Fast gap-free enumeration of conformations and sequences for protein design
ABSTRACT Despite significant successes in structure‐based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ense...
        Saved in:
      
    
          | Published in | Proteins, structure, function, and bioinformatics Vol. 83; no. 10; pp. 1859 - 1877 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Blackwell Publishing Ltd
    
        01.10.2015
     Wiley Subscription Services, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0887-3585 1097-0134 1097-0134  | 
| DOI | 10.1002/prot.24870 | 
Cover
| Abstract | ABSTRACT
Despite significant successes in structure‐based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest‐energy structures and sequences are found. DEE/A*‐based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap‐free list of low‐energy protein conformations, which is necessary for ensemble‐based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*‐based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically relevant designs. Proteins 2015; 83:1859–1877. © 2015 Wiley Periodicals, Inc. | 
    
|---|---|
| AbstractList | Despite significant successes in structure-based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest-energy structures and sequences are found. DEE/A*-based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap-free list of low-energy protein conformations, which is necessary for ensemble-based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*-based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically relevant designs.Despite significant successes in structure-based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest-energy structures and sequences are found. DEE/A*-based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap-free list of low-energy protein conformations, which is necessary for ensemble-based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*-based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically relevant designs. Despite significant successes in structure-based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest-energy structures and sequences are found. DEE/A*-based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap-free list of low-energy protein conformations, which is necessary for ensemble-based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*-based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically relevant designs. Proteins 2015; 83:1859-1877. © 2015 Wiley Periodicals, Inc. Despite significant successes in structure-based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest-energy structures and sequences are found. DEE/A*-based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap-free list of low-energy protein conformations, which is necessary for ensemble-based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*-based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically relevant designs. Proteins 2015; 83:1859-1877. ABSTRACT Despite significant successes in structure‐based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest‐energy structures and sequences are found. DEE/A*‐based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap‐free list of low‐energy protein conformations, which is necessary for ensemble‐based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*‐based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically relevant designs. Proteins 2015; 83:1859–1877. © 2015 Wiley Periodicals, Inc. Despite significant successes in structure-based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest-energy structures and sequences are found. DEE/A*-based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap-free list of low-energy protein conformations, which is necessary for ensemble-based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*-based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically-relevant designs.  | 
    
| Author | Gainza, Pablo Donald, Bruce R. Roberts, Kyle E. Hallen, Mark A.  | 
    
| AuthorAffiliation | 3 Department of Chemistry, Duke University, Durham, NC 2 Department of Biochemistry, Duke University Medical Center, Durham, NC 1 Department of Computer Science, Duke University, Durham, NC  | 
    
| AuthorAffiliation_xml | – name: 1 Department of Computer Science, Duke University, Durham, NC – name: 2 Department of Biochemistry, Duke University Medical Center, Durham, NC – name: 3 Department of Chemistry, Duke University, Durham, NC  | 
    
| Author_xml | – sequence: 1 givenname: Kyle E. surname: Roberts fullname: Roberts, Kyle E. organization: Department of Computer Science, Duke University, North Carolina, Durham – sequence: 2 givenname: Pablo surname: Gainza fullname: Gainza, Pablo organization: Department of Computer Science, Duke University, North Carolina, Durham – sequence: 3 givenname: Mark A. surname: Hallen fullname: Hallen, Mark A. organization: Department of Computer Science, Duke University, North Carolina, Durham – sequence: 4 givenname: Bruce R. surname: Donald fullname: Donald, Bruce R. email: proteins15@cs.duke.edu organization: Department of Computer Science, Duke University, Durham, North Carolina  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26235965$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkUtv1DAUhS1URKeFDT8ARWKDhNJeO37EGyRU0RaYUgSFSmwsJ7kzuE3sYCeU-fdkOm15LBAry7rfOT73eIds-eCRkMcU9igA2-9jGPYYLxXcIzMKWuVAC75FZlCWKi9EKbbJTkoXACB1IR-QbSZZIbQUM_L20KYhW9o-X0TEDP3YYbSDCz4Li6wOfhFid31PmfVNlvDbiL7GlE2DbP0yOp81mNzSPyT3F7ZN-Ojm3CWfDl-dHRzn89Oj1wcv57kTtIC8EZTLSjdYIqAWwtq6kZXgtRIaGcOyAqGQa0atBAE1LaFpoFoAcsEbEMUueb7xHX1vV1e2bU0fXWfjylAw60rMOpi5rmSiX2zofqw6bGr0Q7S_FME68-fEu69mGb4brpgqJZ0Mnt0YxDAtnwbTuVRj21qPYUyGKsao5ILJ_0ApSMG0WMd6-hd6Ecbop94mCrQuFKN8op78Hv4u9e0HTgDdAFeuxdU_ejDvP5ye3TaSbzQuDfjjTmPjpZGqUMKcvzsyb758Pv54oufmvPgJbcO8qA | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 Wiley Periodicals, Inc. | 
    
| Copyright_xml | – notice: 2015 Wiley Periodicals, Inc. | 
    
| DBID | BSCLL CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1002/prot.24870 | 
    
| DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts Engineering Research Database MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology Chemistry Biology  | 
    
| EISSN | 1097-0134 | 
    
| EndPage | 1877 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:4727861 PMC4727861 3799810461 26235965 PROT24870 ark_67375_WNG_JZVHSM9L_W  | 
    
| Genre | article Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NIH funderid: 2R01‐GM‐78031‐05 – fundername: NIGMS NIH HHS grantid: R01 GM078031  | 
    
| GroupedDBID | -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHMBA AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FA8 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RBB RWI WRC WSB CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-i5130-d5146b9de8e0e955aacd6b54c759e22e8b057e4921a6050c180dd0bf0e454d053 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0887-3585 1097-0134  | 
    
| IngestDate | Wed Oct 29 11:34:43 EDT 2025 Tue Sep 30 16:53:57 EDT 2025 Tue Oct 07 09:56:01 EDT 2025 Wed Oct 01 14:06:23 EDT 2025 Tue Oct 07 05:58:09 EDT 2025 Thu Apr 03 06:59:06 EDT 2025 Wed Jan 22 17:10:25 EST 2025 Sun Sep 21 06:18:20 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Keywords | A search computational protein design combinatorial search structure-based design  | 
    
| Language | English | 
    
| License | 2015 Wiley Periodicals, Inc. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i5130-d5146b9de8e0e955aacd6b54c759e22e8b057e4921a6050c180dd0bf0e454d053 | 
    
| Notes | istex:5C245ACA54F843322C36BD8AB063D11136EFF0A1 ArticleID:PROT24870 ark:/67375/WNG-JZVHSM9L-W NIH - No. 2R01-GM-78031-05 Kyle E. Roberts and Pablo Gainza contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/4727861 | 
    
| PMID | 26235965 | 
    
| PQID | 1709937214 | 
    
| PQPubID | 1016441 | 
    
| PageCount | 19 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_prot_24870 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4727861 proquest_miscellaneous_1722164526 proquest_miscellaneous_1710652950 proquest_journals_1709937214 pubmed_primary_26235965 wiley_primary_10_1002_prot_24870_PROT24870 istex_primary_ark_67375_WNG_JZVHSM9L_W  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | October 2015 | 
    
| PublicationDateYYYYMMDD | 2015-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2015 text: October 2015  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Hokoben  | 
    
| PublicationTitle | Proteins, structure, function, and bioinformatics | 
    
| PublicationTitleAlternate | Proteins | 
    
| PublicationYear | 2015 | 
    
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc  | 
    
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc  | 
    
| References | Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, DeBolt S, Ferguson D, Seibel G, Kollman P. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 1995;91:1-41. Lipovšek D, Antipov E, Armstrong KA, Olsen MJ, Klibanov AM, Tidor B, Wittrup KD. Selection of horseradish peroxidase variants with enhanced enantioselectivity by yeast surface display. Chem Biol 2007;14:1176-1185. Traore S, Allouche D, Andre I, de Givry S, Katsirelos G, Schiex T, Barbe S. A new framework for computational protein design through cost function network optimization. Bioinformatics 2013;29:2129-2136. Lovell SC, Word JM, Richardson JS, Richardson DC. The penultimate rotamer library. Proteins 2000;40:389-408. Applegate D, Bixby R, Chvatal V, Cook W. Finding cuts in the TSP (A preliminary report). DIMACS Technical Report 95-05. 1995. Eriksson O, Zhou Y, Elofsson A. Side chain-positioning as an integer programming problem. Algorithms in Bioinformatics. Springer; 2001. pp 128-141. Clark LA, Boriack-Sjodin P, Eldredge J, Fitch C, Friedman B, Hanf KJM, Jarpe M, Liparoto SF, Li Y, Lugovskoy A, Miller S, Rushe M, Sherman W, Simon K, Van Vlijmen H. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci 2006;15:949-960. Chazelle B, Kingsford C, Singh M. A semidefinite programming approach to side chain positioning with new rounding strategies. Informs J Comput 2004;16:380-392. Georgiev I, Lilien RH, Donald BR. Improved Pruning algorithms and Divide-and-Conquer strategies for Dead-End Elimination, with application to protein design. Bioinformatics 2006;22:e174-83. Wainwright MJ, Jaakkola TS, Willsky AS. MAP estimation via agreement on trees: message-passing and linear programming. IEEE Trans Inf Theory 2005;51:3697-3717. Mackworth AK. Consistency in networks of relations. Artif Intell 1977;8:99-118. Yanover C, Meltzer T, Weiss Y. Linear programming relaxations and belief propagation-an empirical study. J Machine Learn Res 2006;7:1887-1907. Georgiev I, Donald BR. Dead-end elimination with backbone flexibility. Bioinformatics 2007;23:185-194. Georgiev I, Keedy D, Richardson JS, Richardson DC, Donald BR. Algorithm for backrub motions in protein design. Bioinformatics 2008;24:196-204. Tind J, Wolsey LA. An elementary survey of general duality theory in mathematical programming. Math Program 1981;21:241-261. Hong E, Lippow SM, Tidor B, Lozano-Pérez T. Rotamer optimization for protein design through MAP estimation and problem-size reduction. J Comput Chem 2009;30:1923-1945. Kingsford CL, Chazelle B, Singh M. Solving and analyzing side-chain positioning problems using linear and integer programming. Bioinformatics 2005;21:1028-1039. Silver NW, King BM, Nalam MNL, Cao H, Ali A, Kiran Kumar Reddy GS, Rana TM, Schiffer CA, Tidor B. Efficient Computation of Small-Molecule Configurational Binding Entropy and Free Energy Changes by Ensemble Enumeration. J Chem Theory Comput 2013;9:5098-5115. Georgiev IS, Rudicell RS, Saunders KO, Shi W, Kirys T, McKee K, O'Dell S, Chuang G, Yang Z, Ofek G, Connors M, Mascola JR, Nabel GJ, Kwong PD. Antibodies VRC01 and 10e8 Neutralize HIV-1 with High Breadth and Potency Even with Ig-Framework Regions Substantially Reverted to Germline. J Immunol (Baltimore, Md.: 1950) 2014;192:1100-1106. Globerson A, Jaakkola TS. Fixing max-product: convergent message passing algorithms for MAP LP-relaxations. Adv Neural Inf Process Syst 2008;553-560. Goldstein R. Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophys J 1994;66:1335-1340. Boyd S, Vandenberghe L. Convex optimization. Cambridge University Press; 2004. Spielman DA, Teng SH. Smoothed Analysis of Algorithms: Why the Simplex Algorithm Usually Takes Polynomial Time. J. Acm 2004;51:385-463. Frey KM, Georgiev I, Donald BR, Anderson AC. Predicting resistance mutations using protein design algorithms. Proc Natl Acad Sci U S A 2010;107:13707-13712. Mandell DJ, Kortemme T. Backbone flexibility in computational protein design. Curr Opin Biotechnol 2009;20:420-428. Lazaridis T, Karplus M. Effective energy function for proteins in solution. Proteins 1999;35:133-152. Pierce NA, Winfree E. Protein design is NP-hard. Protein Eng 2002;15:779-782. Georgiev I, Acharya P, Schmidt SD, Li Y, Wycuff D, Ofek G, Doria-Rose N, Luongo TS, Yang Y, Zhou T, Donald BR, Mascola JR, Kwong PD. Design of epitope-specific probes for sera analysis and antibody isolation. Retrovirology 2012;9:P50 Villali J, Kern D. Choreographing an enzyme's dance. Curr Opin Chem Biol 2010;14:636-643. Patsalo V, Raleigh DP, Green DF. Rational and computational design of stabilized variants of cyanovirin-n that retain affinity and specificity for glycan ligands. Biochemistry 2011;50:10698-10712. Grigoryan G, Reinke AW, Keating AE. Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 2009;458:859-864. Desmet J, De Maeyer M, Hazes B, Lasters I. The dead-end elimination theorem and its use in protein side-chain positioning. Nature 1992;356:539-542. Hart PE, Nilsson NJ, Raphael B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 1968;4:100-107. Word JM, Lovell SC, LaBean TH, Taylor HC, Zalis ME, Presley BK, Richardson JS, Richardson DC. Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J Mol Biol 1999;285:1711-1733. Gordon D, Benjamin Mayo SL. Radical performance enhancements for combinatorial optimization algorithms based on the dead-end elimination theorem. J Comput Chem 1998;19:1505-1514. Chen C, Georgiev I, Anderson AC, Donald BR. Computational structure-based redesign of enzyme activity. Proc Natl Acad Sci U S A 2009;106:3764-3769. Larrosa J, Schiex T. Solving weighted CSP by maintaining arc consistency. Artif Intell 2004;159:1-26. Kortemme T, Morozov AV, Baker D. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J Mol Biol 2003;326:1239-1259. Bradley SP, Hax AC, Magnanti TL. Applied mathematical programming. MA: Addison-Wesley Reading; 1977. Cooper M, Schiex T. Arc consistency for soft constraints. Artif Intell 2004;154:199-227. Reeve SM, Gainza P, Frey KM, Georgiev I, Donald BR, Anderson AC. Protein design algorithms predict viable resistance to an experimental antifolate. Proc Natl Acad Sci 2015;112:749-754. Kolmogorov V. Convergent tree-reweighted message passing for energy minimization. IEEE Trans Pattern Anal Machine Intell 2006;28:1568-1583. Althaus E, Kohlbacher O, Lenhof H, Müller P. A combinatorial approach to protein docking with flexible side chains. J Comput Biol 2002;9:597-612. Leach AR, Lemon AP. Exploring the conformational space of protein side chains using dead-end elimination and the A* algorithm. Proteins 1998;33:227-239. Hallen MA, Keedy DA, Donald BR. Dead-end elimination with perturbations (DEEPer): a provable protein design algorithm with continuous sidechain and backbone flexibility. Proteins 2013;81:18-39. Stevens BW, Lilien RH, Georgiev I, Donald BR, Anderson AC. Redesigning the PheA domain of gramicidin synthetase leads to a new understanding of the enzyme's mechanism and selectivity. Biochemistry 2006;45:15495-15504. Rudicell RS, Kwon YD, Ko S, Pegu A, Louder MK, Georgiev IS, Wu X, Zhu J, Boyington JC, Chen X, Shi W, Yang Z, Doria-Rose NA, McKee K, O'Dell S, Schmidt SD, Chuang G, Druz A, Soto C, Yang Y, Zhang B, Zhou T, Todd J, Lloyd KE, Eudailey J, Roberts KE, Donald BR, Bailer RT, Ledgerwood J, Mullikin JC, Shapiro L, Koup RA, Graham BS, Nason MC, Connors M, Haynes BF, Rao SS, Roederer M, Kwong PD, Mascola JR, Nabel GJ. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. J Virol 2014;88:12669-12682. Gilpin A, Sandholm T. Information-theoretic approaches to branching in search. Discrete Optimization 2011;8:147-159. Roberts KE, Cushing PR, Boisguerin P, Madden DR, Donald BR. Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity. PLOS Comput Biol 2012;8:e1002477 Lippow SM, Wittrup KD, Tidor B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol 2007;25:1171-1176. Gorczynski MJ, Grembecka J, Zhou Y, Kong Y, Roudaia L, Douvas MG, Newman M, Bielnicka I, Baber G, Corpora T, Shi J, Sridharan M, Lilien R, Donald BR, Speck NA, Brown ML, Bushweller JH. Allosteric inhibition of the protein-protein interaction between the leukemia-associated proteins Runx1 and CBFbeta. Chem Biol 2007;14:1186-1197. Pierce NA, Spriet JA, Desmet J, Mayo SL. Conformational splitting: a more powerful criterion for dead-end elimination. J Comput Chem 2000;21:999-1009. Gainza P, Roberts KE, Donald BR. Protein design using continuous rotamers. PLOS Comput Biol 2012; 8:e1002335 Achterberg T, Koch T, Martin A. Branching rules revisited. Oper Res Lett 2005;33:42-54. Abagyan R, Totrov M. Biased probability monte carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol 1994;235:983-1002. Allouche D, de Givry S, Schiex T. Toulbar2, an open source exact cost function network solver. Technical report, INRIA, 2010. Donald BR. Algorithms in Structural Molecular Biology. Cambridge, MA: MIT Press; 2011. Sarkar CA, Lowenhaupt K, Horan T, Boone TC, Tidor B, Lauffenburger DA. Rational cytokine design for increased lifetime and enhanced potency using ph-activated histidine switching. Nat Biotechnol 2002;20:908-913. Shapovalov MV, Dunbrack RL. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 2011;19:844-858. Green DF, Dennis AT, Fam PS, Tidor B, Jasanoff A. Rational design of new binding specificity by simultaneous mutagenesis of calmoduli 2013; 29 2002; 15 2010; 14 2010; 107 2013; 523 1968; 4 1999; 285 1994; 66 2005; 21 2003; 19 2011; 19 2012; 55 2013; 9 1977 2002; 2002 1998; 19 2003; 326 2001 2007; 371 2006; 22 2008; 29 2006; 28 1992; 356 2011; 20 2008; 24 2007; 7 2015; 9029 2007; 23 1992; 89 2005; 33 2007; 25 1995; 91 1994; 235 2009; 20 2002; 9 2012 2011 2010 2000; 21 2006; 15 2006; 7 2008 1995 2004 1993 2014; 192 2003 2011; 8 1981; 21 2007; 14 2014; 88 2009; 458 2004; 154 2009; 30 2004; 51 2004; 159 2006; 45 1984; 4 2002; 20 2004; 16 2015; 112 2011; 50 2005; 5 2005; 51 1999; 35 2000; 40 2013; 81 2013 1998; 33 2014; 346 1977; 8 2012; 8 2009; 106 2012; 9 17176071 - Biochemistry. 2006 Dec 26;45(51):15495-504 10223287 - Proteins. 1999 May 1;35(2):133-52 24391217 - J Immunol. 2014 Feb 1;192(3):1100-6 16986540 - IEEE Trans Pattern Anal Mach Intell. 2006 Oct;28(10):1568-83 16873469 - Bioinformatics. 2006 Jul 15;22(14):e174-83 22279426 - PLoS Comput Biol. 2012 Jan;8(1):e1002335 22708897 - J Med Chem. 2012 Jul 26;55(14):6328-41 25525248 - Science. 2014 Dec 19;346(6216):1520-4 22032696 - Biochemistry. 2011 Dec 13;50(49):10698-712 17646295 - Bioinformatics. 2007 Jul 1;23(13):i185-94 25142607 - J Virol. 2014 Nov;88(21):12669-82 22821798 - Proteins. 2013 Jan;81(1):18-39 15546935 - Bioinformatics. 2005 Apr 1;21(7):1028-36 22532795 - PLoS Comput Biol. 2012;8(4):e1002477 18293294 - J Comput Chem. 2008 Jul 30;29(10):1527-42 19709874 - Curr Opin Biotechnol. 2009 Aug;20(4):420-8 17961829 - Chem Biol. 2007 Oct;14(10):1176-85 20822946 - Curr Opin Chem Biol. 2010 Oct;14(5):636-43 12161759 - Nat Biotechnol. 2002 Sep;20(9):908-13 16597831 - Protein Sci. 2006 May;15(5):949-60 9917407 - J Mol Biol. 1999 Jan 29;285(4):1711-33 12323095 - J Comput Biol. 2002;9(4):597-612 23422427 - Methods Enzymol. 2013;523:87-107 8061189 - Biophys J. 1994 May;66(5):1335-40 8289329 - J Mol Biol. 1994 Jan 21;235(3):983-1002 21488406 - Nature. 1992 Apr 9;356(6369):539-42 26744898 - J Comput Biol. 2016 Jun;23(6):413-24 20643959 - Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13707-12 25552560 - Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):749-54 17891135 - Nat Biotechnol. 2007 Oct;25(10):1171-6 12589766 - J Mol Biol. 2003 Feb 28;326(4):1239-59 9779790 - Proteins. 1998 Nov 1;33(2):227-39 12468711 - Protein Eng. 2002 Oct;15(10):779-82 12912846 - Bioinformatics. 2003 Aug 12;19(12):1589-91 10861930 - Proteins. 2000 Aug 15;40(3):389-408 21465611 - Protein Sci. 2011 Jun;20(6):1082-9 24250277 - J Chem Theory Comput. 2013 Nov 12;9(11):5098-5115 17961830 - Chem Biol. 2007 Oct;14(10):1186-97 18586714 - Bioinformatics. 2008 Jul 1;24(13):i196-204 21645855 - Structure. 2011 Jun 8;19(6):844-58 19123203 - J Comput Chem. 2009 Sep;30(12):1923-45 17597151 - J Mol Biol. 2007 Aug 24;371(4):1099-117 19228942 - Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3764-9 1438297 - Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915-9 23842814 - Bioinformatics. 2013 Sep 1;29(17):2129-36 19370028 - Nature. 2009 Apr 16;458(7240):859-64 17029410 - Biochemistry. 2006 Oct 17;45(41):12547-59  | 
    
| References_xml | – reference: Donald BR. Algorithms in Structural Molecular Biology. Cambridge, MA: MIT Press; 2011. – reference: Wang G, Dunbrack RL. PISCES: a protein sequence culling server. Bioinformatics 2003;19:1589-1591. – reference: Globerson A, Jaakkola TS. Fixing max-product: convergent message passing algorithms for MAP LP-relaxations. Adv Neural Inf Process Syst 2008;553-560. – reference: Allouche D, de Givry S, Schiex T. Toulbar2, an open source exact cost function network solver. Technical report, INRIA, 2010. – reference: Traore S, Allouche D, Andre I, de Givry S, Katsirelos G, Schiex T, Barbe S. A new framework for computational protein design through cost function network optimization. Bioinformatics 2013;29:2129-2136. – reference: Gordon D, Benjamin Mayo SL. Radical performance enhancements for combinatorial optimization algorithms based on the dead-end elimination theorem. J Comput Chem 1998;19:1505-1514. – reference: Lazaridis T, Karplus M. Effective energy function for proteins in solution. Proteins 1999;35:133-152. – reference: Althaus E, Kohlbacher O, Lenhof H, Müller P. A combinatorial approach to protein docking with flexible side chains. J Comput Biol 2002;9:597-612. – reference: Abagyan R, Totrov M. Biased probability monte carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol 1994;235:983-1002. – reference: Frey KM, Georgiev I, Donald BR, Anderson AC. Predicting resistance mutations using protein design algorithms. Proc Natl Acad Sci U S A 2010;107:13707-13712. – reference: Eriksson O, Zhou Y, Elofsson A. Side chain-positioning as an integer programming problem. Algorithms in Bioinformatics. Springer; 2001. pp 128-141. – reference: Roberts KE, Cushing PR, Boisguerin P, Madden DR, Donald BR. Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity. PLOS Comput Biol 2012;8:e1002477 – reference: Fu X, Apgar JR, Keating AE. Modeling backbone flexibility to achieve sequence diversity: the design of novel α-helical ligands for bcl-x l. J Mol Biol 2007;371:1099-1117. – reference: Kolmogorov V. Convergent tree-reweighted message passing for energy minimization. IEEE Trans Pattern Anal Machine Intell 2006;28:1568-1583. – reference: Pierce NA, Winfree E. Protein design is NP-hard. Protein Eng 2002;15:779-782. – reference: Kingsford CL, Chazelle B, Singh M. Solving and analyzing side-chain positioning problems using linear and integer programming. Bioinformatics 2005;21:1028-1039. – reference: Hart PE, Nilsson NJ, Raphael B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 1968;4:100-107. – reference: Gilpin A, Sandholm T. Information-theoretic approaches to branching in search. Discrete Optimization 2011;8:147-159. – reference: Spielman DA, Teng SH. Smoothed Analysis of Algorithms: Why the Simplex Algorithm Usually Takes Polynomial Time. J. Acm 2004;51:385-463. – reference: Chen C, Georgiev I, Anderson AC, Donald BR. Computational structure-based redesign of enzyme activity. Proc Natl Acad Sci U S A 2009;106:3764-3769. – reference: Green DF, Dennis AT, Fam PS, Tidor B, Jasanoff A. Rational design of new binding specificity by simultaneous mutagenesis of calmodulin and a target peptide. Biochemistry 2006;45:12547-12559. – reference: Sarkar CA, Lowenhaupt K, Horan T, Boone TC, Tidor B, Lauffenburger DA. Rational cytokine design for increased lifetime and enhanced potency using ph-activated histidine switching. Nat Biotechnol 2002;20:908-913. – reference: Cooper MC, de Givry S, Schiex T. Optimal soft arc consistency. IJCAI 2007;7:68-73. – reference: Georgiev I, Acharya P, Schmidt SD, Li Y, Wycuff D, Ofek G, Doria-Rose N, Luongo TS, Yang Y, Zhou T, Donald BR, Mascola JR, Kwong PD. Design of epitope-specific probes for sera analysis and antibody isolation. Retrovirology 2012;9:P50 – reference: Bradley SP, Hax AC, Magnanti TL. Applied mathematical programming. MA: Addison-Wesley Reading; 1977. – reference: Cooper M, Schiex T. Arc consistency for soft constraints. Artif Intell 2004;154:199-227. – reference: Boyd S, Vandenberghe L. Convex optimization. Cambridge University Press; 2004. – reference: Gorczynski MJ, Grembecka J, Zhou Y, Kong Y, Roudaia L, Douvas MG, Newman M, Bielnicka I, Baber G, Corpora T, Shi J, Sridharan M, Lilien R, Donald BR, Speck NA, Brown ML, Bushweller JH. Allosteric inhibition of the protein-protein interaction between the leukemia-associated proteins Runx1 and CBFbeta. Chem Biol 2007;14:1186-1197. – reference: Shapovalov MV, Dunbrack RL. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 2011;19:844-858. – reference: Wainwright MJ, Jaakkola TS, Willsky AS. MAP estimation via agreement on trees: message-passing and linear programming. IEEE Trans Inf Theory 2005;51:3697-3717. – reference: Russell SJ, Norvig P. Artificial Intelligence: A Modern Approach, 2 ed. Pearson Education; 2003. – reference: Larrosa J. Node and arc consistency in weighted CSP. Proc AAAI02 2002;2002:48-53. – reference: Stevens BW, Lilien RH, Georgiev I, Donald BR, Anderson AC. Redesigning the PheA domain of gramicidin synthetase leads to a new understanding of the enzyme's mechanism and selectivity. Biochemistry 2006;45:15495-15504. – reference: Word JM, Lovell SC, LaBean TH, Taylor HC, Zalis ME, Presley BK, Richardson JS, Richardson DC. Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J Mol Biol 1999;285:1711-1733. – reference: Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, DeBolt S, Ferguson D, Seibel G, Kollman P. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 1995;91:1-41. – reference: Larrosa J, Schiex T. Solving weighted CSP by maintaining arc consistency. Artif Intell 2004;159:1-26. – reference: Mandell DJ, Kortemme T. Backbone flexibility in computational protein design. Curr Opin Biotechnol 2009;20:420-428. – reference: Georgiev I, Lilien RH, Donald BR. Improved Pruning algorithms and Divide-and-Conquer strategies for Dead-End Elimination, with application to protein design. Bioinformatics 2006;22:e174-83. – reference: Tind J, Wolsey LA. An elementary survey of general duality theory in mathematical programming. Math Program 1981;21:241-261. – reference: Mackworth AK. Consistency in networks of relations. Artif Intell 1977;8:99-118. – reference: Georgiev I, Donald BR. Dead-end elimination with backbone flexibility. Bioinformatics 2007;23:185-194. – reference: Gainza P, Roberts KE, Georgiev I, Lilien RH, Keedy DA, Chen C, Reza F, Anderson AC, Richardson DC, Richardson JS, Donald BR. OSPREY: protein design with ensembles, flexibility, and provable algorithms. Methods Enzymol 2013;523:87-107. – reference: Applegate D, Bixby R, Chvatal V, Cook W. Finding cuts in the TSP (A preliminary report). DIMACS Technical Report 95-05. 1995. – reference: Karmarkar N. A New Polynomial-time Algorithm for Linear Programming. Combinatorica 1984;4:373-395. – reference: Joh NH, Wang T, Bhate MP, Acharya R, Wu Y, Grabe M, Hong M, Grigoryan G, DeGrado WF. De novo design of a transmembrane Zn2+-transporting four-helix bundle. Science 2014;346:1520-1524. – reference: Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 1992;89:10915-10919. – reference: Villali J, Kern D. Choreographing an enzyme's dance. Curr Opin Chem Biol 2010;14:636-643. – reference: Pierce NA, Spriet JA, Desmet J, Mayo SL. Conformational splitting: a more powerful criterion for dead-end elimination. J Comput Chem 2000;21:999-1009. – reference: Babor M, Mandell DJ, Kortemme T. Assessment of flexible backbone protein design methods for sequence library prediction in the therapeutic antibody Herceptin: HER2 interface. Protein Sci 2011;20:1082-1089. – reference: Lippow SM, Wittrup KD, Tidor B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol 2007;25:1171-1176. – reference: Leach AR, Lemon AP. Exploring the conformational space of protein side chains using dead-end elimination and the A* algorithm. Proteins 1998;33:227-239. – reference: Weiss Y, Yanover C, Meltzer T. MAP estimation, linear programming and belief propagation with convex free energies. CoRR 2012; abs/1206.5286. – reference: Reeve SM, Gainza P, Frey KM, Georgiev I, Donald BR, Anderson AC. Protein design algorithms predict viable resistance to an experimental antifolate. Proc Natl Acad Sci 2015;112:749-754. – reference: Silver NW, King BM, Nalam MNL, Cao H, Ali A, Kiran Kumar Reddy GS, Rana TM, Schiffer CA, Tidor B. Efficient Computation of Small-Molecule Configurational Binding Entropy and Free Energy Changes by Ensemble Enumeration. J Chem Theory Comput 2013;9:5098-5115. – reference: Georgiev I, Keedy D, Richardson JS, Richardson DC, Donald BR. Algorithm for backrub motions in protein design. Bioinformatics 2008;24:196-204. – reference: Achterberg T, Koch T, Martin A. Branching rules revisited. Oper Res Lett 2005;33:42-54. – reference: Gainza P, Roberts KE, Donald BR. Protein design using continuous rotamers. PLOS Comput Biol 2012; 8:e1002335 – reference: Clark LA, Boriack-Sjodin P, Eldredge J, Fitch C, Friedman B, Hanf KJM, Jarpe M, Liparoto SF, Li Y, Lugovskoy A, Miller S, Rushe M, Sherman W, Simon K, Van Vlijmen H. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci 2006;15:949-960. – reference: Yanover C, Meltzer T, Weiss Y. Linear programming relaxations and belief propagation-an empirical study. J Machine Learn Res 2006;7:1887-1907. – reference: Georgiev I, Lilien RH, Donald BR. The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles. J Comput Chem 2008;29:1527-1542. – reference: Hallen MA, Keedy DA, Donald BR. Dead-end elimination with perturbations (DEEPer): a provable protein design algorithm with continuous sidechain and backbone flexibility. Proteins 2013;81:18-39. – reference: Rudicell RS, Kwon YD, Ko S, Pegu A, Louder MK, Georgiev IS, Wu X, Zhu J, Boyington JC, Chen X, Shi W, Yang Z, Doria-Rose NA, McKee K, O'Dell S, Schmidt SD, Chuang G, Druz A, Soto C, Yang Y, Zhang B, Zhou T, Todd J, Lloyd KE, Eudailey J, Roberts KE, Donald BR, Bailer RT, Ledgerwood J, Mullikin JC, Shapiro L, Koup RA, Graham BS, Nason MC, Connors M, Haynes BF, Rao SS, Roederer M, Kwong PD, Mascola JR, Nabel GJ. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. J Virol 2014;88:12669-12682. – reference: Lovell SC, Word JM, Richardson JS, Richardson DC. The penultimate rotamer library. Proteins 2000;40:389-408. – reference: Patsalo V, Raleigh DP, Green DF. Rational and computational design of stabilized variants of cyanovirin-n that retain affinity and specificity for glycan ligands. Biochemistry 2011;50:10698-10712. – reference: Desmet J, De Maeyer M, Hazes B, Lasters I. The dead-end elimination theorem and its use in protein side-chain positioning. Nature 1992;356:539-542. – reference: Georgiev IS, Rudicell RS, Saunders KO, Shi W, Kirys T, McKee K, O'Dell S, Chuang G, Yang Z, Ofek G, Connors M, Mascola JR, Nabel GJ, Kwong PD. Antibodies VRC01 and 10e8 Neutralize HIV-1 with High Breadth and Potency Even with Ig-Framework Regions Substantially Reverted to Germline. J Immunol (Baltimore, Md.: 1950) 2014;192:1100-1106. – reference: De Givry S, Heras F, Zytnicki M, Larrosa J. Existential arc consistency: getting closer to full arc consistency in weighted CSPs. IJCAI 2005;5:84-89. – reference: Lipovšek D, Antipov E, Armstrong KA, Olsen MJ, Klibanov AM, Tidor B, Wittrup KD. Selection of horseradish peroxidase variants with enhanced enantioselectivity by yeast surface display. Chem Biol 2007;14:1176-1185. – reference: Chazelle B, Kingsford C, Singh M. A semidefinite programming approach to side chain positioning with new rounding strategies. Informs J Comput 2004;16:380-392. – reference: Kortemme T, Morozov AV, Baker D. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J Mol Biol 2003;326:1239-1259. – reference: Hong E, Lippow SM, Tidor B, Lozano-Pérez T. Rotamer optimization for protein design through MAP estimation and problem-size reduction. J Comput Chem 2009;30:1923-1945. – reference: Grigoryan G, Reinke AW, Keating AE. Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 2009;458:859-864. – reference: Goldstein R. Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophys J 1994;66:1335-1340. – reference: Parai MK, Huggins DJ, Cao H, Nalam MNL, Ali A, Schiffer CA, Tidor B, Rana TM. Design, synthesis, and biological and structural evaluations of novel hiv-1 protease inhibitors to combat drug resistance. J Med Chem 2012;55:6328-6341. – year: 2011 – volume: 88 start-page: 12669 year: 2014 end-page: 12682 article-title: Enhanced potency of a broadly neutralizing HIV‐1 antibody in vitro improves protection against lentiviral infection in vivo publication-title: J Virol – volume: 16 start-page: 380 year: 2004 end-page: 392 article-title: A semidefinite programming approach to side chain positioning with new rounding strategies publication-title: Informs J Comput – volume: 356 start-page: 539 year: 1992 end-page: 542 article-title: The dead‐end elimination theorem and its use in protein side‐chain positioning publication-title: Nature – volume: 154 start-page: 199 year: 2004 end-page: 227 article-title: Arc consistency for soft constraints publication-title: Artif Intell – volume: 24 start-page: 196 year: 2008 end-page: 204 article-title: Algorithm for backrub motions in protein design publication-title: Bioinformatics – volume: 14 start-page: 1186 year: 2007 end-page: 1197 article-title: Allosteric inhibition of the protein‐protein interaction between the leukemia‐associated proteins Runx1 and CBFbeta publication-title: Chem Biol – volume: 8 start-page: 99 year: 1977 end-page: 118 article-title: Consistency in networks of relations publication-title: Artif Intell – volume: 112 start-page: 749 year: 2015 end-page: 754 article-title: Protein design algorithms predict viable resistance to an experimental antifolate publication-title: Proc Natl Acad Sci – volume: 19 start-page: 844 year: 2011 end-page: 858 article-title: A smoothed backbone‐dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions publication-title: Structure – volume: 20 start-page: 420 year: 2009 end-page: 428 article-title: Backbone flexibility in computational protein design publication-title: Curr Opin Biotechnol – start-page: 128 year: 2001 end-page: 141 article-title: Side chain‐positioning as an integer programming problem publication-title: Algorithms in Bioinformatics. Springer – volume: 14 start-page: 1176 year: 2007 end-page: 1185 article-title: Selection of horseradish peroxidase variants with enhanced enantioselectivity by yeast surface display publication-title: Chem Biol – volume: 7 start-page: 68 year: 2007 end-page: 73 article-title: Optimal soft arc consistency publication-title: IJCAI – volume: 29 start-page: 2129 year: 2013 end-page: 2136 article-title: A new framework for computational protein design through cost function network optimization publication-title: Bioinformatics – volume: 21 start-page: 999 year: 2000 end-page: 1009 article-title: Conformational splitting: a more powerful criterion for dead‐end elimination publication-title: J Comput Chem – start-page: 553 year: 2008 end-page: 560 article-title: Fixing max‐product: convergent message passing algorithms for MAP LP‐relaxations publication-title: Adv Neural Inf Process Syst – volume: 7 start-page: 1887 year: 2006 end-page: 1907 article-title: Linear programming relaxations and belief propagation–an empirical study publication-title: J Machine Learn Res – volume: 14 start-page: 636 year: 2010 end-page: 643 article-title: Choreographing an enzyme's dance publication-title: Curr Opin Chem Biol – volume: 4 start-page: 373 year: 1984 end-page: 395 article-title: A New Polynomial‐time Algorithm for Linear Programming publication-title: Combinatorica – year: 2012 article-title: MAP estimation, linear programming and belief propagation with convex free energies publication-title: CoRR – volume: 50 start-page: 10698 year: 2011 end-page: 10712 article-title: Rational and computational design of stabilized variants of cyanovirin‐n that retain affinity and specificity for glycan ligands publication-title: Biochemistry – volume: 51 start-page: 3697 year: 2005 end-page: 3717 article-title: MAP estimation via agreement on trees: message‐passing and linear programming publication-title: IEEE Trans Inf Theory – volume: 9029 start-page: 154 year: 2015 end-page: 166 – volume: 9 start-page: 597 year: 2002 end-page: 612 article-title: A combinatorial approach to protein docking with flexible side chains publication-title: J Comput Biol – volume: 28 start-page: 1568 year: 2006 end-page: 1583 article-title: Convergent tree‐reweighted message passing for energy minimization publication-title: IEEE Trans Pattern Anal Machine Intell – volume: 15 start-page: 779 year: 2002 end-page: 782 article-title: Protein design is NP‐hard publication-title: Protein Eng – volume: 192 start-page: 1100 year: 2014 end-page: 1106 article-title: Antibodies VRC01 and 10e8 Neutralize HIV‐1 with High Breadth and Potency Even with Ig‐Framework Regions Substantially Reverted to Germline publication-title: J Immunol (Baltimore, Md.: 1950) – volume: 9 start-page: P50 year: 2012 article-title: Design of epitope‐specific probes for sera analysis and antibody isolation publication-title: Retrovirology – volume: 8 start-page: 147 year: 2011 end-page: 159 article-title: Information‐theoretic approaches to branching in search publication-title: Discrete Optimization – volume: 371 start-page: 1099 year: 2007 end-page: 1117 article-title: Modeling backbone flexibility to achieve sequence diversity: the design of novel ‐helical ligands for bcl‐x l publication-title: J Mol Biol – volume: 33 start-page: 227 year: 1998 end-page: 239 article-title: Exploring the conformational space of protein side chains using dead‐end elimination and the A* algorithm publication-title: Proteins – volume: 35 start-page: 133 year: 1999 end-page: 152 article-title: Effective energy function for proteins in solution publication-title: Proteins – volume: 25 start-page: 1171 year: 2007 end-page: 1176 article-title: Computational design of antibody‐affinity improvement beyond in vivo maturation publication-title: Nat Biotechnol – volume: 89 start-page: 10915 year: 1992 end-page: 10919 article-title: Amino acid substitution matrices from protein blocks publication-title: Proc Natl Acad Sci U S A – year: 2004 – volume: 33 start-page: 42 year: 2005 end-page: 54 article-title: Branching rules revisited publication-title: Oper Res Lett – volume: 45 start-page: 12547 year: 2006 end-page: 12559 article-title: Rational design of new binding specificity by simultaneous mutagenesis of calmodulin and a target peptide publication-title: Biochemistry – volume: 285 start-page: 1711 year: 1999 end-page: 1733 article-title: Visualizing and quantifying molecular goodness‐of‐fit: small‐probe contact dots with explicit hydrogen atoms publication-title: J Mol Biol – year: 1993 – volume: 51 start-page: 385 year: 2004 end-page: 463 article-title: Smoothed Analysis of Algorithms: Why the Simplex Algorithm Usually Takes Polynomial Time publication-title: J. Acm – volume: 2002 start-page: 48 year: 2002 end-page: 53 article-title: Node and arc consistency in weighted CSP publication-title: Proc AAAI02 – volume: 106 start-page: 3764 year: 2009 end-page: 3769 article-title: Computational structure‐based redesign of enzyme activity publication-title: Proc Natl Acad Sci U S A – volume: 91 start-page: 1 year: 1995 end-page: 41 article-title: AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules publication-title: Comput Phys Commun – volume: 9 start-page: 5098 year: 2013 end-page: 5115 article-title: Efficient Computation of Small‐Molecule Configurational Binding Entropy and Free Energy Changes by Ensemble Enumeration publication-title: J Chem Theory Comput – volume: 20 start-page: 1082 year: 2011 end-page: 1089 article-title: Assessment of flexible backbone protein design methods for sequence library prediction in the therapeutic antibody Herceptin: HER2 interface publication-title: Protein Sci – volume: 326 start-page: 1239 year: 2003 end-page: 1259 article-title: An orientation‐dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein–protein complexes publication-title: J Mol Biol – volume: 19 start-page: 1505 year: 1998 end-page: 1514 article-title: Radical performance enhancements for combinatorial optimization algorithms based on the dead‐end elimination theorem publication-title: J Comput Chem – volume: 523 start-page: 87 year: 2013 end-page: 107 article-title: OSPREY: protein design with ensembles, flexibility, and provable algorithms publication-title: Methods Enzymol – volume: 29 start-page: 1527 year: 2008 end-page: 1542 article-title: The minimized dead‐end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles publication-title: J Comput Chem – volume: 8 start-page: e1002335 year: 2012 article-title: Protein design using continuous rotamers publication-title: PLOS Comput Biol – year: 2003 – volume: 8 start-page: e1002477 year: 2012 article-title: Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity publication-title: PLOS Comput Biol – year: 2010 article-title: Toulbar2, an open source exact cost function network solver publication-title: Technical report, INRIA – volume: 4 start-page: 100 year: 1968 end-page: 107 article-title: A formal basis for the heuristic determination of minimum cost paths publication-title: IEEE Trans Syst Sci Cybern – volume: 159 start-page: 1 year: 2004 end-page: 26 article-title: Solving weighted CSP by maintaining arc consistency publication-title: Artif Intell – year: 1995 publication-title: Finding cuts in the TSP (A preliminary report). DIMACS Technical Report 95‐05 – volume: 45 start-page: 15495 year: 2006 end-page: 15504 article-title: Redesigning the PheA domain of gramicidin synthetase leads to a new understanding of the enzyme's mechanism and selectivity publication-title: Biochemistry – year: 1977 – volume: 15 start-page: 949 year: 2006 end-page: 960 article-title: Affinity enhancement of an in vivo matured therapeutic antibody using structure‐based computational design publication-title: Protein Sci – volume: 81 start-page: 18 year: 2013 end-page: 39 article-title: Dead‐end elimination with perturbations (DEEPer): a provable protein design algorithm with continuous sidechain and backbone flexibility publication-title: Proteins – volume: 23 start-page: 185 year: 2007 end-page: 194 article-title: Dead‐end elimination with backbone flexibility publication-title: Bioinformatics – volume: 40 start-page: 389 year: 2000 end-page: 408 article-title: The penultimate rotamer library publication-title: Proteins – volume: 346 start-page: 1520 year: 2014 end-page: 1524 article-title: De novo design of a transmembrane Zn2+‐transporting four‐helix bundle publication-title: Science – volume: 5 start-page: 84 year: 2005 end-page: 89 article-title: Existential arc consistency: getting closer to full arc consistency in weighted CSPs publication-title: IJCAI – volume: 235 start-page: 983 year: 1994 end-page: 1002 article-title: Biased probability monte carlo conformational searches and electrostatic calculations for peptides and proteins publication-title: J Mol Biol – volume: 19 start-page: 1589 year: 2003 end-page: 1591 article-title: PISCES: a protein sequence culling server publication-title: Bioinformatics – volume: 21 start-page: 241 year: 1981 end-page: 261 article-title: An elementary survey of general duality theory in mathematical programming publication-title: Math Program – volume: 107 start-page: 13707 year: 2010 end-page: 13712 article-title: Predicting resistance mutations using protein design algorithms publication-title: Proc Natl Acad Sci U S A – volume: 22 start-page: e174 year: 2006 end-page: 83 article-title: Improved Pruning algorithms and Divide‐and‐Conquer strategies for Dead‐End Elimination, with application to protein design publication-title: Bioinformatics – volume: 458 start-page: 859 year: 2009 end-page: 864 article-title: Design of protein‐interaction specificity gives selective bZIP‐binding peptides publication-title: Nature – volume: 55 start-page: 6328 year: 2012 end-page: 6341 article-title: Design, synthesis, and biological and structural evaluations of novel hiv‐1 protease inhibitors to combat drug resistance publication-title: J Med Chem – volume: 30 start-page: 1923 year: 2009 end-page: 1945 article-title: Rotamer optimization for protein design through MAP estimation and problem‐size reduction publication-title: J Comput Chem – volume: 20 start-page: 908 year: 2002 end-page: 913 article-title: Rational cytokine design for increased lifetime and enhanced potency using ph‐activated histidine switching publication-title: Nat Biotechnol – volume: 21 start-page: 1028 year: 2005 end-page: 1039 article-title: Solving and analyzing side‐chain positioning problems using linear and integer programming publication-title: Bioinformatics – volume: 66 start-page: 1335 year: 1994 end-page: 1340 article-title: Efficient rotamer elimination applied to protein side‐chains and related spin glasses publication-title: Biophys J – year: 2013 – reference: 21645855 - Structure. 2011 Jun 8;19(6):844-58 – reference: 22532795 - PLoS Comput Biol. 2012;8(4):e1002477 – reference: 9779790 - Proteins. 1998 Nov 1;33(2):227-39 – reference: 21488406 - Nature. 1992 Apr 9;356(6369):539-42 – reference: 17597151 - J Mol Biol. 2007 Aug 24;371(4):1099-117 – reference: 23842814 - Bioinformatics. 2013 Sep 1;29(17):2129-36 – reference: 25525248 - Science. 2014 Dec 19;346(6216):1520-4 – reference: 18293294 - J Comput Chem. 2008 Jul 30;29(10):1527-42 – reference: 20643959 - Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13707-12 – reference: 25552560 - Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):749-54 – reference: 9917407 - J Mol Biol. 1999 Jan 29;285(4):1711-33 – reference: 12589766 - J Mol Biol. 2003 Feb 28;326(4):1239-59 – reference: 20822946 - Curr Opin Chem Biol. 2010 Oct;14(5):636-43 – reference: 24391217 - J Immunol. 2014 Feb 1;192(3):1100-6 – reference: 17961829 - Chem Biol. 2007 Oct;14(10):1176-85 – reference: 22821798 - Proteins. 2013 Jan;81(1):18-39 – reference: 10861930 - Proteins. 2000 Aug 15;40(3):389-408 – reference: 16873469 - Bioinformatics. 2006 Jul 15;22(14):e174-83 – reference: 12912846 - Bioinformatics. 2003 Aug 12;19(12):1589-91 – reference: 17891135 - Nat Biotechnol. 2007 Oct;25(10):1171-6 – reference: 22032696 - Biochemistry. 2011 Dec 13;50(49):10698-712 – reference: 10223287 - Proteins. 1999 May 1;35(2):133-52 – reference: 12468711 - Protein Eng. 2002 Oct;15(10):779-82 – reference: 12323095 - J Comput Biol. 2002;9(4):597-612 – reference: 17646295 - Bioinformatics. 2007 Jul 1;23(13):i185-94 – reference: 23422427 - Methods Enzymol. 2013;523:87-107 – reference: 12161759 - Nat Biotechnol. 2002 Sep;20(9):908-13 – reference: 8061189 - Biophys J. 1994 May;66(5):1335-40 – reference: 16986540 - IEEE Trans Pattern Anal Mach Intell. 2006 Oct;28(10):1568-83 – reference: 8289329 - J Mol Biol. 1994 Jan 21;235(3):983-1002 – reference: 17961830 - Chem Biol. 2007 Oct;14(10):1186-97 – reference: 25142607 - J Virol. 2014 Nov;88(21):12669-82 – reference: 18586714 - Bioinformatics. 2008 Jul 1;24(13):i196-204 – reference: 19370028 - Nature. 2009 Apr 16;458(7240):859-64 – reference: 26744898 - J Comput Biol. 2016 Jun;23(6):413-24 – reference: 17029410 - Biochemistry. 2006 Oct 17;45(41):12547-59 – reference: 17176071 - Biochemistry. 2006 Dec 26;45(51):15495-504 – reference: 19228942 - Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3764-9 – reference: 19123203 - J Comput Chem. 2009 Sep;30(12):1923-45 – reference: 22708897 - J Med Chem. 2012 Jul 26;55(14):6328-41 – reference: 21465611 - Protein Sci. 2011 Jun;20(6):1082-9 – reference: 16597831 - Protein Sci. 2006 May;15(5):949-60 – reference: 1438297 - Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915-9 – reference: 15546935 - Bioinformatics. 2005 Apr 1;21(7):1028-36 – reference: 22279426 - PLoS Comput Biol. 2012 Jan;8(1):e1002335 – reference: 19709874 - Curr Opin Biotechnol. 2009 Aug;20(4):420-8 – reference: 24250277 - J Chem Theory Comput. 2013 Nov 12;9(11):5098-5115  | 
    
| SSID | ssj0006936 | 
    
| Score | 2.2595289 | 
    
| Snippet | ABSTRACT
Despite significant successes in structure‐based computational protein design in recent years, protein design algorithms must be improved to increase... Despite significant successes in structure-based computational protein design in recent years, protein design algorithms must be improved to increase the...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed wiley istex  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 1859 | 
    
| SubjectTerms | A search Algorithms Amino Acid Sequence Amino acids combinatorial search Computational Biology - methods computational protein design Design Protein Conformation Protein Engineering - methods Sequence Analysis, Protein - methods Software structure-based design  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6aWqHxwmXjEhjISNMekJIljp3LY5ko1WBlGisbe4kcx4VqrVu1qWD8eo6di1RAE7xZshM59rHPd3I-fwbYlwiJ0Y8krghl6LJU5a6QYeHGgoZCGoEnqzN7MowGI3Z8yS-3IGjOwljSvswnnp7OPD35ZrmVi5k8bHhihww9bmICnm7EEX53oDsanva-tIqe3F7DaRKrGCaHrJUkpeZsW-lRROi4_3bNIP74G6z8kx25vdYLcfNdTKebCNa6oP59OGs6XzFPrr11mXvy52-6jv_1dQ_gXg1ISa-qeghbSu_Abk9jMD67IQfEUkTtv_cduPOmKW0fNRfF7cL7vliV5KtYuOOlUsRw61VlV2Q-JhhvtwckV0TogrTsbYIVxApFTDQpLJXkEYz6b8-PBm59R4M74ej-3AIBV5SnhUqUr1LOhZBFlHMmY54qSlWSIyBULKWBwMDJl0HiF4Wfj33FOCtwB3gMHT3X6imQiOdUGPl7KigLI6MjJMcsUhJjHnSzqQMHdtKyRaXDkYnltaGlxTy7GL7Ljq8-Dz6dpB-yCwf2mlnN6hW5yoLYN1CMBsyBV201jpRJkAit5mvTBgNkk_n0b2tDaWCywZEDTypDaTtEEUuiTXIH4g0TahsYLe_NGjQCq-ldz7sD-62xtU9VytI0MxOSWft14LW1w1uaZKdnH89t6dm_vfM53EUwyCui4h50yuVavUDAVeYv6yX2C7dpKag priority: 102 providerName: Unpaywall  | 
    
| Title | Fast gap-free enumeration of conformations and sequences for protein design | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-JZVHSM9L-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.24870 https://www.ncbi.nlm.nih.gov/pubmed/26235965 https://www.proquest.com/docview/1709937214 https://www.proquest.com/docview/1710652950 https://www.proquest.com/docview/1722164526 https://pubmed.ncbi.nlm.nih.gov/PMC4727861 https://www.ncbi.nlm.nih.gov/pmc/articles/4727861  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 83 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0887-3585 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0134 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006936 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL2ahtB44WODLTAmI017QEqXOLaTSHspE6WaaJnGygYSshzHhWojrfqhMZ74CfxGfgnXTpOqgCbBmyVfS3F8r32ufXwMsKsREuM6kvgq0pHPUpP5Ske5HysaKW0FnpzObKcr2j12dM7PV-CgugtT6kPUG242Mtx8bQNcZZP9hWio1TFoUMTbNmEPI-HyqZOFdpRI3fuAZRQhKK61Sen-oilCUvs3v_4NX_5Jk1ybFSN1faUuL5ehrFuLWvfgY9WLkoJy0ZhNs4b-9pvA4_928z7cnYNU0iy96gGsmGIdNpoFJuhfrskecbRRtx-_DrdfVKW1w-rxuA3otNRkSj6p0c_vP_pjY4hl3JvS28iwTzALr69NTogqclJzuglWECcfMShI7ggmD6HXenl62PbnLzf4A46Lop8jDBNZmpvEBCblXCmdi4wzHfPUUGqSDGGiYSkNFaZTgQ6TIM-DrB8YxlmO88IjWC2GhdkCInhGlRXFp4qySFh1Id1nwmjMhHDxTT3YcyMoR6U6h1TjC0tWi7k8676SRx_etd920tfyzIPtaojlPE4nMowDC9BoyDx4Vlfjv7LHJqoww5m1wbTZnocGN9lQGtozYuHBZuk19QdRRJg8FdyDeMmfagOr8L1cUww-O6VvhugyEaEHu7Xn1a1KvWkq7YBI5yAePHeedIOJPD55c-pKj__F-AncQaDISxLjNqxOxzPzFMHYNNtxQbcDt3rd4-b7X26NM10 | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD5CQ6i8cNm4BAYYadoDUrrEsZ3kcUyUMtqCRscmXiwncaHaSKteBOOJn8Bv5JdwjtOmKqBJ8GbJx1Jin2N_x_78GWAnR0iM60jimyiPfJHazDd5VPix4ZHJSeDJ6cx2e6p9LA5P5emCm0N3YSp9iHrDjSLDzdcU4LQhvbdSDSUhgyZHwI0Z-1WhMFEhTHS0Uo9SqXshsIojhMW1OinfW7VFUEr9-fVvCPNPomRjXo7NxRdzfr4OZt1q1LpZPbk6dSKGREI5a85nWTP_9pvE43__6C24scCpbL9yrNtwxZabsLVfYo7--YLtMsccdVvym3Dt-bLUOFi-H7cF3ZaZzthHM_75_cdgYi0j0r2tHI6NBgwT8frm5JSZsmA1rZthBXMKEsOSFY5jcgeOWy_6B21_8XiDP5S4LvoFIjGVpYVNbGBTKY3JC5VJkccytZzbJEOkaEXKQ4MZVZCHSVAUQTYIrJCiwKnhLmyUo9LeB6Zkxg3p4nPDRaRIYCgfCGVzTIZw_U092HVDqMeVQIc2kzPiq8VSn_Re6sMP79vvumlHn3iwvRxjvQjVqQ7jgDAaD4UHT-tq7Cs6OTGlHc3JBjNnOhINLrPhPKRjYuXBvcpt6g_iCDJlqqQH8ZpD1QYk8r1eUw4_ObFvgQAzUaEHO7Xr1a0qyWmuaUC0cxAPnjlXusREvz1603elB_9i_AQa7X63ozuveq8fwnXEjbLiNG7Dxmwyt48Qm82yxy4CfwHgNzXO | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD5CQ7C9cNm4BAYYadoDUrrEtZ34cWyUMtYyjY1NvFhO7IxqI616EYwnfgK_kV_CsdOmKqBJ8GbJx1Jin2N_x_78GWAjR0iM60ga6mbeDJm0WajzpgkTTZs6dwJPXme20xXtY7Z3yk-n3Bx3F6bSh6g33Fxk-PnaBbgdmGJrrhrqhAwaFAE3ZuzXGZepY_TtHs7Vo4T0LwRWcYSwuFYnpVvztghKXX9-_RvC_JMouTwpB_ryi764WASzfjVq3a6eXB15EUNHQjlvTMZZI__2m8Tjf__oHbg1xalku3Ksu3DNlquwtl1ijv75kmwSzxz1W_KrcOPlrLS8M3s_bg06LT0akzM9-Pn9RzG0ljjSva0cjvQLgol4fXNyRHRpSE3rJlhBvIJEryTGc0zuwXHr1dFOO5w-3hD2OK6LoUEkJjJpbGojKznXOjci4yxPuLSU2jRDpGiZpLHGjCrK4zQyJsqKyDLODE4N92Gp7Jf2IRDBM6qdLj7VlDWFExjKCyZsjskQrr8ygE0_hGpQCXQoPTx3fLWEq5Pua7X38UP7fUfuq5MA1mdjrKahOlJxEjmMRmMWwPO6GvvKnZzo0vYnzgYzZ3ckGl1lQ2nsjolFAA8qt6k_iCLI5FLwAJIFh6oNnMj3Yk3Z--TFvhkCzFTEAWzUrle3qiSnqXIDoryDBPDCu9IVJurg8N2RLz36F-NncPNgt6X233TfPoYVhI28ojSuw9J4OLFPEJqNs6c-AH8BQWU1Ug | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6aWqHxwmXjEhjISNMekJIljp3LY5ko1WBlGisbe4kcx4VqrVu1qWD8eo6di1RAE7xZshM59rHPd3I-fwbYlwiJ0Y8krghl6LJU5a6QYeHGgoZCGoEnqzN7MowGI3Z8yS-3IGjOwljSvswnnp7OPD35ZrmVi5k8bHhihww9bmICnm7EEX53oDsanva-tIqe3F7DaRKrGCaHrJUkpeZsW-lRROi4_3bNIP74G6z8kx25vdYLcfNdTKebCNa6oP59OGs6XzFPrr11mXvy52-6jv_1dQ_gXg1ISa-qeghbSu_Abk9jMD67IQfEUkTtv_cduPOmKW0fNRfF7cL7vliV5KtYuOOlUsRw61VlV2Q-JhhvtwckV0TogrTsbYIVxApFTDQpLJXkEYz6b8-PBm59R4M74ej-3AIBV5SnhUqUr1LOhZBFlHMmY54qSlWSIyBULKWBwMDJl0HiF4Wfj33FOCtwB3gMHT3X6imQiOdUGPl7KigLI6MjJMcsUhJjHnSzqQMHdtKyRaXDkYnltaGlxTy7GL7Ljq8-Dz6dpB-yCwf2mlnN6hW5yoLYN1CMBsyBV201jpRJkAit5mvTBgNkk_n0b2tDaWCywZEDTypDaTtEEUuiTXIH4g0TahsYLe_NGjQCq-ldz7sD-62xtU9VytI0MxOSWft14LW1w1uaZKdnH89t6dm_vfM53EUwyCui4h50yuVavUDAVeYv6yX2C7dpKag | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+gap-free+enumeration+of+conformations+and+sequences+for+protein+design&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Roberts%2C+Kyle+E&rft.au=Gainza%2C+Pablo&rft.au=Hallen%2C+Mark+A&rft.au=Donald%2C+Bruce+R&rft.date=2015-10-01&rft.issn=0887-3585&rft.eissn=1097-0134&rft.volume=83&rft.issue=10&rft.spage=1859&rft.epage=1877&rft_id=info:doi/10.1002%2Fprot.24870&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon |