A guide to the genomics of ecological speciation in natural animal populations
Ecology Letters (2011) 14: 9–18 Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under deb...
Saved in:
Published in | Ecology letters Vol. 14; no. 1; pp. 9 - 18 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.01.2011
Blackwell |
Subjects | |
Online Access | Get full text |
ISSN | 1461-023X 1461-0248 1461-0248 |
DOI | 10.1111/j.1461-0248.2010.01546.x |
Cover
Abstract | Ecology Letters (2011) 14: 9–18
Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under debate. What is the relative importance of natural selection vs. neutral processes? How does adaptation generate reproductive isolation? Can ecological speciation occur despite homogenizing gene flow? These questions can be addressed using genomic approaches, and with the rapid development of genomic technology, will become more answerable in studies of wild populations than ever before. In this article, we identify open questions in ecological speciation theory and suggest useful genomic methods for addressing these questions in natural animal populations. We aim to provide a practical guide for ecologists interested in incorporating genomic methods into their research programs. An increased integration between ecological research and genomics has the potential to shed novel light on the origin of species. |
---|---|
AbstractList | Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under debate. What is the relative importance of natural selection vs. neutral processes? How does adaptation generate reproductive isolation? Can ecological speciation occur despite homogenizing gene flow? These questions can be addressed using genomic approaches, and with the rapid development of genomic technology, will become more answerable in studies of wild populations than ever before. In this article, we identify open questions in ecological speciation theory and suggest useful genomic methods for addressing these questions in natural animal populations. We aim to provide a practical guide for ecologists interested in incorporating genomic methods into their research programs. An increased integration between ecological research and genomics has the potential to shed novel light on the origin of species. Ecology Letters (2011) 14: 9–18 Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under debate. What is the relative importance of natural selection vs. neutral processes? How does adaptation generate reproductive isolation? Can ecological speciation occur despite homogenizing gene flow? These questions can be addressed using genomic approaches, and with the rapid development of genomic technology, will become more answerable in studies of wild populations than ever before. In this article, we identify open questions in ecological speciation theory and suggest useful genomic methods for addressing these questions in natural animal populations. We aim to provide a practical guide for ecologists interested in incorporating genomic methods into their research programs. An increased integration between ecological research and genomics has the potential to shed novel light on the origin of species. Ecology Letters (2011) 14: 9-18 Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under debate. What is the relative importance of natural selection vs. neutral processes? How does adaptation generate reproductive isolation? Can ecological speciation occur despite homogenizing gene flow? These questions can be addressed using genomic approaches, and with the rapid development of genomic technology, will become more answerable in studies of wild populations than ever before. In this article, we identify open questions in ecological speciation theory and suggest useful genomic methods for addressing these questions in natural animal populations. We aim to provide a practical guide for ecologists interested in incorporating genomic methods into their research programs. An increased integration between ecological research and genomics has the potential to shed novel light on the origin of species. Ecology Letters (2011) 14: 9-18 ABSTRACT: Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under debate. What is the relative importance of natural selection vs. neutral processes? How does adaptation generate reproductive isolation? Can ecological speciation occur despite homogenizing gene flow? These questions can be addressed using genomic approaches, and with the rapid development of genomic technology, will become more answerable in studies of wild populations than ever before. In this article, we identify open questions in ecological speciation theory and suggest useful genomic methods for addressing these questions in natural animal populations. We aim to provide a practical guide for ecologists interested in incorporating genomic methods into their research programs. An increased integration between ecological research and genomics has the potential to shed novel light on the origin of species. Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under debate. What is the relative importance of natural selection vs. neutral processes? How does adaptation generate reproductive isolation? Can ecological speciation occur despite homogenizing gene flow? These questions can be addressed using genomic approaches, and with the rapid development of genomic technology, will become more answerable in studies of wild populations than ever before. In this article, we identify open questions in ecological speciation theory and suggest useful genomic methods for addressing these questions in natural animal populations. We aim to provide a practical guide for ecologists interested in incorporating genomic methods into their research programs. An increased integration between ecological research and genomics has the potential to shed novel light on the origin of species. [PUBLICATION ABSTRACT] Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under debate. What is the relative importance of natural selection vs. neutral processes? How does adaptation generate reproductive isolation? Can ecological speciation occur despite homogenizing gene flow? These questions can be addressed using genomic approaches, and with the rapid development of genomic technology, will become more answerable in studies of wild populations than ever before. In this article, we identify open questions in ecological speciation theory and suggest useful genomic methods for addressing these questions in natural animal populations. We aim to provide a practical guide for ecologists interested in incorporating genomic methods into their research programs. An increased integration between ecological research and genomics has the potential to shed novel light on the origin of species.Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under debate. What is the relative importance of natural selection vs. neutral processes? How does adaptation generate reproductive isolation? Can ecological speciation occur despite homogenizing gene flow? These questions can be addressed using genomic approaches, and with the rapid development of genomic technology, will become more answerable in studies of wild populations than ever before. In this article, we identify open questions in ecological speciation theory and suggest useful genomic methods for addressing these questions in natural animal populations. We aim to provide a practical guide for ecologists interested in incorporating genomic methods into their research programs. An increased integration between ecological research and genomics has the potential to shed novel light on the origin of species. |
Author | Ellegren, Hans Qvarnström, Anna Rudh, Andreas Rice, Amber M. |
Author_xml | – sequence: 1 givenname: Amber M. surname: Rice fullname: Rice, Amber M. email: amber.rice@ebc.uu.se organization: E-mail: amber.rice@ebc.uu.se – sequence: 2 givenname: Andreas surname: Rudh fullname: Rudh, Andreas organization: Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden – sequence: 3 givenname: Hans surname: Ellegren fullname: Ellegren, Hans organization: Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden – sequence: 4 givenname: Anna surname: Qvarnström fullname: Qvarnström, Anna organization: Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23735045$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21070555$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-143678$$DView record from Swedish Publication Index |
BookMark | eNqFkk2P0zAQhi20iP2Av4AsJAQHUvzt5LCHqpSFVbQIia-b5SROcUntEMfa7r_H2ZYgcQBfxpr3mZE9856DE-edAQBitMDpvN4uMBM4Q4TlC4JSFmHOxGL_AJzNwsl8p99OwXkIW4QwKSR-BE4JRhJxzs_AzRJuom0MHD0cvxu4Mc7vbB2gb6Gpfec3ttYdDL2prR6td9A66PQYh5TVzu5S6H0fu3sxPAYPW90F8-QYL8Dnt-tPq3dZ-eHq_WpZZpZLKTJR45pVSDMtsCRNLjVpC9TmVS0qhI3mjRY0rxpNONWFYS1pMW6SQKlkyDT0Arw69A23po-V6of0kuFOeW3VG_tlqfywUTEqzKiQecJfHPB-8D-jCaPa2VCbrtPO-BhUzoWUHBf0_yTOGSIE80S-_CeJOcJUCFawhD77C936OLg0oNRPMonSFBL09AjFamea-Uu_d5WA50dAh7STdtCutuEPRyXliE3c5YG7tZ25m3WM1OQdtVWTLdRkETV5R917R-3VulxPt1SfHeptGM1-rtfDDyUklVx9vblSq4_X7LooS7WivwBQSsYH |
ContentType | Journal Article |
Copyright | 2010 Blackwell Publishing Ltd/CNRS 2015 INIST-CNRS 2010 Blackwell Publishing Ltd/CNRS. |
Copyright_xml | – notice: 2010 Blackwell Publishing Ltd/CNRS – notice: 2015 INIST-CNRS – notice: 2010 Blackwell Publishing Ltd/CNRS. |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7S9 L.6 7X8 8FD FR3 P64 RC3 ADTPV AOWAS DF2 |
DOI | 10.1111/j.1461-0248.2010.01546.x |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic MEDLINE - Academic Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts SwePub SwePub Articles SWEPUB Uppsala universitet |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE Genetics Abstracts AGRICOLA Entomology Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1461-0248 |
EndPage | 18 |
ExternalDocumentID | oai_DiVA_org_uu_143678 2212126481 21070555 23735045 ELE1546 ark_67375_WNG_CQJ4J9LL_C |
Genre | article Research Support, Non-U.S. Gov't Guideline Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACGOD ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ N~3 O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 ZY4 ZZTAW ~02 ~IA ~KM ~WT IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7S9 L.6 7X8 8FD FR3 P64 RC3 ADTPV AOWAS DF2 |
ID | FETCH-LOGICAL-i5776-6c1c4b0a4a6172d87a2f90f8bc6b01ea5da638bda253a9e4f2f11d1ea33740ed3 |
IEDL.DBID | DR2 |
ISSN | 1461-023X 1461-0248 |
IngestDate | Thu Aug 21 07:07:06 EDT 2025 Fri Jul 11 08:24:07 EDT 2025 Thu Jul 10 23:09:50 EDT 2025 Fri Jul 11 01:07:36 EDT 2025 Fri Jul 25 10:41:42 EDT 2025 Mon Jul 21 05:54:25 EDT 2025 Mon Jul 21 09:18:14 EDT 2025 Sun Sep 21 06:26:43 EDT 2025 Tue Sep 09 05:32:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Natural population Reproductive isolation ecological speciation next-generation sequencing Genomics genome scan Ecology Gene expression Natural selection Gene flow mapping approaches Genetics Genome Animal population Sequencing Speciation |
Language | English |
License | CC BY 4.0 2010 Blackwell Publishing Ltd/CNRS. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i5776-6c1c4b0a4a6172d87a2f90f8bc6b01ea5da638bda253a9e4f2f11d1ea33740ed3 |
Notes | ArticleID:ELE1546 istex:5C8E5F68C0BA8AA9525E91AC15CABECF7635AEC7 ark:/67375/WNG-CQJ4J9LL-C ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Literature Review-2 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Instructional Material/Guideline-1 ObjectType-Feature-3 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1461-0248.2010.01546.x |
PMID | 21070555 |
PQID | 817470617 |
PQPubID | 32390 |
PageCount | 10 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_143678 proquest_miscellaneous_856775193 proquest_miscellaneous_818402215 proquest_miscellaneous_1501366494 proquest_journals_817470617 pubmed_primary_21070555 pascalfrancis_primary_23735045 wiley_primary_10_1111_j_1461_0248_2010_01546_x_ELE1546 istex_primary_ark_67375_WNG_CQJ4J9LL_C |
PublicationCentury | 2000 |
PublicationDate | January 2011 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – month: 01 year: 2011 text: January 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England – name: Paris |
PublicationTitle | Ecology letters |
PublicationTitleAlternate | Ecol Lett |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Ball, A.D., Stapley, J., Dawson, D.A., Birkhead, T.R., Burke, T. & Slate, J. (2010). A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata). BMC Genomics, 11, 218. Rusk, N. (2009). Cheap third-generation sequencing. Nat. Met., 6, 244-245. Sæther, S.A., Saetre, G.P., Borge, T., Wiley, C., Svedin, N., Andersson, G. et al. (2007). Sex chromosome-linked species recognition and evolution of reproductive isolation in flycatchers. Science, 318, 95-97. Qvarnström, A., Rice, A.M. & Ellegren, H.. (2010). Speciation in Ficedula flycatchers. Philos. Trans. R. Soc. Lond. B Biol. Sci., 365, 1841-1852. Matsubayashi, K.W., Ohshima, I. & Nosil, P. (2010). Ecological speciation in phytophagous insects. Entomol. Exp. App., 134, 1-27. Ellegren, H. & Sheldon, B.C. (2008). Genetic basis of fitness differences in natural populations. Nature, 452, 169-175. Malmberg, R.L. & Mauricio, R. (2005). QTL-based evidence for the role of epistasis in evolution. Genet. Res., 86, 89-95. Steiner, C.C., Weber, J.N. & Hoekstra, H.E. (2007). Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biol., 5, e219. Wang, Z., Gerstein, M. & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Gen., 10, 57-63. Sætre, G.-P., Borge, T., Lindroos, K., Haavie, J., Sheldon, B.C., Primmer, C.R. et al. (2003). Sex chromosome evolution and speciation in Ficedula flycatchers. Proc. R. Soc. B-Biol. Sci., 270, 53-59. Schluter, D. (1993). Adaptive radiation in sticklebacks: size, shape, and habitat use efficiency. Ecology, 74, 699-709. Servedio, M.R. & Noor, M.A.F. (2003). The role of reinforcement in speciation: theory and data. Ann. Rev. Ecol. Evol. Syst., 34, 339-364. Baird, N.A., Etter, P.D., Atwood, T.S., Currey, M.C., Shiver, A.L., Lewis, Z.A. et al. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE, 3, e3376. Bar-Or, C., Czosnek, H. & Koltai, H. (2007). Cross-species microarray hybridizations: a developing tool for studying species diversity. Trends Genet., 23, 200-207. Grant, P.R. & Grant, B.R. (2002). Unpredictable evolution in a 30-year study of Darwin's finches. Science, 296, 707-711. Hudson, M.E. (2008). Sequencing breakthroughs for genomic ecology and evolutionary biology. Mol. Ecol. Resour., 8, 3-17. Schluter, D. (2001). Ecology and the origin of species. Trends Ecol. Evol., 16, 372-380. Jiggins, C.D., Estrada, C. & Rodrigues, A. (2004). Mimicry and the evolution of premating isolation in Heliconius melpomene Linnaeus. J. Evol. Biol., 17, 680-691. Baxter, S.W., Nadeau, N.J., Maroja, L.S., Wilkinson, P., Counterman, B.A., Dawson, A. et al. (2010). Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in the Heliconius melpomene clade. PLoS Genet., 6, e1000794. Pfennig, D.W. & Rice, A.M. (2007). An experimental test of character displacement's role in promoting postmating isolation between conspecific populations in contrasting competitive environments. Evolution, 61, 2433-2443. Matsumura, H., Yoshida, K., Luo, S., Kimura, E., Fujibe, T., Albertyn, Z. et al. (2010). High-throughput SuperSAGE for digital gene expression analysis of multiple samples using next generation sequencing. PLoS ONE, 5, e12010. Filchak, K.E., Roethele, J.B. & Feder, J.L. (2000). Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature, 407, 739-742. Chamberlain, N.L., Hill, R.I., Kapan, D.D., Gilbert, L.E. & Kronforst, M.R. (2009). Polymorphic butterfly reveals the missing link in ecological speciation. Science, 326, 847-850. Hohenlohe, P.A., Bassham, S., Etter, P.D., Stiffler, N., Johnson, E.A. & Cresko, W.A. (2010). Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet., 6, e1000862. Qvarnström, A. & Bailey, R.I. (2009). Speciation through evolution of sex-linked genes. Heredity, 102, 4-15. Hendry, A.P., Huber, S.K., De Leon, L.F., Herrel, A. & Podos, J. (2009). Disruptive selection in a bimodal population of Darwin's finches. Proc. R. Soc. B-Biol. Sci., 276, 753-759. Hoekstra, H.E., Hirschmann, R.J., Bundey, R.A., Insel, P.A. & Crossland, J.P. (2006). A single amino acid mutation contributes to adaptive beach mouse color pattern. Science, 313, 101-104. Dobzhansky, T. (1940). Speciation as a stage in evolutionary divergence. Am. Nat., 74, 312-321. Hatfield, T. & Schluter, D. (1999). Ecological speciation in sticklebacks: environment-dependent hybrid fitness. Evolution, 53, 866-873. Butlin, R.K. (2010). Population genomics and speciation. Genetica, 138, 409-418. Sætre, G.-P. & Sæther, S.A. (2010). Ecology and genetics of speciation in Ficedula flycatchers. Mol. Ecol., 19, 1091-1106. Irwin, D.E., Bensch, S. & Price, T.D. (2001). Speciation in a ring. Nature, 409, 333-337. van Doorn, G.S., Edelaar, P. & Weissing, F.J. (2009). On the origin of species by natural and sexual selection. Science, 326, 1704-1707. Mavarez, J., Salazar, C.A., Bermingham, E., Salcedo, C., Jiggins, C.D. & Linares, M. (2006). Speciation by hybridization in Heliconius butterflies. Nature, 441, 868-871. Wheat, C.W. (2010). Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing. Genetica, 138, 433-451. Via, S. & West, J. (2008). The genetic mosaic suggests a new role for hitchhiking in ecological speciation. Mol. Ecol., 17, 4334-4345. Hendry, A.P. (2009). Ecological speciation! Or the lack thereof? Can. J. Fish. Aq. Sci., 66, 1383-1398. Thibert-Plante, X. & Hendry, A.P. (2009). Five questions on ecological speciation addressed with individual-based simulations. J. Evol. Biol., 22, 109-123. Vignieri, S.N., Larson, J.G. & Hoekstra, H.E. (2010). The selective advantage of crypsis in mice. Evolution, 64, 2153-2158. Navarro, A. & Barton, N.H. (2003). Accumulating postzygotic isolation genes in parapatry: a new twist on chromosomal speciation. Evolution, 57, 447-459. Derome, N., Duchesne, P. & Bernatchez, L. (2006). Parallelism in gene transcription among sympatric lake whitefish (Coregonus clupeaformis Mitchell) ecotypes. Mol. Ecol., 15, 1239-1249. Gompert, Z., Lucas, L.K., Fordyce, J.A., Forister, M.L. & Nice, C.C. (2010). Secondary contact between Lycaeides idas and L. melissa in the Rocky Mountains: extensive admixture and a patchy hybrid zone. Mol. Ecol., 19, 3171-3192. Milinski, M., Griffiths, S., Wegner, K.M., Reusch, T.B.H., Haas-Assenbaum, A. & Boehm, T. (2005). Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proc. Natl. Acad. Sci. USA, 102, 4414-4418. Noor, M.A.F., Grams, K.L., Bertucci, L.A. & Reiland, J. (2001). Chromosomal inversions and the reproductive isolation of species. Proc. Natl. Acad. Sci. USA, 98, 12084-12088. Shapiro, M.D., Marks, M.E., Peichel, C.L., Blackman, B.K., Nereng, K.S., Jónsson, B. et al. (2004). Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature, 428, 717-723. Smith, M.W. & O'Brien, S.J. (2005). Mapping by admixture linkage disequilibrium: advances, limitations and guidelines. Nat. Rev. Gen., 6, 623-632. Michel, A.P., Sim, S., Powell, T.H.Q., Taylor, M.S., Nosil, P. & Feder, J.L. (2010). Widespread genomic divergence during sympatric speciation. Proc. Natl. Acad. Sci. USA, 107, 9724-9729. Mullen, L.M., Vignieri, S.N., Gore, J.A. & Hoekstra, H.E. (2009). Adaptive basis of geographic variation: genetic, phenotypic and environmental differences among beach mouse populations. Proc. R. Soc. B-Biol. Sci., 276, 3809-3818. Torres, T.T., Metta, M., Ottenwälder, B. & Schlötterer, C. (2008). Gene expression profiling by massively parallel sequencing. Genome Res., 18, 172-177. Nosil, P., Funk, D.J. & Ortiz-Barrientos, D. (2009a). Divergent selection and heterogeneous genomic divergence. Mol. Ecol., 18, 375-402. Abzhanov, A., Kuo, W.P., Hartmann, C., Grant, B.R., Grant, P.R. & Tabin, C.J. (2006). The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. Nature, 442, 563-567. Presgraves, D.C. (2010). The molecular evolutionary basis of species formation. Nat. Rev. Gen., 11, 175-180. Funk, D.J., Nosil, P. & Etges, W.J. (2006). Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proc. Natl. Acad. Sci. USA, 103, 3209-3213. Nosil, P., Harmon, L.J. & Seehausen, O. (2009b). Ecological explanations for (incomplete) speciation. Trends Ecol. Evol., 24, 145-156. Rieseberg, L.H., Whitton, J. & Gardner, K. (1999). Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics, 152, 713-727. Stinchcombe, J.R. & Hoekstra, H.E. (2008). Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity, 100, 158-170. Felsenstein, J. (1981). Skepticism towards Santa Rosalia, or why are there so few kinds of animals. Evolution, 35, 124-138. Teeter, K.C., Payseur, B.A., Harris, L.W., Bakewell, M.A., Thibodeau, L.M., O'Brien, J.E. et al. (2008). Genome-wide patterns of gene flow across a house mouse hybrid zone. Genome Res., 18, 67-76. Reynolds, R.G. & Fitzpatrick, B.M. (2007). Assortative mating in poison-dart frogs based on an ecologically important trait. Evolution, 61, 2253-2259. Noonan, B.P. & Comeault, A.A. (2009). The role of predator selection on polymorphic aposematic poison frogs. Biol. Lett., 5, 51-54. Hendry, A.P., Grant, P.R., Grant, B.R., Ford, H.A., Brewer, M.J. & Podos, J. (2006). Possible human impacts on adaptive radiation: beak size bimodality in Darwin's finches. Proc. R. Soc. B-Biol. Sci., 273, 1887-1894. Gavrilets, S. (2004). Fitness Landscapes and the Origin of Species. Princeton University Press, Princeton, NJ. Coyne, J.A. & Orr, H.A. (2004). Speciation. Sinauer Associates, Sunderland, MA. Schwarz, D., Robertson, H.M., Feder, J.L., Varala, K., Hudson, M.E., Ragland, G.J. et al. (2009). Sympatric ecological speciation meets pyrosequencing: sampling the transcript 2010; 11 2010; 107 2010; 19 2008; 9 2003; 57 2009; 276 2003; 270 2008; 8 2008; 3 2008; 100 2009; 12 2000; 407 2010; 64 2009; 10 2005; 102 2007; 175 1993; 74 1981; 35 2008; 23 1940 1999; 53 2007; 61 2001; 16 2007; 5 2008; 62 2010; 5 2007; 23 2006; 442 2009; 323 2010; 6 2006; 441 2009; 18 2009; 325 2009; 326 2001; 98 2009; 66 2009; 22 1982; 36 2008a; 17 2009b; 24 2002; 296 2008; 18 2010; 365 2006; 15 2008; 17 2006; 273 2009a; 18 2005; 86 2001; 409 2004 2004; 428 2008b; 179 2006; 313 2007; 98 1940; 74 2004; 429 2003; 34 2010; 138 2004; 17 2010; 134 2009; 102 1999; 152 2005; 6 2009; 6 2009; 5 2008; 452 2007; 318 2006; 103 |
References_xml | – reference: Pfennig, D.W. & Rice, A.M. (2007). An experimental test of character displacement's role in promoting postmating isolation between conspecific populations in contrasting competitive environments. Evolution, 61, 2433-2443. – reference: Backström, N., Karaiskou, N., Leder, E.H., Gustafsson, L., Primmer, C.R., Qvarnström, A. et al. (2008b). A gene-based genetic linkage map of the collared flycatcher (Ficedula albicollis) reveals extensive synteny and gene-order conservation during 100 million years of avian evolution. Genetics, 179, 1479-1495. – reference: Mavarez, J., Salazar, C.A., Bermingham, E., Salcedo, C., Jiggins, C.D. & Linares, M. (2006). Speciation by hybridization in Heliconius butterflies. Nature, 441, 868-871. – reference: Schluter, D. (2009). Evidence for ecological speciation and its alternative. Science, 323, 737-741. – reference: Felsenstein, J. (1981). Skepticism towards Santa Rosalia, or why are there so few kinds of animals. Evolution, 35, 124-138. – reference: Hoekstra, H.E., Hirschmann, R.J., Bundey, R.A., Insel, P.A. & Crossland, J.P. (2006). A single amino acid mutation contributes to adaptive beach mouse color pattern. Science, 313, 101-104. – reference: Nosil, P., Harmon, L.J. & Seehausen, O. (2009b). Ecological explanations for (incomplete) speciation. Trends Ecol. Evol., 24, 145-156. – reference: Reynolds, R.G. & Fitzpatrick, B.M. (2007). Assortative mating in poison-dart frogs based on an ecologically important trait. Evolution, 61, 2253-2259. – reference: Teeter, K.C., Payseur, B.A., Harris, L.W., Bakewell, M.A., Thibodeau, L.M., O'Brien, J.E. et al. (2008). Genome-wide patterns of gene flow across a house mouse hybrid zone. Genome Res., 18, 67-76. – reference: Navarro, A. & Barton, N.H. (2003). Accumulating postzygotic isolation genes in parapatry: a new twist on chromosomal speciation. Evolution, 57, 447-459. – reference: Jiggins, C.D., Estrada, C. & Rodrigues, A. (2004). Mimicry and the evolution of premating isolation in Heliconius melpomene Linnaeus. J. Evol. Biol., 17, 680-691. – reference: Filchak, K.E., Roethele, J.B. & Feder, J.L. (2000). Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature, 407, 739-742. – reference: Coyne, J.A. & Orr, H.A. (2004). Speciation. Sinauer Associates, Sunderland, MA. – reference: Ball, A.D., Stapley, J., Dawson, D.A., Birkhead, T.R., Burke, T. & Slate, J. (2010). A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata). BMC Genomics, 11, 218. – reference: Dobzhansky, T. (1940). Speciation as a stage in evolutionary divergence. Am. Nat., 74, 312-321. – reference: van Doorn, G.S., Edelaar, P. & Weissing, F.J. (2009). On the origin of species by natural and sexual selection. Science, 326, 1704-1707. – reference: Schluter, D. (2001). Ecology and the origin of species. Trends Ecol. Evol., 16, 372-380. – reference: Sæther, S.A., Saetre, G.P., Borge, T., Wiley, C., Svedin, N., Andersson, G. et al. (2007). Sex chromosome-linked species recognition and evolution of reproductive isolation in flycatchers. Science, 318, 95-97. – reference: Qvarnström, A., Rice, A.M. & Ellegren, H.. (2010). Speciation in Ficedula flycatchers. Philos. Trans. R. Soc. Lond. B Biol. Sci., 365, 1841-1852. – reference: Grant, P.R. & Grant, B.R. (2002). Unpredictable evolution in a 30-year study of Darwin's finches. Science, 296, 707-711. – reference: Backström, N., Fagerberg, S. & Ellegren, H. (2008a). Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome. Mol. Ecol., 17, 964-980. – reference: Slatkin, M. (1982). Pleiotropy and parapatric speciation. Evolution, 36, 263-270. – reference: Hudson, M.E. (2008). Sequencing breakthroughs for genomic ecology and evolutionary biology. Mol. Ecol. Resour., 8, 3-17. – reference: Baird, N.A., Etter, P.D., Atwood, T.S., Currey, M.C., Shiver, A.L., Lewis, Z.A. et al. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE, 3, e3376. – reference: Mullen, L.M. & Hoekstra, H.E. (2008). Natural selection along an environmental gradient: a classic cline in mouse pigmentation. Evolution, 62, 1555-1570. – reference: Eizaguirre, C., Lenz, T.L., Traulsen, A. & Milinski, M. (2009). Speciation accelerated and stabilized by pleiotropic major histocompatibility complex immunogenes. Ecol. Lett., 12, 5-12. – reference: Fay, J.C. & Wittkopp, P.J. (2008). Evaluating the role of natural selection in the evolution of gene regulation. Heredity, 100, 191-199. – reference: Irwin, D.E., Bensch, S. & Price, T.D. (2001). Speciation in a ring. Nature, 409, 333-337. – reference: Steiner, C.C., Weber, J.N. & Hoekstra, H.E. (2007). Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biol., 5, e219. – reference: Matsumura, H., Yoshida, K., Luo, S., Kimura, E., Fujibe, T., Albertyn, Z. et al. (2010). High-throughput SuperSAGE for digital gene expression analysis of multiple samples using next generation sequencing. PLoS ONE, 5, e12010. – reference: Torres, T.T., Metta, M., Ottenwälder, B. & Schlötterer, C. (2008). Gene expression profiling by massively parallel sequencing. Genome Res., 18, 172-177. – reference: Oka, A., Aoto, T., Totsuka, Y., Takahashi, R., Ueda, M., Mita, A. et al. (2007). Disruption of genetic interaction between two autosomal regions and the X chromosome causes reproductive isolation between mouse strains derived from different subspecies. Genetics, 175, 185-197. – reference: Gompert, Z. & Buerkle, C.A. (2009). A powerful regression-based method for admixture mapping of isolation across the genome of hybrids. Mol. Ecol., 18, 1207-1224. – reference: Linnen, C.R., Kingsley, E.P., Jensen, J.D. & Hoekstra, H.E. (2009). On the origin and spread of an adaptive allele in deer mice. Science, 325, 1095-1098. – reference: Schluter, D. (1993). Adaptive radiation in sticklebacks: size, shape, and habitat use efficiency. Ecology, 74, 699-709. – reference: Wang, Z., Gerstein, M. & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Gen., 10, 57-63. – reference: Mullen, L.M., Vignieri, S.N., Gore, J.A. & Hoekstra, H.E. (2009). Adaptive basis of geographic variation: genetic, phenotypic and environmental differences among beach mouse populations. Proc. R. Soc. B-Biol. Sci., 276, 3809-3818. – reference: Backström, N., Palkopoulou, E., Qvarnström, A. & Ellegren, H. (2010). No evidence for Z-chromosome rearrangements between the pied and collared flycatcher as judged by gene-based comparative genetic maps. Mol. Ecol., 19, 3394-3405. – reference: Buerkle, C.A. & Lexer, C. (2008). Admixture as the basis for genetic mapping. Trends Ecol. Evol., 23, 686-694. – reference: Rieseberg, L.H., Whitton, J. & Gardner, K. (1999). Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics, 152, 713-727. – reference: Nosil, P., Funk, D.J. & Ortiz-Barrientos, D. (2009a). Divergent selection and heterogeneous genomic divergence. Mol. Ecol., 18, 375-402. – reference: Baxter, S.W., Nadeau, N.J., Maroja, L.S., Wilkinson, P., Counterman, B.A., Dawson, A. et al. (2010). Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in the Heliconius melpomene clade. PLoS Genet., 6, e1000794. – reference: Schwarz, D., Robertson, H.M., Feder, J.L., Varala, K., Hudson, M.E., Ragland, G.J. et al. (2009). Sympatric ecological speciation meets pyrosequencing: sampling the transcriptome of the apple maggot Rhagoletis pomonella. BMC Genomics, 10, 633. – reference: Thibert-Plante, X. & Hendry, A.P. (2009). Five questions on ecological speciation addressed with individual-based simulations. J. Evol. Biol., 22, 109-123. – reference: Michel, A.P., Sim, S., Powell, T.H.Q., Taylor, M.S., Nosil, P. & Feder, J.L. (2010). Widespread genomic divergence during sympatric speciation. Proc. Natl. Acad. Sci. USA, 107, 9724-9729. – reference: Wheat, C.W. (2010). Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing. Genetica, 138, 433-451. – reference: Abzhanov, A., Kuo, W.P., Hartmann, C., Grant, B.R., Grant, P.R. & Tabin, C.J. (2006). The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. Nature, 442, 563-567. – reference: Chamberlain, N.L., Hill, R.I., Kapan, D.D., Gilbert, L.E. & Kronforst, M.R. (2009). Polymorphic butterfly reveals the missing link in ecological speciation. Science, 326, 847-850. – reference: Noonan, B.P. & Comeault, A.A. (2009). The role of predator selection on polymorphic aposematic poison frogs. Biol. Lett., 5, 51-54. – reference: Noor, M.A.F., Grams, K.L., Bertucci, L.A. & Reiland, J. (2001). Chromosomal inversions and the reproductive isolation of species. Proc. Natl. Acad. Sci. USA, 98, 12084-12088. – reference: Gompert, Z., Lucas, L.K., Fordyce, J.A., Forister, M.L. & Nice, C.C. (2010). Secondary contact between Lycaeides idas and L. melissa in the Rocky Mountains: extensive admixture and a patchy hybrid zone. Mol. Ecol., 19, 3171-3192. – reference: Malmberg, R.L. & Mauricio, R. (2005). QTL-based evidence for the role of epistasis in evolution. Genet. Res., 86, 89-95. – reference: Presgraves, D.C. (2010). The molecular evolutionary basis of species formation. Nat. Rev. Gen., 11, 175-180. – reference: Bar-Or, C., Czosnek, H. & Koltai, H. (2007). Cross-species microarray hybridizations: a developing tool for studying species diversity. Trends Genet., 23, 200-207. – reference: Hendry, A.P., Huber, S.K., De Leon, L.F., Herrel, A. & Podos, J. (2009). Disruptive selection in a bimodal population of Darwin's finches. Proc. R. Soc. B-Biol. Sci., 276, 753-759. – reference: Hohenlohe, P.A., Bassham, S., Etter, P.D., Stiffler, N., Johnson, E.A. & Cresko, W.A. (2010). Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet., 6, e1000862. – reference: Hendry, A.P. (2009). Ecological speciation! Or the lack thereof? Can. J. Fish. Aq. Sci., 66, 1383-1398. – reference: Sætre, G.-P. & Sæther, S.A. (2010). Ecology and genetics of speciation in Ficedula flycatchers. Mol. Ecol., 19, 1091-1106. – reference: Funk, D.J., Nosil, P. & Etges, W.J. (2006). Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proc. Natl. Acad. Sci. USA, 103, 3209-3213. – reference: Orr, H.A., Masly, J.P. & Phadnis, N. (2007). Speciation in Drosophila: from phenotypes to molecules. J. Hered., 98, 103-110. – reference: Sætre, G.-P., Borge, T., Lindroos, K., Haavie, J., Sheldon, B.C., Primmer, C.R. et al. (2003). Sex chromosome evolution and speciation in Ficedula flycatchers. Proc. R. Soc. B-Biol. Sci., 270, 53-59. – reference: McKinnon, J.S., Mori, S., Blackman, B.K., David, L., Kingsley, D.M., Jamieson, L. et al. (2004). Evidence for ecology's role in speciation. Nature, 429, 294-298. – reference: Butlin, R.K. (2010). Population genomics and speciation. Genetica, 138, 409-418. – reference: Smith, M.W. & O'Brien, S.J. (2005). Mapping by admixture linkage disequilibrium: advances, limitations and guidelines. Nat. Rev. Gen., 6, 623-632. – reference: Vignieri, S.N., Larson, J.G. & Hoekstra, H.E. (2010). The selective advantage of crypsis in mice. Evolution, 64, 2153-2158. – reference: Derome, N., Duchesne, P. & Bernatchez, L. (2006). Parallelism in gene transcription among sympatric lake whitefish (Coregonus clupeaformis Mitchell) ecotypes. Mol. Ecol., 15, 1239-1249. – reference: Ellegren, H. & Sheldon, B.C. (2008). Genetic basis of fitness differences in natural populations. Nature, 452, 169-175. – reference: Hatfield, T. & Schluter, D. (1999). Ecological speciation in sticklebacks: environment-dependent hybrid fitness. Evolution, 53, 866-873. – reference: Via, S. & West, J. (2008). The genetic mosaic suggests a new role for hitchhiking in ecological speciation. Mol. Ecol., 17, 4334-4345. – reference: Matsubayashi, K.W., Ohshima, I. & Nosil, P. (2010). Ecological speciation in phytophagous insects. Entomol. Exp. App., 134, 1-27. – reference: Qvarnström, A. & Bailey, R.I. (2009). Speciation through evolution of sex-linked genes. Heredity, 102, 4-15. – reference: Stinchcombe, J.R. & Hoekstra, H.E. (2008). Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity, 100, 158-170. – reference: Servedio, M.R. & Noor, M.A.F. (2003). The role of reinforcement in speciation: theory and data. Ann. Rev. Ecol. Evol. Syst., 34, 339-364. – reference: Shapiro, M.D., Marks, M.E., Peichel, C.L., Blackman, B.K., Nereng, K.S., Jónsson, B. et al. (2004). Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature, 428, 717-723. – reference: Gavrilets, S. (2004). Fitness Landscapes and the Origin of Species. Princeton University Press, Princeton, NJ. – reference: Hutter, S., Saminadin-Peter, S.S., Stephan, W. & Parsch, J. (2008). Gene expression variation in African and European populations of Drosophila melanogaster. Genome Biol., 9, R12. – reference: Hendry, A.P., Grant, P.R., Grant, B.R., Ford, H.A., Brewer, M.J. & Podos, J. (2006). Possible human impacts on adaptive radiation: beak size bimodality in Darwin's finches. Proc. R. Soc. B-Biol. Sci., 273, 1887-1894. – reference: Rusk, N. (2009). Cheap third-generation sequencing. Nat. Met., 6, 244-245. – reference: Milinski, M., Griffiths, S., Wegner, K.M., Reusch, T.B.H., Haas-Assenbaum, A. & Boehm, T. (2005). Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proc. Natl. Acad. Sci. USA, 102, 4414-4418. – volume: 19 start-page: 3171 year: 2010 end-page: 3192 article-title: Secondary contact between and in the Rocky Mountains: extensive admixture and a patchy hybrid zone publication-title: Mol. Ecol. – volume: 313 start-page: 101 year: 2006 end-page: 104 article-title: A single amino acid mutation contributes to adaptive beach mouse color pattern publication-title: Science – volume: 326 start-page: 1704 year: 2009 end-page: 1707 article-title: On the origin of species by natural and sexual selection publication-title: Science – volume: 19 start-page: 1091 year: 2010 end-page: 1106 article-title: Ecology and genetics of speciation in flycatchers publication-title: Mol. Ecol. – volume: 17 start-page: 964 year: 2008a end-page: 980 article-title: Genomics of natural bird populations: a gene‐based set of reference markers evenly spread across the avian genome publication-title: Mol. Ecol. – volume: 175 start-page: 185 year: 2007 end-page: 197 article-title: Disruption of genetic interaction between two autosomal regions and the X chromosome causes reproductive isolation between mouse strains derived from different subspecies publication-title: Genetics – volume: 3 start-page: e3376 year: 2008 article-title: Rapid SNP discovery and genetic mapping using sequenced RAD markers publication-title: PLoS ONE – volume: 12 start-page: 5 year: 2009 end-page: 12 article-title: Speciation accelerated and stabilized by pleiotropic major histocompatibility complex immunogenes publication-title: Ecol. Lett. – volume: 18 start-page: 172 year: 2008 end-page: 177 article-title: Gene expression profiling by massively parallel sequencing publication-title: Genome Res. – volume: 18 start-page: 67 year: 2008 end-page: 76 article-title: Genome‐wide patterns of gene flow across a house mouse hybrid zone publication-title: Genome Res. – volume: 318 start-page: 95 year: 2007 end-page: 97 article-title: Sex chromosome‐linked species recognition and evolution of reproductive isolation in flycatchers publication-title: Science – volume: 152 start-page: 713 year: 1999 end-page: 727 article-title: Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species publication-title: Genetics – volume: 98 start-page: 103 year: 2007 end-page: 110 article-title: Speciation in : from phenotypes to molecules publication-title: J. Hered. – volume: 74 start-page: 699 year: 1993 end-page: 709 article-title: Adaptive radiation in sticklebacks: size, shape, and habitat use efficiency publication-title: Ecology – volume: 66 start-page: 1383 year: 2009 end-page: 1398 article-title: Ecological speciation! Or the lack thereof? publication-title: Can. J. Fish. Aq. Sci. – volume: 296 start-page: 707 year: 2002 end-page: 711 article-title: Unpredictable evolution in a 30‐year study of Darwin’s finches publication-title: Science – volume: 134 start-page: 1 year: 2010 end-page: 27 article-title: Ecological speciation in phytophagous insects publication-title: Entomol. Exp. App. – volume: 102 start-page: 4414 year: 2005 end-page: 4418 article-title: Mate choice decisions of stickleback females predictably modified by MHC peptide ligands publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 51 year: 2009 end-page: 54 article-title: The role of predator selection on polymorphic aposematic poison frogs publication-title: Biol. Lett. – volume: 61 start-page: 2433 year: 2007 end-page: 2443 article-title: An experimental test of character displacement’s role in promoting postmating isolation between conspecific populations in contrasting competitive environments publication-title: Evolution – volume: 270 start-page: 53 year: 2003 end-page: 59 article-title: Sex chromosome evolution and speciation in flycatchers publication-title: Proc. R. Soc. B-Biol. Sci. – volume: 98 start-page: 12084 year: 2001 end-page: 12088 article-title: Chromosomal inversions and the reproductive isolation of species publication-title: Proc. Natl. Acad. Sci. USA – volume: 323 start-page: 737 year: 2009 end-page: 741 article-title: Evidence for ecological speciation and its alternative publication-title: Science – volume: 15 start-page: 1239 year: 2006 end-page: 1249 article-title: Parallelism in gene transcription among sympatric lake whitefish ( Mitchell) ecotypes publication-title: Mol. Ecol. – volume: 325 start-page: 1095 year: 2009 end-page: 1098 article-title: On the origin and spread of an adaptive allele in deer mice publication-title: Science – volume: 6 start-page: e1000862 year: 2010 article-title: Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags publication-title: PLoS Genet. – year: 2004 – volume: 102 start-page: 4 year: 2009 end-page: 15 article-title: Speciation through evolution of sex‐linked genes publication-title: Heredity – volume: 365 start-page: 1841 year: 2010 end-page: 1852 article-title: Speciation in flycatchers publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 64 start-page: 2153 year: 2010 end-page: 2158 article-title: The selective advantage of crypsis in mice publication-title: Evolution – volume: 19 start-page: 3394 year: 2010 end-page: 3405 article-title: No evidence for Z‐chromosome rearrangements between the pied and collared flycatcher as judged by gene‐based comparative genetic maps publication-title: Mol. Ecol. – volume: 17 start-page: 4334 year: 2008 end-page: 4345 article-title: The genetic mosaic suggests a new role for hitchhiking in ecological speciation publication-title: Mol. Ecol. – volume: 35 start-page: 124 year: 1981 end-page: 138 article-title: Skepticism towards Santa Rosalia, or why are there so few kinds of animals publication-title: Evolution – volume: 6 year: 2010 article-title: Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in the clade publication-title: PLoS Genet. – volume: 326 start-page: 847 year: 2009 end-page: 850 article-title: Polymorphic butterfly reveals the missing link in ecological speciation publication-title: Science – volume: 5 start-page: e219 year: 2007 article-title: Adaptive variation in beach mice produced by two interacting pigmentation genes publication-title: PLoS Biol. – volume: 100 start-page: 191 year: 2008 end-page: 199 article-title: Evaluating the role of natural selection in the evolution of gene regulation publication-title: Heredity – volume: 34 start-page: 339 year: 2003 end-page: 364 article-title: The role of reinforcement in speciation: theory and data publication-title: Ann. Rev. Ecol. Evol. Syst. – start-page: 185 year: 1940 end-page: 268 – volume: 6 start-page: 244 year: 2009 end-page: 245 article-title: Cheap third‐generation sequencing publication-title: Nat. Met. – volume: 11 start-page: 175 year: 2010 end-page: 180 article-title: The molecular evolutionary basis of species formation publication-title: Nat. Rev. Gen. – volume: 10 start-page: 633 year: 2009 article-title: Sympatric ecological speciation meets pyrosequencing: sampling the transcriptome of the apple maggot publication-title: BMC Genomics – volume: 273 start-page: 1887 year: 2006 end-page: 1894 article-title: Possible human impacts on adaptive radiation: beak size bimodality in Darwin’s finches publication-title: Proc. R. Soc. B-Biol. Sci. – volume: 10 start-page: 57 year: 2009 end-page: 63 article-title: RNA‐Seq: a revolutionary tool for transcriptomics publication-title: Nat. Rev. Gen. – volume: 74 start-page: 312 year: 1940 end-page: 321 article-title: Speciation as a stage in evolutionary divergence publication-title: Am. Nat. – volume: 62 start-page: 1555 year: 2008 end-page: 1570 article-title: Natural selection along an environmental gradient: a classic cline in mouse pigmentation publication-title: Evolution – volume: 53 start-page: 866 year: 1999 end-page: 873 article-title: Ecological speciation in sticklebacks: environment‐dependent hybrid fitness publication-title: Evolution – volume: 276 start-page: 3809 year: 2009 end-page: 3818 article-title: Adaptive basis of geographic variation: genetic, phenotypic and environmental differences among beach mouse populations publication-title: Proc. R. Soc. B-Biol. Sci. – volume: 179 start-page: 1479 year: 2008b end-page: 1495 article-title: A gene‐based genetic linkage map of the collared flycatcher ( ) reveals extensive synteny and gene‐order conservation during 100 million years of avian evolution publication-title: Genetics – volume: 23 start-page: 686 year: 2008 end-page: 694 article-title: Admixture as the basis for genetic mapping publication-title: Trends Ecol. Evol. – volume: 16 start-page: 372 year: 2001 end-page: 380 article-title: Ecology and the origin of species publication-title: Trends Ecol. Evol. – volume: 407 start-page: 739 year: 2000 end-page: 742 article-title: Natural selection and sympatric divergence in the apple maggot publication-title: Nature – volume: 428 start-page: 717 year: 2004 end-page: 723 article-title: Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks publication-title: Nature – volume: 11 start-page: 218 year: 2010 article-title: A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch ( ) publication-title: BMC Genomics – volume: 103 start-page: 3209 year: 2006 end-page: 3213 article-title: Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa publication-title: Proc. Natl. Acad. Sci. USA – volume: 100 start-page: 158 year: 2008 end-page: 170 article-title: Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits publication-title: Heredity – volume: 276 start-page: 753 year: 2009 end-page: 759 article-title: Disruptive selection in a bimodal population of Darwin’s finches publication-title: Proc. R. Soc. B-Biol. Sci. – volume: 24 start-page: 145 year: 2009b end-page: 156 article-title: Ecological explanations for (incomplete) speciation publication-title: Trends Ecol. Evol. – volume: 36 start-page: 263 year: 1982 end-page: 270 article-title: Pleiotropy and parapatric speciation publication-title: Evolution – volume: 442 start-page: 563 year: 2006 end-page: 567 article-title: The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches publication-title: Nature – volume: 429 start-page: 294 year: 2004 end-page: 298 article-title: Evidence for ecology’s role in speciation publication-title: Nature – volume: 6 start-page: 623 year: 2005 end-page: 632 article-title: Mapping by admixture linkage disequilibrium: advances, limitations and guidelines publication-title: Nat. Rev. Gen. – volume: 441 start-page: 868 year: 2006 end-page: 871 article-title: Speciation by hybridization in butterflies publication-title: Nature – volume: 409 start-page: 333 year: 2001 end-page: 337 article-title: Speciation in a ring publication-title: Nature – volume: 107 start-page: 9724 year: 2010 end-page: 9729 article-title: Widespread genomic divergence during sympatric speciation publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: R12 year: 2008 article-title: Gene expression variation in African and European populations of publication-title: Genome Biol. – volume: 23 start-page: 200 year: 2007 end-page: 207 article-title: Cross‐species microarray hybridizations: a developing tool for studying species diversity publication-title: Trends Genet. – volume: 18 start-page: 375 year: 2009a end-page: 402 article-title: Divergent selection and heterogeneous genomic divergence publication-title: Mol. Ecol. – volume: 8 start-page: 3 year: 2008 end-page: 17 article-title: Sequencing breakthroughs for genomic ecology and evolutionary biology publication-title: Mol. Ecol. Resour. – volume: 57 start-page: 447 year: 2003 end-page: 459 article-title: Accumulating postzygotic isolation genes in parapatry: a new twist on chromosomal speciation publication-title: Evolution – volume: 452 start-page: 169 year: 2008 end-page: 175 article-title: Genetic basis of fitness differences in natural populations publication-title: Nature – volume: 18 start-page: 1207 year: 2009 end-page: 1224 article-title: A powerful regression‐based method for admixture mapping of isolation across the genome of hybrids publication-title: Mol. Ecol. – volume: 61 start-page: 2253 year: 2007 end-page: 2259 article-title: Assortative mating in poison‐dart frogs based on an ecologically important trait publication-title: Evolution – volume: 138 start-page: 409 year: 2010 end-page: 418 article-title: Population genomics and speciation publication-title: Genetica – volume: 22 start-page: 109 year: 2009 end-page: 123 article-title: Five questions on ecological speciation addressed with individual‐based simulations publication-title: J. Evol. Biol. – volume: 138 start-page: 433 year: 2010 end-page: 451 article-title: Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing publication-title: Genetica – volume: 5 start-page: e12010 year: 2010 article-title: High‐throughput SuperSAGE for digital gene expression analysis of multiple samples using next generation sequencing publication-title: PLoS ONE – volume: 17 start-page: 680 year: 2004 end-page: 691 article-title: Mimicry and the evolution of premating isolation in Linnaeus publication-title: J. Evol. Biol. – volume: 86 start-page: 89 year: 2005 end-page: 95 article-title: QTL‐based evidence for the role of epistasis in evolution publication-title: Genet. Res. |
SSID | ssj0012971 |
Score | 2.2492034 |
Snippet | Ecology Letters (2011) 14: 9–18
Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid... Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations.... Ecology Letters (2011) 14: 9-18 ABSTRACT: Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to... Ecology Letters (2011) 14: 9-18 Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid... |
SourceID | swepub proquest pubmed pascalfrancis wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 9 |
SubjectTerms | Adaptations Animal and plant ecology Animal populations Animal, plant and microbial ecology Animals Biologi Biological and medical sciences Biological Evolution Biology Classical genetics, quantitative genetics, hybrids Ecological research ecological speciation ecologists Ecology Evolutionary biology Fundamental and applied biological sciences. Psychology Gene expression Gene Flow General aspects Genetic Speciation genetics Genetics of eukaryotes. Biological and molecular evolution genome scan Genomics Genomics - methods mapping approaches metagenomics methods Models, Biological Models, Genetic NATURAL SCIENCES natural selection NATURVETENSKAP next-generation sequencing Reproduction reproductive isolation Research programs Selection, Genetic Speciation Subpopulations Theory |
Title | A guide to the genomics of ecological speciation in natural animal populations |
URI | https://api.istex.fr/ark:/67375/WNG-CQJ4J9LL-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1461-0248.2010.01546.x https://www.ncbi.nlm.nih.gov/pubmed/21070555 https://www.proquest.com/docview/817470617 https://www.proquest.com/docview/1501366494 https://www.proquest.com/docview/818402215 https://www.proquest.com/docview/856775193 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-143678 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9swFBWjMNjLtu7Ta1c02PbmYFuyZD-GNF0JWWBj3fImJFsqJtQucQztfv3utRKPlG4PY2CwsSRjSedK59pXR4S8F4lMjIhMqAV3IS-sC7OyMIDlxEVMM6l7KaXPC3F-wWfLdLmNf8K1MF4fYvjghpbRj9do4Nq0d40cXOFkiNACNiBGyCdjJlBG__TroCQFs5r3vXwRttwP6rn3QUBXsaVvMFxSt9Bizm91cR8XHYRG9zluP0mdPSGrXfV8bMpq1G3MqPh5R_nx_9T_KXm85bJ07MF3SB7Y-hl56He3vIWraa-IffucLMb0sqtKSzcNBcJJURj2qipa2jhqi93wS3HVp0cKrWraS47CXV1XV3C6HnYaa1-Qi7Ppt8l5uN3IIaxSKUUoirjgJtJcI18qM6kTl0cuM4UwUWx1WmoYBkypk5Tp3HKXuDguIYExySNbspfkoG5q-5pQHjkjrLVMWsm1lXnhwD_QGp6PaxJ0QD72naauvViH0usVxq7JVP1YfFKTLzM-y-dzNQnIyV6vDgUSJlkKRDcgR7tuVlu7blUGDpxE1heQd0MqGCT-ZdG1bbpWAcMG_Ame84DQP-TJ0K9OgG39JUsqpER6HZBXHmO_3xBcdtRpC8gHD7ohBbXCT6vvY9WsL1XXgV_HgIwERPRAGrLtOX6xQggphJDqIaRu1HQ-xas3_1rwiDzy397xOCYHm3Vn3wJ525iT3ix_AepWNls |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6hIQQv_GZkg2Ek4C1VEjt2-1iVjlK6SqAN-mY5iT1F29KpbaSNv567uA3qNHhASJES1XaU2t853znn7wDeyUQlmYyy0EjhQpFbF3aLPEMsJy7ihivTSCkdTeXoRIxn6WydDoj2wnh9iHbBjSyjma_JwGlB-qaVoy-ctCFaSAdkBwnl3eZzHTGkb62WFL7XvPfl2_DZdljPrXdCwkp9fUUBk2aJfeZ8sovb2GgrNbrNcpvX1OEjON_8QR-dctapV1kn_3lD-_E_9cBjeLims6zv8fcE7tjqKdzzCS6v8WrYiGJfP4Npn53WZWHZas6QczLShr0o8yWbO2bzzQzMaOOnBwsrK9aojuKvpiov8HTZJhtbPoeTw-HxYBSuczmEZaqUDGUe5yKLjDBEmYquMonrRa6b5TKLYmvSwuBMkBUmSbnpWeESF8cFFnCuRGQL_gJ2qnllXwITkcuktZYrq4Sxqpc7dBGMwfvTtgQTwIdm1PSl1-vQZnFG4Wsq1T-mn_Tg61iMe5OJHgRwsDWsbYOEK54i1w1gfzPOem3aS91FH04R8QvgbVuKNkkfWkxl5_VSI8mOuZSiJwJgf6jTJdc6QcL1lyqpVIoYdgC7HmS_nxC9dpJqC-C9R11bQnLhH8vvfT1fnOq6RteOIx8JQDZIaqtt-X6xJghpgpBuIKSv9HAypKu9f234Bu6Pjo8mevJ5-mUfHvileDpewc5qUdvXyOVW2UFjo78ATiw6eQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5CQyBeuF_CYBgJeEuVxI6dPFZdyyilAsSgb5aT2FNULamaRtr49RzHbVCnwQNCipQoviixv2N_Jzn-DPCGRyLKeJD5ijPjs1wbPynyDLEcmYAqKlQnpfRpzk9O2XQRL7bxT3YtjNOH6D-4Wcvoxmtr4KvCXDVydIWjPkIL2QAfIJ-8yTjOmpYgfe2lpHBac86XK0MX-1E919aEfNU29YWNl1QNNplxe11cR0Z7pdF9ktvNUpN7sNy9nwtOWQ7aTTbIf16Rfvw_DXAf7m7JLBk69D2AG7p6CLfc9paXeDXuJLEvH8F8SM7astBkUxNknMQqw56XeUNqQ3S-G3-JXfbpoELKinSao3hXVeU5nlb9VmPNYzidjL-NTvztTg5-GQvBfZ6HOcsCxZQlTEUiVGTSwCRZzrMg1CouFI4DWaGimKpUMxOZMCwwgVLBAl3QJ3BQ1ZV-BoQFJuNaayq0YEqLNDfoICiF9dtFCcqDd12nyZVT65BqvbTBayKWP-bv5ejLlE3T2UyOPDja69W-QEQFjZHpenC462a5NexGJujBCUv7PHjdp6JF2t8sqtJ120ik2CHlnKXMA_KHPIl1rCOkW3_JEnMhLL_24KnD2O8nRJ_dCrV58NaBrk-xYuHH5fehrNdnsm3RsaPIRjzgHZD6bHueXygthKSFkOwgJC_keDa2V8__teAruP35eCJnH-YfD-FOGHXxP3i8gIPNutUvkchtsqPOQn8BYng5Kg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+guide+to+the+genomics+of+ecological+speciation+in+natural+animal+populations&rft.jtitle=Ecology+letters&rft.au=Rice%2C+Amber+M&rft.au=Rudh%2C+Andreas&rft.au=Ellegren%2C+Hans&rft.au=Qvarnstrom%2C+Anna&rft.date=2011-01-01&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=14&rft.issue=1&rft.spage=9&rft.epage=18&rft_id=info:doi/10.1111%2Fj.1461-0248.2010.01546.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon |