson, E.A. & Cresko, W.A. (2010). Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet., 6, e1000862.
Qvarnström, A. & Bailey, R.I. (2009). Speciation through evolution of sex-linked genes. Heredity, 102, 4-15.
Hendry, A.P., Huber, S.K., De Leon, L.F., Herrel, A. & Podos, J. (2009). Disruptive selection in a bimodal population of Darwin's finches. Proc. R. Soc. B-Biol. Sci., 276, 753-759.
Hoekstra, H.E., Hirschmann, R.J., Bundey, R.A., Insel, P.A. & Crossland, J.P. (2006). A single amino acid mutation contributes to adaptive beach mouse color pattern. Science, 313, 101-104.
Dobzhansky, T. (1940). Speciation as a stage in evolutionary divergence. Am. Nat., 74, 312-321.
Hatfield, T. & Schluter, D. (1999). Ecological speciation in sticklebacks: environment-dependent hybrid fitness. Evolution, 53, 866-873.
Butlin, R.K. (2010). Population genomics and speciation. Genetica, 138, 409-418.
Sætre, G.-P. & Sæther, S.A. (2010). Ecology and genetics of speciation in Ficedula flycatchers. Mol. Ecol., 19, 1091-1106.
Irwin, D.E., Bensch, S. & Price, T.D. (2001). Speciation in a ring. Nature, 409, 333-337.
van Doorn, G.S., Edelaar, P. & Weissing, F.J. (2009). On the origin of species by natural and sexual selection. Science, 326, 1704-1707.
Mavarez, J., Salazar, C.A., Bermingham, E., Salcedo, C., Jiggins, C.D. & Linares, M. (2006). Speciation by hybridization in Heliconius butterflies. Nature, 441, 868-871.
Wheat, C.W. (2010). Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing. Genetica, 138, 433-451.
Via, S. & West, J. (2008). The genetic mosaic suggests a new role for hitchhiking in ecological speciation. Mol. Ecol., 17, 4334-4345.
Hendry, A.P. (2009). Ecological speciation! Or the lack thereof? Can. J. Fish. Aq. Sci., 66, 1383-1398.
Thibert-Plante, X. & Hendry, A.P. (2009). Five questions on ecological speciation addressed with individual-based simulations. J. Evol. Biol., 22, 109-123.
Vignieri, S.N., Larson, J.G. & Hoekstra, H.E. (2010). The selective advantage of crypsis in mice. Evolution, 64, 2153-2158.
Navarro, A. & Barton, N.H. (2003). Accumulating postzygotic isolation genes in parapatry: a new twist on chromosomal speciation. Evolution, 57, 447-459.
Derome, N., Duchesne, P. & Bernatchez, L. (2006). Parallelism in gene transcription among sympatric lake whitefish (Coregonus clupeaformis Mitchell) ecotypes. Mol. Ecol., 15, 1239-1249.
Gompert, Z., Lucas, L.K., Fordyce, J.A., Forister, M.L. & Nice, C.C. (2010). Secondary contact between Lycaeides idas and L. melissa in the Rocky Mountains: extensive admixture and a patchy hybrid zone. Mol. Ecol., 19, 3171-3192.
Milinski, M., Griffiths, S., Wegner, K.M., Reusch, T.B.H., Haas-Assenbaum, A. & Boehm, T. (2005). Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proc. Natl. Acad. Sci. USA, 102, 4414-4418.
Noor, M.A.F., Grams, K.L., Bertucci, L.A. & Reiland, J. (2001). Chromosomal inversions and the reproductive isolation of species. Proc. Natl. Acad. Sci. USA, 98, 12084-12088.
Shapiro, M.D., Marks, M.E., Peichel, C.L., Blackman, B.K., Nereng, K.S., Jónsson, B. et al. (2004). Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature, 428, 717-723.
Smith, M.W. & O'Brien, S.J. (2005). Mapping by admixture linkage disequilibrium: advances, limitations and guidelines. Nat. Rev. Gen., 6, 623-632.
Michel, A.P., Sim, S., Powell, T.H.Q., Taylor, M.S., Nosil, P. & Feder, J.L. (2010). Widespread genomic divergence during sympatric speciation. Proc. Natl. Acad. Sci. USA, 107, 9724-9729.
Mullen, L.M., Vignieri, S.N., Gore, J.A. & Hoekstra, H.E. (2009). Adaptive basis of geographic variation: genetic, phenotypic and environmental differences among beach mouse populations. Proc. R. Soc. B-Biol. Sci., 276, 3809-3818.
Torres, T.T., Metta, M., Ottenwälder, B. & Schlötterer, C. (2008). Gene expression profiling by massively parallel sequencing. Genome Res., 18, 172-177.
Nosil, P., Funk, D.J. & Ortiz-Barrientos, D. (2009a). Divergent selection and heterogeneous genomic divergence. Mol. Ecol., 18, 375-402.
Abzhanov, A., Kuo, W.P., Hartmann, C., Grant, B.R., Grant, P.R. & Tabin, C.J. (2006). The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. Nature, 442, 563-567.
Presgraves, D.C. (2010). The molecular evolutionary basis of species formation. Nat. Rev. Gen., 11, 175-180.
Funk, D.J., Nosil, P. & Etges, W.J. (2006). Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proc. Natl. Acad. Sci. USA, 103, 3209-3213.
Nosil, P., Harmon, L.J. & Seehausen, O. (2009b). Ecological explanations for (incomplete) speciation. Trends Ecol. Evol., 24, 145-156.
Rieseberg, L.H., Whitton, J. & Gardner, K. (1999). Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics, 152, 713-727.
Stinchcombe, J.R. & Hoekstra, H.E. (2008). Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity, 100, 158-170.
Felsenstein, J. (1981). Skepticism towards Santa Rosalia, or why are there so few kinds of animals. Evolution, 35, 124-138.
Teeter, K.C., Payseur, B.A., Harris, L.W., Bakewell, M.A., Thibodeau, L.M., O'Brien, J.E. et al. (2008). Genome-wide patterns of gene flow across a house mouse hybrid zone. Genome Res., 18, 67-76.
Reynolds, R.G. & Fitzpatrick, B.M. (2007). Assortative mating in poison-dart frogs based on an ecologically important trait. Evolution, 61, 2253-2259.
Noonan, B.P. & Comeault, A.A. (2009). The role of predator selection on polymorphic aposematic poison frogs. Biol. Lett., 5, 51-54.
Hendry, A.P., Grant, P.R., Grant, B.R., Ford, H.A., Brewer, M.J. & Podos, J. (2006). Possible human impacts on adaptive radiation: beak size bimodality in Darwin's finches. Proc. R. Soc. B-Biol. Sci., 273, 1887-1894.
Gavrilets, S. (2004). Fitness Landscapes and the Origin of Species. Princeton University Press, Princeton, NJ.
Coyne, J.A. & Orr, H.A. (2004). Speciation. Sinauer Associates, Sunderland, MA.
Schwarz, D., Robertson, H.M., Feder, J.L., Varala, K., Hudson, M.E., Ragland, G.J. et al. (2009). Sympatric ecological speciation meets pyrosequencing: sampling the transcript
2010; 11
2010; 107
2010; 19
2008; 9
2003; 57
2009; 276
2003; 270
2008; 8
2008; 3
2008; 100
2009; 12
2000; 407
2010; 64
2009; 10
2005; 102
2007; 175
1993; 74
1981; 35
2008; 23
1940
1999; 53
2007; 61
2001; 16
2007; 5
2008; 62
2010; 5
2007; 23
2006; 442
2009; 323
2010; 6
2006; 441
2009; 18
2009; 325
2009; 326
2001; 98
2009; 66
2009; 22
1982; 36
2008a; 17
2009b; 24
2002; 296
2008; 18
2010; 365
2006; 15
2008; 17
2006; 273
2009a; 18
2005; 86
2001; 409
2004
2004; 428
2008b; 179
2006; 313
2007; 98
1940; 74
2004; 429
2003; 34
2010; 138
2004; 17
2010; 134
2009; 102
1999; 152
2005; 6
2009; 6
2009; 5
2008; 452
2007; 318
2006; 103
References_xml – reference: Pfennig, D.W. & Rice, A.M. (2007). An experimental test of character displacement's role in promoting postmating isolation between conspecific populations in contrasting competitive environments. Evolution, 61, 2433-2443.
– reference: Backström, N., Karaiskou, N., Leder, E.H., Gustafsson, L., Primmer, C.R., Qvarnström, A. et al. (2008b). A gene-based genetic linkage map of the collared flycatcher (Ficedula albicollis) reveals extensive synteny and gene-order conservation during 100 million years of avian evolution. Genetics, 179, 1479-1495.
– reference: Mavarez, J., Salazar, C.A., Bermingham, E., Salcedo, C., Jiggins, C.D. & Linares, M. (2006). Speciation by hybridization in Heliconius butterflies. Nature, 441, 868-871.
– reference: Schluter, D. (2009). Evidence for ecological speciation and its alternative. Science, 323, 737-741.
– reference: Felsenstein, J. (1981). Skepticism towards Santa Rosalia, or why are there so few kinds of animals. Evolution, 35, 124-138.
– reference: Hoekstra, H.E., Hirschmann, R.J., Bundey, R.A., Insel, P.A. & Crossland, J.P. (2006). A single amino acid mutation contributes to adaptive beach mouse color pattern. Science, 313, 101-104.
– reference: Nosil, P., Harmon, L.J. & Seehausen, O. (2009b). Ecological explanations for (incomplete) speciation. Trends Ecol. Evol., 24, 145-156.
– reference: Reynolds, R.G. & Fitzpatrick, B.M. (2007). Assortative mating in poison-dart frogs based on an ecologically important trait. Evolution, 61, 2253-2259.
– reference: Teeter, K.C., Payseur, B.A., Harris, L.W., Bakewell, M.A., Thibodeau, L.M., O'Brien, J.E. et al. (2008). Genome-wide patterns of gene flow across a house mouse hybrid zone. Genome Res., 18, 67-76.
– reference: Navarro, A. & Barton, N.H. (2003). Accumulating postzygotic isolation genes in parapatry: a new twist on chromosomal speciation. Evolution, 57, 447-459.
– reference: Jiggins, C.D., Estrada, C. & Rodrigues, A. (2004). Mimicry and the evolution of premating isolation in Heliconius melpomene Linnaeus. J. Evol. Biol., 17, 680-691.
– reference: Filchak, K.E., Roethele, J.B. & Feder, J.L. (2000). Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature, 407, 739-742.
– reference: Coyne, J.A. & Orr, H.A. (2004). Speciation. Sinauer Associates, Sunderland, MA.
– reference: Ball, A.D., Stapley, J., Dawson, D.A., Birkhead, T.R., Burke, T. & Slate, J. (2010). A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata). BMC Genomics, 11, 218.
– reference: Dobzhansky, T. (1940). Speciation as a stage in evolutionary divergence. Am. Nat., 74, 312-321.
– reference: van Doorn, G.S., Edelaar, P. & Weissing, F.J. (2009). On the origin of species by natural and sexual selection. Science, 326, 1704-1707.
– reference: Schluter, D. (2001). Ecology and the origin of species. Trends Ecol. Evol., 16, 372-380.
– reference: Sæther, S.A., Saetre, G.P., Borge, T., Wiley, C., Svedin, N., Andersson, G. et al. (2007). Sex chromosome-linked species recognition and evolution of reproductive isolation in flycatchers. Science, 318, 95-97.
– reference: Qvarnström, A., Rice, A.M. & Ellegren, H.. (2010). Speciation in Ficedula flycatchers. Philos. Trans. R. Soc. Lond. B Biol. Sci., 365, 1841-1852.
– reference: Grant, P.R. & Grant, B.R. (2002). Unpredictable evolution in a 30-year study of Darwin's finches. Science, 296, 707-711.
– reference: Backström, N., Fagerberg, S. & Ellegren, H. (2008a). Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome. Mol. Ecol., 17, 964-980.
– reference: Slatkin, M. (1982). Pleiotropy and parapatric speciation. Evolution, 36, 263-270.
– reference: Hudson, M.E. (2008). Sequencing breakthroughs for genomic ecology and evolutionary biology. Mol. Ecol. Resour., 8, 3-17.
– reference: Baird, N.A., Etter, P.D., Atwood, T.S., Currey, M.C., Shiver, A.L., Lewis, Z.A. et al. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE, 3, e3376.
– reference: Mullen, L.M. & Hoekstra, H.E. (2008). Natural selection along an environmental gradient: a classic cline in mouse pigmentation. Evolution, 62, 1555-1570.
– reference: Eizaguirre, C., Lenz, T.L., Traulsen, A. & Milinski, M. (2009). Speciation accelerated and stabilized by pleiotropic major histocompatibility complex immunogenes. Ecol. Lett., 12, 5-12.
– reference: Fay, J.C. & Wittkopp, P.J. (2008). Evaluating the role of natural selection in the evolution of gene regulation. Heredity, 100, 191-199.
– reference: Irwin, D.E., Bensch, S. & Price, T.D. (2001). Speciation in a ring. Nature, 409, 333-337.
– reference: Steiner, C.C., Weber, J.N. & Hoekstra, H.E. (2007). Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biol., 5, e219.
– reference: Matsumura, H., Yoshida, K., Luo, S., Kimura, E., Fujibe, T., Albertyn, Z. et al. (2010). High-throughput SuperSAGE for digital gene expression analysis of multiple samples using next generation sequencing. PLoS ONE, 5, e12010.
– reference: Torres, T.T., Metta, M., Ottenwälder, B. & Schlötterer, C. (2008). Gene expression profiling by massively parallel sequencing. Genome Res., 18, 172-177.
– reference: Oka, A., Aoto, T., Totsuka, Y., Takahashi, R., Ueda, M., Mita, A. et al. (2007). Disruption of genetic interaction between two autosomal regions and the X chromosome causes reproductive isolation between mouse strains derived from different subspecies. Genetics, 175, 185-197.
– reference: Gompert, Z. & Buerkle, C.A. (2009). A powerful regression-based method for admixture mapping of isolation across the genome of hybrids. Mol. Ecol., 18, 1207-1224.
– reference: Linnen, C.R., Kingsley, E.P., Jensen, J.D. & Hoekstra, H.E. (2009). On the origin and spread of an adaptive allele in deer mice. Science, 325, 1095-1098.
– reference: Schluter, D. (1993). Adaptive radiation in sticklebacks: size, shape, and habitat use efficiency. Ecology, 74, 699-709.
– reference: Wang, Z., Gerstein, M. & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Gen., 10, 57-63.
– reference: Mullen, L.M., Vignieri, S.N., Gore, J.A. & Hoekstra, H.E. (2009). Adaptive basis of geographic variation: genetic, phenotypic and environmental differences among beach mouse populations. Proc. R. Soc. B-Biol. Sci., 276, 3809-3818.
– reference: Backström, N., Palkopoulou, E., Qvarnström, A. & Ellegren, H. (2010). No evidence for Z-chromosome rearrangements between the pied and collared flycatcher as judged by gene-based comparative genetic maps. Mol. Ecol., 19, 3394-3405.
– reference: Buerkle, C.A. & Lexer, C. (2008). Admixture as the basis for genetic mapping. Trends Ecol. Evol., 23, 686-694.
– reference: Rieseberg, L.H., Whitton, J. & Gardner, K. (1999). Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics, 152, 713-727.
– reference: Nosil, P., Funk, D.J. & Ortiz-Barrientos, D. (2009a). Divergent selection and heterogeneous genomic divergence. Mol. Ecol., 18, 375-402.
– reference: Baxter, S.W., Nadeau, N.J., Maroja, L.S., Wilkinson, P., Counterman, B.A., Dawson, A. et al. (2010). Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in the Heliconius melpomene clade. PLoS Genet., 6, e1000794.
– reference: Schwarz, D., Robertson, H.M., Feder, J.L., Varala, K., Hudson, M.E., Ragland, G.J. et al. (2009). Sympatric ecological speciation meets pyrosequencing: sampling the transcriptome of the apple maggot Rhagoletis pomonella. BMC Genomics, 10, 633.
– reference: Thibert-Plante, X. & Hendry, A.P. (2009). Five questions on ecological speciation addressed with individual-based simulations. J. Evol. Biol., 22, 109-123.
– reference: Michel, A.P., Sim, S., Powell, T.H.Q., Taylor, M.S., Nosil, P. & Feder, J.L. (2010). Widespread genomic divergence during sympatric speciation. Proc. Natl. Acad. Sci. USA, 107, 9724-9729.
– reference: Wheat, C.W. (2010). Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing. Genetica, 138, 433-451.
– reference: Abzhanov, A., Kuo, W.P., Hartmann, C., Grant, B.R., Grant, P.R. & Tabin, C.J. (2006). The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. Nature, 442, 563-567.
– reference: Chamberlain, N.L., Hill, R.I., Kapan, D.D., Gilbert, L.E. & Kronforst, M.R. (2009). Polymorphic butterfly reveals the missing link in ecological speciation. Science, 326, 847-850.
– reference: Noonan, B.P. & Comeault, A.A. (2009). The role of predator selection on polymorphic aposematic poison frogs. Biol. Lett., 5, 51-54.
– reference: Noor, M.A.F., Grams, K.L., Bertucci, L.A. & Reiland, J. (2001). Chromosomal inversions and the reproductive isolation of species. Proc. Natl. Acad. Sci. USA, 98, 12084-12088.
– reference: Gompert, Z., Lucas, L.K., Fordyce, J.A., Forister, M.L. & Nice, C.C. (2010). Secondary contact between Lycaeides idas and L. melissa in the Rocky Mountains: extensive admixture and a patchy hybrid zone. Mol. Ecol., 19, 3171-3192.
– reference: Malmberg, R.L. & Mauricio, R. (2005). QTL-based evidence for the role of epistasis in evolution. Genet. Res., 86, 89-95.
– reference: Presgraves, D.C. (2010). The molecular evolutionary basis of species formation. Nat. Rev. Gen., 11, 175-180.
– reference: Bar-Or, C., Czosnek, H. & Koltai, H. (2007). Cross-species microarray hybridizations: a developing tool for studying species diversity. Trends Genet., 23, 200-207.
– reference: Hendry, A.P., Huber, S.K., De Leon, L.F., Herrel, A. & Podos, J. (2009). Disruptive selection in a bimodal population of Darwin's finches. Proc. R. Soc. B-Biol. Sci., 276, 753-759.
– reference: Hohenlohe, P.A., Bassham, S., Etter, P.D., Stiffler, N., Johnson, E.A. & Cresko, W.A. (2010). Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet., 6, e1000862.
– reference: Hendry, A.P. (2009). Ecological speciation! Or the lack thereof? Can. J. Fish. Aq. Sci., 66, 1383-1398.
– reference: Sætre, G.-P. & Sæther, S.A. (2010). Ecology and genetics of speciation in Ficedula flycatchers. Mol. Ecol., 19, 1091-1106.
– reference: Funk, D.J., Nosil, P. & Etges, W.J. (2006). Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proc. Natl. Acad. Sci. USA, 103, 3209-3213.
– reference: Orr, H.A., Masly, J.P. & Phadnis, N. (2007). Speciation in Drosophila: from phenotypes to molecules. J. Hered., 98, 103-110.
– reference: Sætre, G.-P., Borge, T., Lindroos, K., Haavie, J., Sheldon, B.C., Primmer, C.R. et al. (2003). Sex chromosome evolution and speciation in Ficedula flycatchers. Proc. R. Soc. B-Biol. Sci., 270, 53-59.
– reference: McKinnon, J.S., Mori, S., Blackman, B.K., David, L., Kingsley, D.M., Jamieson, L. et al. (2004). Evidence for ecology's role in speciation. Nature, 429, 294-298.
– reference: Butlin, R.K. (2010). Population genomics and speciation. Genetica, 138, 409-418.
– reference: Smith, M.W. & O'Brien, S.J. (2005). Mapping by admixture linkage disequilibrium: advances, limitations and guidelines. Nat. Rev. Gen., 6, 623-632.
– reference: Vignieri, S.N., Larson, J.G. & Hoekstra, H.E. (2010). The selective advantage of crypsis in mice. Evolution, 64, 2153-2158.
– reference: Derome, N., Duchesne, P. & Bernatchez, L. (2006). Parallelism in gene transcription among sympatric lake whitefish (Coregonus clupeaformis Mitchell) ecotypes. Mol. Ecol., 15, 1239-1249.
– reference: Ellegren, H. & Sheldon, B.C. (2008). Genetic basis of fitness differences in natural populations. Nature, 452, 169-175.
– reference: Hatfield, T. & Schluter, D. (1999). Ecological speciation in sticklebacks: environment-dependent hybrid fitness. Evolution, 53, 866-873.
– reference: Via, S. & West, J. (2008). The genetic mosaic suggests a new role for hitchhiking in ecological speciation. Mol. Ecol., 17, 4334-4345.
– reference: Matsubayashi, K.W., Ohshima, I. & Nosil, P. (2010). Ecological speciation in phytophagous insects. Entomol. Exp. App., 134, 1-27.
– reference: Qvarnström, A. & Bailey, R.I. (2009). Speciation through evolution of sex-linked genes. Heredity, 102, 4-15.
– reference: Stinchcombe, J.R. & Hoekstra, H.E. (2008). Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity, 100, 158-170.
– reference: Servedio, M.R. & Noor, M.A.F. (2003). The role of reinforcement in speciation: theory and data. Ann. Rev. Ecol. Evol. Syst., 34, 339-364.
– reference: Shapiro, M.D., Marks, M.E., Peichel, C.L., Blackman, B.K., Nereng, K.S., Jónsson, B. et al. (2004). Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature, 428, 717-723.
– reference: Gavrilets, S. (2004). Fitness Landscapes and the Origin of Species. Princeton University Press, Princeton, NJ.
– reference: Hutter, S., Saminadin-Peter, S.S., Stephan, W. & Parsch, J. (2008). Gene expression variation in African and European populations of Drosophila melanogaster. Genome Biol., 9, R12.
– reference: Hendry, A.P., Grant, P.R., Grant, B.R., Ford, H.A., Brewer, M.J. & Podos, J. (2006). Possible human impacts on adaptive radiation: beak size bimodality in Darwin's finches. Proc. R. Soc. B-Biol. Sci., 273, 1887-1894.
– reference: Rusk, N. (2009). Cheap third-generation sequencing. Nat. Met., 6, 244-245.
– reference: Milinski, M., Griffiths, S., Wegner, K.M., Reusch, T.B.H., Haas-Assenbaum, A. & Boehm, T. (2005). Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proc. Natl. Acad. Sci. USA, 102, 4414-4418.
– volume: 19
  start-page: 3171
  year: 2010
  end-page: 3192
  article-title: Secondary contact between and in the Rocky Mountains: extensive admixture and a patchy hybrid zone
  publication-title: Mol. Ecol.
– volume: 313
  start-page: 101
  year: 2006
  end-page: 104
  article-title: A single amino acid mutation contributes to adaptive beach mouse color pattern
  publication-title: Science
– volume: 326
  start-page: 1704
  year: 2009
  end-page: 1707
  article-title: On the origin of species by natural and sexual selection
  publication-title: Science
– volume: 19
  start-page: 1091
  year: 2010
  end-page: 1106
  article-title: Ecology and genetics of speciation in flycatchers
  publication-title: Mol. Ecol.
– volume: 17
  start-page: 964
  year: 2008a
  end-page: 980
  article-title: Genomics of natural bird populations: a gene‐based set of reference markers evenly spread across the avian genome
  publication-title: Mol. Ecol.
– volume: 175
  start-page: 185
  year: 2007
  end-page: 197
  article-title: Disruption of genetic interaction between two autosomal regions and the X chromosome causes reproductive isolation between mouse strains derived from different subspecies
  publication-title: Genetics
– volume: 3
  start-page: e3376
  year: 2008
  article-title: Rapid SNP discovery and genetic mapping using sequenced RAD markers
  publication-title: PLoS ONE
– volume: 12
  start-page: 5
  year: 2009
  end-page: 12
  article-title: Speciation accelerated and stabilized by pleiotropic major histocompatibility complex immunogenes
  publication-title: Ecol. Lett.
– volume: 18
  start-page: 172
  year: 2008
  end-page: 177
  article-title: Gene expression profiling by massively parallel sequencing
  publication-title: Genome Res.
– volume: 18
  start-page: 67
  year: 2008
  end-page: 76
  article-title: Genome‐wide patterns of gene flow across a house mouse hybrid zone
  publication-title: Genome Res.
– volume: 318
  start-page: 95
  year: 2007
  end-page: 97
  article-title: Sex chromosome‐linked species recognition and evolution of reproductive isolation in flycatchers
  publication-title: Science
– volume: 152
  start-page: 713
  year: 1999
  end-page: 727
  article-title: Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species
  publication-title: Genetics
– volume: 98
  start-page: 103
  year: 2007
  end-page: 110
  article-title: Speciation in : from phenotypes to molecules
  publication-title: J. Hered.
– volume: 74
  start-page: 699
  year: 1993
  end-page: 709
  article-title: Adaptive radiation in sticklebacks: size, shape, and habitat use efficiency
  publication-title: Ecology
– volume: 66
  start-page: 1383
  year: 2009
  end-page: 1398
  article-title: Ecological speciation! Or the lack thereof?
  publication-title: Can. J. Fish. Aq. Sci.
– volume: 296
  start-page: 707
  year: 2002
  end-page: 711
  article-title: Unpredictable evolution in a 30‐year study of Darwin’s finches
  publication-title: Science
– volume: 134
  start-page: 1
  year: 2010
  end-page: 27
  article-title: Ecological speciation in phytophagous insects
  publication-title: Entomol. Exp. App.
– volume: 102
  start-page: 4414
  year: 2005
  end-page: 4418
  article-title: Mate choice decisions of stickleback females predictably modified by MHC peptide ligands
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 51
  year: 2009
  end-page: 54
  article-title: The role of predator selection on polymorphic aposematic poison frogs
  publication-title: Biol. Lett.
– volume: 61
  start-page: 2433
  year: 2007
  end-page: 2443
  article-title: An experimental test of character displacement’s role in promoting postmating isolation between conspecific populations in contrasting competitive environments
  publication-title: Evolution
– volume: 270
  start-page: 53
  year: 2003
  end-page: 59
  article-title: Sex chromosome evolution and speciation in flycatchers
  publication-title: Proc. R. Soc. B-Biol. Sci.
– volume: 98
  start-page: 12084
  year: 2001
  end-page: 12088
  article-title: Chromosomal inversions and the reproductive isolation of species
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 323
  start-page: 737
  year: 2009
  end-page: 741
  article-title: Evidence for ecological speciation and its alternative
  publication-title: Science
– volume: 15
  start-page: 1239
  year: 2006
  end-page: 1249
  article-title: Parallelism in gene transcription among sympatric lake whitefish ( Mitchell) ecotypes
  publication-title: Mol. Ecol.
– volume: 325
  start-page: 1095
  year: 2009
  end-page: 1098
  article-title: On the origin and spread of an adaptive allele in deer mice
  publication-title: Science
– volume: 6
  start-page: e1000862
  year: 2010
  article-title: Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags
  publication-title: PLoS Genet.
– year: 2004
– volume: 102
  start-page: 4
  year: 2009
  end-page: 15
  article-title: Speciation through evolution of sex‐linked genes
  publication-title: Heredity
– volume: 365
  start-page: 1841
  year: 2010
  end-page: 1852
  article-title: Speciation in flycatchers
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 64
  start-page: 2153
  year: 2010
  end-page: 2158
  article-title: The selective advantage of crypsis in mice
  publication-title: Evolution
– volume: 19
  start-page: 3394
  year: 2010
  end-page: 3405
  article-title: No evidence for Z‐chromosome rearrangements between the pied and collared flycatcher as judged by gene‐based comparative genetic maps
  publication-title: Mol. Ecol.
– volume: 17
  start-page: 4334
  year: 2008
  end-page: 4345
  article-title: The genetic mosaic suggests a new role for hitchhiking in ecological speciation
  publication-title: Mol. Ecol.
– volume: 35
  start-page: 124
  year: 1981
  end-page: 138
  article-title: Skepticism towards Santa Rosalia, or why are there so few kinds of animals
  publication-title: Evolution
– volume: 6
  year: 2010
  article-title: Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in the clade
  publication-title: PLoS Genet.
– volume: 326
  start-page: 847
  year: 2009
  end-page: 850
  article-title: Polymorphic butterfly reveals the missing link in ecological speciation
  publication-title: Science
– volume: 5
  start-page: e219
  year: 2007
  article-title: Adaptive variation in beach mice produced by two interacting pigmentation genes
  publication-title: PLoS Biol.
– volume: 100
  start-page: 191
  year: 2008
  end-page: 199
  article-title: Evaluating the role of natural selection in the evolution of gene regulation
  publication-title: Heredity
– volume: 34
  start-page: 339
  year: 2003
  end-page: 364
  article-title: The role of reinforcement in speciation: theory and data
  publication-title: Ann. Rev. Ecol. Evol. Syst.
– start-page: 185
  year: 1940
  end-page: 268
– volume: 6
  start-page: 244
  year: 2009
  end-page: 245
  article-title: Cheap third‐generation sequencing
  publication-title: Nat. Met.
– volume: 11
  start-page: 175
  year: 2010
  end-page: 180
  article-title: The molecular evolutionary basis of species formation
  publication-title: Nat. Rev. Gen.
– volume: 10
  start-page: 633
  year: 2009
  article-title: Sympatric ecological speciation meets pyrosequencing: sampling the transcriptome of the apple maggot
  publication-title: BMC Genomics
– volume: 273
  start-page: 1887
  year: 2006
  end-page: 1894
  article-title: Possible human impacts on adaptive radiation: beak size bimodality in Darwin’s finches
  publication-title: Proc. R. Soc. B-Biol. Sci.
– volume: 10
  start-page: 57
  year: 2009
  end-page: 63
  article-title: RNA‐Seq: a revolutionary tool for transcriptomics
  publication-title: Nat. Rev. Gen.
– volume: 74
  start-page: 312
  year: 1940
  end-page: 321
  article-title: Speciation as a stage in evolutionary divergence
  publication-title: Am. Nat.
– volume: 62
  start-page: 1555
  year: 2008
  end-page: 1570
  article-title: Natural selection along an environmental gradient: a classic cline in mouse pigmentation
  publication-title: Evolution
– volume: 53
  start-page: 866
  year: 1999
  end-page: 873
  article-title: Ecological speciation in sticklebacks: environment‐dependent hybrid fitness
  publication-title: Evolution
– volume: 276
  start-page: 3809
  year: 2009
  end-page: 3818
  article-title: Adaptive basis of geographic variation: genetic, phenotypic and environmental differences among beach mouse populations
  publication-title: Proc. R. Soc. B-Biol. Sci.
– volume: 179
  start-page: 1479
  year: 2008b
  end-page: 1495
  article-title: A gene‐based genetic linkage map of the collared flycatcher ( ) reveals extensive synteny and gene‐order conservation during 100 million years of avian evolution
  publication-title: Genetics
– volume: 23
  start-page: 686
  year: 2008
  end-page: 694
  article-title: Admixture as the basis for genetic mapping
  publication-title: Trends Ecol. Evol.
– volume: 16
  start-page: 372
  year: 2001
  end-page: 380
  article-title: Ecology and the origin of species
  publication-title: Trends Ecol. Evol.
– volume: 407
  start-page: 739
  year: 2000
  end-page: 742
  article-title: Natural selection and sympatric divergence in the apple maggot
  publication-title: Nature
– volume: 428
  start-page: 717
  year: 2004
  end-page: 723
  article-title: Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks
  publication-title: Nature
– volume: 11
  start-page: 218
  year: 2010
  article-title: A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch ( )
  publication-title: BMC Genomics
– volume: 103
  start-page: 3209
  year: 2006
  end-page: 3213
  article-title: Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 100
  start-page: 158
  year: 2008
  end-page: 170
  article-title: Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits
  publication-title: Heredity
– volume: 276
  start-page: 753
  year: 2009
  end-page: 759
  article-title: Disruptive selection in a bimodal population of Darwin’s finches
  publication-title: Proc. R. Soc. B-Biol. Sci.
– volume: 24
  start-page: 145
  year: 2009b
  end-page: 156
  article-title: Ecological explanations for (incomplete) speciation
  publication-title: Trends Ecol. Evol.
– volume: 36
  start-page: 263
  year: 1982
  end-page: 270
  article-title: Pleiotropy and parapatric speciation
  publication-title: Evolution
– volume: 442
  start-page: 563
  year: 2006
  end-page: 567
  article-title: The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches
  publication-title: Nature
– volume: 429
  start-page: 294
  year: 2004
  end-page: 298
  article-title: Evidence for ecology’s role in speciation
  publication-title: Nature
– volume: 6
  start-page: 623
  year: 2005
  end-page: 632
  article-title: Mapping by admixture linkage disequilibrium: advances, limitations and guidelines
  publication-title: Nat. Rev. Gen.
– volume: 441
  start-page: 868
  year: 2006
  end-page: 871
  article-title: Speciation by hybridization in butterflies
  publication-title: Nature
– volume: 409
  start-page: 333
  year: 2001
  end-page: 337
  article-title: Speciation in a ring
  publication-title: Nature
– volume: 107
  start-page: 9724
  year: 2010
  end-page: 9729
  article-title: Widespread genomic divergence during sympatric speciation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: R12
  year: 2008
  article-title: Gene expression variation in African and European populations of
  publication-title: Genome Biol.
– volume: 23
  start-page: 200
  year: 2007
  end-page: 207
  article-title: Cross‐species microarray hybridizations: a developing tool for studying species diversity
  publication-title: Trends Genet.
– volume: 18
  start-page: 375
  year: 2009a
  end-page: 402
  article-title: Divergent selection and heterogeneous genomic divergence
  publication-title: Mol. Ecol.
– volume: 8
  start-page: 3
  year: 2008
  end-page: 17
  article-title: Sequencing breakthroughs for genomic ecology and evolutionary biology
  publication-title: Mol. Ecol. Resour.
– volume: 57
  start-page: 447
  year: 2003
  end-page: 459
  article-title: Accumulating postzygotic isolation genes in parapatry: a new twist on chromosomal speciation
  publication-title: Evolution
– volume: 452
  start-page: 169
  year: 2008
  end-page: 175
  article-title: Genetic basis of fitness differences in natural populations
  publication-title: Nature
– volume: 18
  start-page: 1207
  year: 2009
  end-page: 1224
  article-title: A powerful regression‐based method for admixture mapping of isolation across the genome of hybrids
  publication-title: Mol. Ecol.
– volume: 61
  start-page: 2253
  year: 2007
  end-page: 2259
  article-title: Assortative mating in poison‐dart frogs based on an ecologically important trait
  publication-title: Evolution
– volume: 138
  start-page: 409
  year: 2010
  end-page: 418
  article-title: Population genomics and speciation
  publication-title: Genetica
– volume: 22
  start-page: 109
  year: 2009
  end-page: 123
  article-title: Five questions on ecological speciation addressed with individual‐based simulations
  publication-title: J. Evol. Biol.
– volume: 138
  start-page: 433
  year: 2010
  end-page: 451
  article-title: Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing
  publication-title: Genetica
– volume: 5
  start-page: e12010
  year: 2010
  article-title: High‐throughput SuperSAGE for digital gene expression analysis of multiple samples using next generation sequencing
  publication-title: PLoS ONE
– volume: 17
  start-page: 680
  year: 2004
  end-page: 691
  article-title: Mimicry and the evolution of premating isolation in Linnaeus
  publication-title: J. Evol. Biol.
– volume: 86
  start-page: 89
  year: 2005
  end-page: 95
  article-title: QTL‐based evidence for the role of epistasis in evolution
  publication-title: Genet. Res.
SSID ssj0012971
Score 2.2492034
Snippet Ecology Letters (2011) 14: 9–18 Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid...
Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations....
Ecology Letters (2011) 14: 9-18 ABSTRACT: Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to...
Ecology Letters (2011) 14: 9-18 Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid...
SourceID swepub
proquest
pubmed
pascalfrancis
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 9
SubjectTerms Adaptations
Animal and plant ecology
Animal populations
Animal, plant and microbial ecology
Animals
Biologi
Biological and medical sciences
Biological Evolution
Biology
Classical genetics, quantitative genetics, hybrids
Ecological research
ecological speciation
ecologists
Ecology
Evolutionary biology
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Flow
General aspects
Genetic Speciation
genetics
Genetics of eukaryotes. Biological and molecular evolution
genome scan
Genomics
Genomics - methods
mapping approaches
metagenomics
methods
Models, Biological
Models, Genetic
NATURAL SCIENCES
natural selection
NATURVETENSKAP
next-generation sequencing
Reproduction
reproductive isolation
Research programs
Selection, Genetic
Speciation
Subpopulations
Theory
Title A guide to the genomics of ecological speciation in natural animal populations
URI https://api.istex.fr/ark:/67375/WNG-CQJ4J9LL-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1461-0248.2010.01546.x
https://www.ncbi.nlm.nih.gov/pubmed/21070555
https://www.proquest.com/docview/817470617
https://www.proquest.com/docview/1501366494
https://www.proquest.com/docview/818402215
https://www.proquest.com/docview/856775193
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-143678
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9swFBWjMNjLtu7Ta1c02PbmYFuyZD-GNF0JWWBj3fImJFsqJtQucQztfv3utRKPlG4PY2CwsSRjSedK59pXR4S8F4lMjIhMqAV3IS-sC7OyMIDlxEVMM6l7KaXPC3F-wWfLdLmNf8K1MF4fYvjghpbRj9do4Nq0d40cXOFkiNACNiBGyCdjJlBG__TroCQFs5r3vXwRttwP6rn3QUBXsaVvMFxSt9Bizm91cR8XHYRG9zluP0mdPSGrXfV8bMpq1G3MqPh5R_nx_9T_KXm85bJ07MF3SB7Y-hl56He3vIWraa-IffucLMb0sqtKSzcNBcJJURj2qipa2jhqi93wS3HVp0cKrWraS47CXV1XV3C6HnYaa1-Qi7Ppt8l5uN3IIaxSKUUoirjgJtJcI18qM6kTl0cuM4UwUWx1WmoYBkypk5Tp3HKXuDguIYExySNbspfkoG5q-5pQHjkjrLVMWsm1lXnhwD_QGp6PaxJ0QD72naauvViH0usVxq7JVP1YfFKTLzM-y-dzNQnIyV6vDgUSJlkKRDcgR7tuVlu7blUGDpxE1heQd0MqGCT-ZdG1bbpWAcMG_Ame84DQP-TJ0K9OgG39JUsqpER6HZBXHmO_3xBcdtRpC8gHD7ohBbXCT6vvY9WsL1XXgV_HgIwERPRAGrLtOX6xQggphJDqIaRu1HQ-xas3_1rwiDzy397xOCYHm3Vn3wJ525iT3ix_AepWNls
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6hIQQv_GZkg2Ek4C1VEjt2-1iVjlK6SqAN-mY5iT1F29KpbaSNv567uA3qNHhASJES1XaU2t853znn7wDeyUQlmYyy0EjhQpFbF3aLPEMsJy7ihivTSCkdTeXoRIxn6WydDoj2wnh9iHbBjSyjma_JwGlB-qaVoy-ctCFaSAdkBwnl3eZzHTGkb62WFL7XvPfl2_DZdljPrXdCwkp9fUUBk2aJfeZ8sovb2GgrNbrNcpvX1OEjON_8QR-dctapV1kn_3lD-_E_9cBjeLims6zv8fcE7tjqKdzzCS6v8WrYiGJfP4Npn53WZWHZas6QczLShr0o8yWbO2bzzQzMaOOnBwsrK9aojuKvpiov8HTZJhtbPoeTw-HxYBSuczmEZaqUDGUe5yKLjDBEmYquMonrRa6b5TKLYmvSwuBMkBUmSbnpWeESF8cFFnCuRGQL_gJ2qnllXwITkcuktZYrq4Sxqpc7dBGMwfvTtgQTwIdm1PSl1-vQZnFG4Wsq1T-mn_Tg61iMe5OJHgRwsDWsbYOEK54i1w1gfzPOem3aS91FH04R8QvgbVuKNkkfWkxl5_VSI8mOuZSiJwJgf6jTJdc6QcL1lyqpVIoYdgC7HmS_nxC9dpJqC-C9R11bQnLhH8vvfT1fnOq6RteOIx8JQDZIaqtt-X6xJghpgpBuIKSv9HAypKu9f234Bu6Pjo8mevJ5-mUfHvileDpewc5qUdvXyOVW2UFjo78ATiw6eQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5CQyBeuF_CYBgJeEuVxI6dPFZdyyilAsSgb5aT2FNULamaRtr49RzHbVCnwQNCipQoviixv2N_Jzn-DPCGRyLKeJD5ijPjs1wbPynyDLEcmYAqKlQnpfRpzk9O2XQRL7bxT3YtjNOH6D-4Wcvoxmtr4KvCXDVydIWjPkIL2QAfIJ-8yTjOmpYgfe2lpHBac86XK0MX-1E919aEfNU29YWNl1QNNplxe11cR0Z7pdF9ktvNUpN7sNy9nwtOWQ7aTTbIf16Rfvw_DXAf7m7JLBk69D2AG7p6CLfc9paXeDXuJLEvH8F8SM7astBkUxNknMQqw56XeUNqQ3S-G3-JXfbpoELKinSao3hXVeU5nlb9VmPNYzidjL-NTvztTg5-GQvBfZ6HOcsCxZQlTEUiVGTSwCRZzrMg1CouFI4DWaGimKpUMxOZMCwwgVLBAl3QJ3BQ1ZV-BoQFJuNaayq0YEqLNDfoICiF9dtFCcqDd12nyZVT65BqvbTBayKWP-bv5ejLlE3T2UyOPDja69W-QEQFjZHpenC462a5NexGJujBCUv7PHjdp6JF2t8sqtJ120ik2CHlnKXMA_KHPIl1rCOkW3_JEnMhLL_24KnD2O8nRJ_dCrV58NaBrk-xYuHH5fehrNdnsm3RsaPIRjzgHZD6bHueXygthKSFkOwgJC_keDa2V8__teAruP35eCJnH-YfD-FOGHXxP3i8gIPNutUvkchtsqPOQn8BYng5Kg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+guide+to+the+genomics+of+ecological+speciation+in+natural+animal+populations&rft.jtitle=Ecology+letters&rft.au=Rice%2C+Amber+M&rft.au=Rudh%2C+Andreas&rft.au=Ellegren%2C+Hans&rft.au=Qvarnstrom%2C+Anna&rft.date=2011-01-01&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=14&rft.issue=1&rft.spage=9&rft.epage=18&rft_id=info:doi/10.1111%2Fj.1461-0248.2010.01546.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon