Fast gap-free enumeration of conformations and sequences for protein design

ABSTRACT Despite significant successes in structure‐based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ense...

Full description

Saved in:
Bibliographic Details
Published inProteins, structure, function, and bioinformatics Vol. 83; no. 10; pp. 1859 - 1877
Main Authors Roberts, Kyle E., Gainza, Pablo, Hallen, Mark A., Donald, Bruce R.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.10.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0887-3585
1097-0134
1097-0134
DOI10.1002/prot.24870

Cover

Abstract ABSTRACT Despite significant successes in structure‐based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest‐energy structures and sequences are found. DEE/A*‐based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap‐free list of low‐energy protein conformations, which is necessary for ensemble‐based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*‐based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically relevant designs. Proteins 2015; 83:1859–1877. © 2015 Wiley Periodicals, Inc.
AbstractList Despite significant successes in structure-based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest-energy structures and sequences are found. DEE/A*-based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap-free list of low-energy protein conformations, which is necessary for ensemble-based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*-based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically relevant designs.Despite significant successes in structure-based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest-energy structures and sequences are found. DEE/A*-based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap-free list of low-energy protein conformations, which is necessary for ensemble-based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*-based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically relevant designs.
Despite significant successes in structure-based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest-energy structures and sequences are found. DEE/A*-based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap-free list of low-energy protein conformations, which is necessary for ensemble-based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*-based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically relevant designs. Proteins 2015; 83:1859-1877. © 2015 Wiley Periodicals, Inc.
Despite significant successes in structure-based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest-energy structures and sequences are found. DEE/A*-based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap-free list of low-energy protein conformations, which is necessary for ensemble-based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*-based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically relevant designs. Proteins 2015; 83:1859-1877.
ABSTRACT Despite significant successes in structure‐based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest‐energy structures and sequences are found. DEE/A*‐based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap‐free list of low‐energy protein conformations, which is necessary for ensemble‐based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*‐based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically relevant designs. Proteins 2015; 83:1859–1877. © 2015 Wiley Periodicals, Inc.
Despite significant successes in structure-based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest-energy structures and sequences are found. DEE/A*-based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap-free list of low-energy protein conformations, which is necessary for ensemble-based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*-based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically-relevant designs.
Author Gainza, Pablo
Donald, Bruce R.
Roberts, Kyle E.
Hallen, Mark A.
AuthorAffiliation 3 Department of Chemistry, Duke University, Durham, NC
2 Department of Biochemistry, Duke University Medical Center, Durham, NC
1 Department of Computer Science, Duke University, Durham, NC
AuthorAffiliation_xml – name: 1 Department of Computer Science, Duke University, Durham, NC
– name: 2 Department of Biochemistry, Duke University Medical Center, Durham, NC
– name: 3 Department of Chemistry, Duke University, Durham, NC
Author_xml – sequence: 1
  givenname: Kyle E.
  surname: Roberts
  fullname: Roberts, Kyle E.
  organization: Department of Computer Science, Duke University, North Carolina, Durham
– sequence: 2
  givenname: Pablo
  surname: Gainza
  fullname: Gainza, Pablo
  organization: Department of Computer Science, Duke University, North Carolina, Durham
– sequence: 3
  givenname: Mark A.
  surname: Hallen
  fullname: Hallen, Mark A.
  organization: Department of Computer Science, Duke University, North Carolina, Durham
– sequence: 4
  givenname: Bruce R.
  surname: Donald
  fullname: Donald, Bruce R.
  email: proteins15@cs.duke.edu
  organization: Department of Computer Science, Duke University, Durham, North Carolina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26235965$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URKeFDT8ARWKDhNJeO37EGyRU0RaYUgSFSmwsJ7kzuE3sYCeU-fdkOm15LBAry7rfOT73eIds-eCRkMcU9igA2-9jGPYYLxXcIzMKWuVAC75FZlCWKi9EKbbJTkoXACB1IR-QbSZZIbQUM_L20KYhW9o-X0TEDP3YYbSDCz4Li6wOfhFid31PmfVNlvDbiL7GlE2DbP0yOp81mNzSPyT3F7ZN-Ojm3CWfDl-dHRzn89Oj1wcv57kTtIC8EZTLSjdYIqAWwtq6kZXgtRIaGcOyAqGQa0atBAE1LaFpoFoAcsEbEMUueb7xHX1vV1e2bU0fXWfjylAw60rMOpi5rmSiX2zofqw6bGr0Q7S_FME68-fEu69mGb4brpgqJZ0Mnt0YxDAtnwbTuVRj21qPYUyGKsao5ILJ_0ApSMG0WMd6-hd6Ecbop94mCrQuFKN8op78Hv4u9e0HTgDdAFeuxdU_ejDvP5ye3TaSbzQuDfjjTmPjpZGqUMKcvzsyb758Pv54oufmvPgJbcO8qA
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/prot.24870
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts
Engineering Research Database


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1097-0134
EndPage 1877
ExternalDocumentID oai:pubmedcentral.nih.gov:4727861
PMC4727861
3799810461
26235965
PROT24870
ark_67375_WNG_JZVHSM9L_W
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: 2R01‐GM‐78031‐05
– fundername: NIGMS NIH HHS
  grantid: R01 GM078031
GroupedDBID -~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHMBA
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RBB
RWI
WRC
WSB
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-i5130-d5146b9de8e0e955aacd6b54c759e22e8b057e4921a6050c180dd0bf0e454d053
IEDL.DBID DR2
ISSN 0887-3585
1097-0134
IngestDate Wed Oct 29 11:34:43 EDT 2025
Tue Sep 30 16:53:57 EDT 2025
Tue Oct 07 09:56:01 EDT 2025
Wed Oct 01 14:06:23 EDT 2025
Tue Oct 07 05:58:09 EDT 2025
Thu Apr 03 06:59:06 EDT 2025
Wed Jan 22 17:10:25 EST 2025
Sun Sep 21 06:18:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords A search
computational protein design
combinatorial search
structure-based design
Language English
License 2015 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i5130-d5146b9de8e0e955aacd6b54c759e22e8b057e4921a6050c180dd0bf0e454d053
Notes istex:5C245ACA54F843322C36BD8AB063D11136EFF0A1
ArticleID:PROT24870
ark:/67375/WNG-JZVHSM9L-W
NIH - No. 2R01-GM-78031-05
Kyle E. Roberts and Pablo Gainza contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/4727861
PMID 26235965
PQID 1709937214
PQPubID 1016441
PageCount 19
ParticipantIDs unpaywall_primary_10_1002_prot_24870
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4727861
proquest_miscellaneous_1722164526
proquest_miscellaneous_1710652950
proquest_journals_1709937214
pubmed_primary_26235965
wiley_primary_10_1002_prot_24870_PROT24870
istex_primary_ark_67375_WNG_JZVHSM9L_W
PublicationCentury 2000
PublicationDate October 2015
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: October 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hokoben
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, DeBolt S, Ferguson D, Seibel G, Kollman P. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 1995;91:1-41.
Lipovšek D, Antipov E, Armstrong KA, Olsen MJ, Klibanov AM, Tidor B, Wittrup KD. Selection of horseradish peroxidase variants with enhanced enantioselectivity by yeast surface display. Chem Biol 2007;14:1176-1185.
Traore S, Allouche D, Andre I, de Givry S, Katsirelos G, Schiex T, Barbe S. A new framework for computational protein design through cost function network optimization. Bioinformatics 2013;29:2129-2136.
Lovell SC, Word JM, Richardson JS, Richardson DC. The penultimate rotamer library. Proteins 2000;40:389-408.
Applegate D, Bixby R, Chvatal V, Cook W. Finding cuts in the TSP (A preliminary report). DIMACS Technical Report 95-05. 1995.
Eriksson O, Zhou Y, Elofsson A. Side chain-positioning as an integer programming problem. Algorithms in Bioinformatics. Springer; 2001. pp 128-141.
Clark LA, Boriack-Sjodin P, Eldredge J, Fitch C, Friedman B, Hanf KJM, Jarpe M, Liparoto SF, Li Y, Lugovskoy A, Miller S, Rushe M, Sherman W, Simon K, Van Vlijmen H. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci 2006;15:949-960.
Chazelle B, Kingsford C, Singh M. A semidefinite programming approach to side chain positioning with new rounding strategies. Informs J Comput 2004;16:380-392.
Georgiev I, Lilien RH, Donald BR. Improved Pruning algorithms and Divide-and-Conquer strategies for Dead-End Elimination, with application to protein design. Bioinformatics 2006;22:e174-83.
Wainwright MJ, Jaakkola TS, Willsky AS. MAP estimation via agreement on trees: message-passing and linear programming. IEEE Trans Inf Theory 2005;51:3697-3717.
Mackworth AK. Consistency in networks of relations. Artif Intell 1977;8:99-118.
Yanover C, Meltzer T, Weiss Y. Linear programming relaxations and belief propagation-an empirical study. J Machine Learn Res 2006;7:1887-1907.
Georgiev I, Donald BR. Dead-end elimination with backbone flexibility. Bioinformatics 2007;23:185-194.
Georgiev I, Keedy D, Richardson JS, Richardson DC, Donald BR. Algorithm for backrub motions in protein design. Bioinformatics 2008;24:196-204.
Tind J, Wolsey LA. An elementary survey of general duality theory in mathematical programming. Math Program 1981;21:241-261.
Hong E, Lippow SM, Tidor B, Lozano-Pérez T. Rotamer optimization for protein design through MAP estimation and problem-size reduction. J Comput Chem 2009;30:1923-1945.
Kingsford CL, Chazelle B, Singh M. Solving and analyzing side-chain positioning problems using linear and integer programming. Bioinformatics 2005;21:1028-1039.
Silver NW, King BM, Nalam MNL, Cao H, Ali A, Kiran Kumar Reddy GS, Rana TM, Schiffer CA, Tidor B. Efficient Computation of Small-Molecule Configurational Binding Entropy and Free Energy Changes by Ensemble Enumeration. J Chem Theory Comput 2013;9:5098-5115.
Georgiev IS, Rudicell RS, Saunders KO, Shi W, Kirys T, McKee K, O'Dell S, Chuang G, Yang Z, Ofek G, Connors M, Mascola JR, Nabel GJ, Kwong PD. Antibodies VRC01 and 10e8 Neutralize HIV-1 with High Breadth and Potency Even with Ig-Framework Regions Substantially Reverted to Germline. J Immunol (Baltimore, Md.: 1950) 2014;192:1100-1106.
Globerson A, Jaakkola TS. Fixing max-product: convergent message passing algorithms for MAP LP-relaxations. Adv Neural Inf Process Syst 2008;553-560.
Goldstein R. Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophys J 1994;66:1335-1340.
Boyd S, Vandenberghe L. Convex optimization. Cambridge University Press; 2004.
Spielman DA, Teng SH. Smoothed Analysis of Algorithms: Why the Simplex Algorithm Usually Takes Polynomial Time. J. Acm 2004;51:385-463.
Frey KM, Georgiev I, Donald BR, Anderson AC. Predicting resistance mutations using protein design algorithms. Proc Natl Acad Sci U S A 2010;107:13707-13712.
Mandell DJ, Kortemme T. Backbone flexibility in computational protein design. Curr Opin Biotechnol 2009;20:420-428.
Lazaridis T, Karplus M. Effective energy function for proteins in solution. Proteins 1999;35:133-152.
Pierce NA, Winfree E. Protein design is NP-hard. Protein Eng 2002;15:779-782.
Georgiev I, Acharya P, Schmidt SD, Li Y, Wycuff D, Ofek G, Doria-Rose N, Luongo TS, Yang Y, Zhou T, Donald BR, Mascola JR, Kwong PD. Design of epitope-specific probes for sera analysis and antibody isolation. Retrovirology 2012;9:P50
Villali J, Kern D. Choreographing an enzyme's dance. Curr Opin Chem Biol 2010;14:636-643.
Patsalo V, Raleigh DP, Green DF. Rational and computational design of stabilized variants of cyanovirin-n that retain affinity and specificity for glycan ligands. Biochemistry 2011;50:10698-10712.
Grigoryan G, Reinke AW, Keating AE. Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 2009;458:859-864.
Desmet J, De Maeyer M, Hazes B, Lasters I. The dead-end elimination theorem and its use in protein side-chain positioning. Nature 1992;356:539-542.
Hart PE, Nilsson NJ, Raphael B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 1968;4:100-107.
Word JM, Lovell SC, LaBean TH, Taylor HC, Zalis ME, Presley BK, Richardson JS, Richardson DC. Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J Mol Biol 1999;285:1711-1733.
Gordon D, Benjamin Mayo SL. Radical performance enhancements for combinatorial optimization algorithms based on the dead-end elimination theorem. J Comput Chem 1998;19:1505-1514.
Chen C, Georgiev I, Anderson AC, Donald BR. Computational structure-based redesign of enzyme activity. Proc Natl Acad Sci U S A 2009;106:3764-3769.
Larrosa J, Schiex T. Solving weighted CSP by maintaining arc consistency. Artif Intell 2004;159:1-26.
Kortemme T, Morozov AV, Baker D. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J Mol Biol 2003;326:1239-1259.
Bradley SP, Hax AC, Magnanti TL. Applied mathematical programming. MA: Addison-Wesley Reading; 1977.
Cooper M, Schiex T. Arc consistency for soft constraints. Artif Intell 2004;154:199-227.
Reeve SM, Gainza P, Frey KM, Georgiev I, Donald BR, Anderson AC. Protein design algorithms predict viable resistance to an experimental antifolate. Proc Natl Acad Sci 2015;112:749-754.
Kolmogorov V. Convergent tree-reweighted message passing for energy minimization. IEEE Trans Pattern Anal Machine Intell 2006;28:1568-1583.
Althaus E, Kohlbacher O, Lenhof H, Müller P. A combinatorial approach to protein docking with flexible side chains. J Comput Biol 2002;9:597-612.
Leach AR, Lemon AP. Exploring the conformational space of protein side chains using dead-end elimination and the A* algorithm. Proteins 1998;33:227-239.
Hallen MA, Keedy DA, Donald BR. Dead-end elimination with perturbations (DEEPer): a provable protein design algorithm with continuous sidechain and backbone flexibility. Proteins 2013;81:18-39.
Stevens BW, Lilien RH, Georgiev I, Donald BR, Anderson AC. Redesigning the PheA domain of gramicidin synthetase leads to a new understanding of the enzyme's mechanism and selectivity. Biochemistry 2006;45:15495-15504.
Rudicell RS, Kwon YD, Ko S, Pegu A, Louder MK, Georgiev IS, Wu X, Zhu J, Boyington JC, Chen X, Shi W, Yang Z, Doria-Rose NA, McKee K, O'Dell S, Schmidt SD, Chuang G, Druz A, Soto C, Yang Y, Zhang B, Zhou T, Todd J, Lloyd KE, Eudailey J, Roberts KE, Donald BR, Bailer RT, Ledgerwood J, Mullikin JC, Shapiro L, Koup RA, Graham BS, Nason MC, Connors M, Haynes BF, Rao SS, Roederer M, Kwong PD, Mascola JR, Nabel GJ. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. J Virol 2014;88:12669-12682.
Gilpin A, Sandholm T. Information-theoretic approaches to branching in search. Discrete Optimization 2011;8:147-159.
Roberts KE, Cushing PR, Boisguerin P, Madden DR, Donald BR. Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity. PLOS Comput Biol 2012;8:e1002477
Lippow SM, Wittrup KD, Tidor B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol 2007;25:1171-1176.
Gorczynski MJ, Grembecka J, Zhou Y, Kong Y, Roudaia L, Douvas MG, Newman M, Bielnicka I, Baber G, Corpora T, Shi J, Sridharan M, Lilien R, Donald BR, Speck NA, Brown ML, Bushweller JH. Allosteric inhibition of the protein-protein interaction between the leukemia-associated proteins Runx1 and CBFbeta. Chem Biol 2007;14:1186-1197.
Pierce NA, Spriet JA, Desmet J, Mayo SL. Conformational splitting: a more powerful criterion for dead-end elimination. J Comput Chem 2000;21:999-1009.
Gainza P, Roberts KE, Donald BR. Protein design using continuous rotamers. PLOS Comput Biol 2012; 8:e1002335
Achterberg T, Koch T, Martin A. Branching rules revisited. Oper Res Lett 2005;33:42-54.
Abagyan R, Totrov M. Biased probability monte carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol 1994;235:983-1002.
Allouche D, de Givry S, Schiex T. Toulbar2, an open source exact cost function network solver. Technical report, INRIA, 2010.
Donald BR. Algorithms in Structural Molecular Biology. Cambridge, MA: MIT Press; 2011.
Sarkar CA, Lowenhaupt K, Horan T, Boone TC, Tidor B, Lauffenburger DA. Rational cytokine design for increased lifetime and enhanced potency using ph-activated histidine switching. Nat Biotechnol 2002;20:908-913.
Shapovalov MV, Dunbrack RL. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 2011;19:844-858.
Green DF, Dennis AT, Fam PS, Tidor B, Jasanoff A. Rational design of new binding specificity by simultaneous mutagenesis of calmoduli
2013; 29
2002; 15
2010; 14
2010; 107
2013; 523
1968; 4
1999; 285
1994; 66
2005; 21
2003; 19
2011; 19
2012; 55
2013; 9
1977
2002; 2002
1998; 19
2003; 326
2001
2007; 371
2006; 22
2008; 29
2006; 28
1992; 356
2011; 20
2008; 24
2007; 7
2015; 9029
2007; 23
1992; 89
2005; 33
2007; 25
1995; 91
1994; 235
2009; 20
2002; 9
2012
2011
2010
2000; 21
2006; 15
2006; 7
2008
1995
2004
1993
2014; 192
2003
2011; 8
1981; 21
2007; 14
2014; 88
2009; 458
2004; 154
2009; 30
2004; 51
2004; 159
2006; 45
1984; 4
2002; 20
2004; 16
2015; 112
2011; 50
2005; 5
2005; 51
1999; 35
2000; 40
2013; 81
2013
1998; 33
2014; 346
1977; 8
2012; 8
2009; 106
2012; 9
17176071 - Biochemistry. 2006 Dec 26;45(51):15495-504
10223287 - Proteins. 1999 May 1;35(2):133-52
24391217 - J Immunol. 2014 Feb 1;192(3):1100-6
16986540 - IEEE Trans Pattern Anal Mach Intell. 2006 Oct;28(10):1568-83
16873469 - Bioinformatics. 2006 Jul 15;22(14):e174-83
22279426 - PLoS Comput Biol. 2012 Jan;8(1):e1002335
22708897 - J Med Chem. 2012 Jul 26;55(14):6328-41
25525248 - Science. 2014 Dec 19;346(6216):1520-4
22032696 - Biochemistry. 2011 Dec 13;50(49):10698-712
17646295 - Bioinformatics. 2007 Jul 1;23(13):i185-94
25142607 - J Virol. 2014 Nov;88(21):12669-82
22821798 - Proteins. 2013 Jan;81(1):18-39
15546935 - Bioinformatics. 2005 Apr 1;21(7):1028-36
22532795 - PLoS Comput Biol. 2012;8(4):e1002477
18293294 - J Comput Chem. 2008 Jul 30;29(10):1527-42
19709874 - Curr Opin Biotechnol. 2009 Aug;20(4):420-8
17961829 - Chem Biol. 2007 Oct;14(10):1176-85
20822946 - Curr Opin Chem Biol. 2010 Oct;14(5):636-43
12161759 - Nat Biotechnol. 2002 Sep;20(9):908-13
16597831 - Protein Sci. 2006 May;15(5):949-60
9917407 - J Mol Biol. 1999 Jan 29;285(4):1711-33
12323095 - J Comput Biol. 2002;9(4):597-612
23422427 - Methods Enzymol. 2013;523:87-107
8061189 - Biophys J. 1994 May;66(5):1335-40
8289329 - J Mol Biol. 1994 Jan 21;235(3):983-1002
21488406 - Nature. 1992 Apr 9;356(6369):539-42
26744898 - J Comput Biol. 2016 Jun;23(6):413-24
20643959 - Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13707-12
25552560 - Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):749-54
17891135 - Nat Biotechnol. 2007 Oct;25(10):1171-6
12589766 - J Mol Biol. 2003 Feb 28;326(4):1239-59
9779790 - Proteins. 1998 Nov 1;33(2):227-39
12468711 - Protein Eng. 2002 Oct;15(10):779-82
12912846 - Bioinformatics. 2003 Aug 12;19(12):1589-91
10861930 - Proteins. 2000 Aug 15;40(3):389-408
21465611 - Protein Sci. 2011 Jun;20(6):1082-9
24250277 - J Chem Theory Comput. 2013 Nov 12;9(11):5098-5115
17961830 - Chem Biol. 2007 Oct;14(10):1186-97
18586714 - Bioinformatics. 2008 Jul 1;24(13):i196-204
21645855 - Structure. 2011 Jun 8;19(6):844-58
19123203 - J Comput Chem. 2009 Sep;30(12):1923-45
17597151 - J Mol Biol. 2007 Aug 24;371(4):1099-117
19228942 - Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3764-9
1438297 - Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915-9
23842814 - Bioinformatics. 2013 Sep 1;29(17):2129-36
19370028 - Nature. 2009 Apr 16;458(7240):859-64
17029410 - Biochemistry. 2006 Oct 17;45(41):12547-59
References_xml – reference: Donald BR. Algorithms in Structural Molecular Biology. Cambridge, MA: MIT Press; 2011.
– reference: Wang G, Dunbrack RL. PISCES: a protein sequence culling server. Bioinformatics 2003;19:1589-1591.
– reference: Globerson A, Jaakkola TS. Fixing max-product: convergent message passing algorithms for MAP LP-relaxations. Adv Neural Inf Process Syst 2008;553-560.
– reference: Allouche D, de Givry S, Schiex T. Toulbar2, an open source exact cost function network solver. Technical report, INRIA, 2010.
– reference: Traore S, Allouche D, Andre I, de Givry S, Katsirelos G, Schiex T, Barbe S. A new framework for computational protein design through cost function network optimization. Bioinformatics 2013;29:2129-2136.
– reference: Gordon D, Benjamin Mayo SL. Radical performance enhancements for combinatorial optimization algorithms based on the dead-end elimination theorem. J Comput Chem 1998;19:1505-1514.
– reference: Lazaridis T, Karplus M. Effective energy function for proteins in solution. Proteins 1999;35:133-152.
– reference: Althaus E, Kohlbacher O, Lenhof H, Müller P. A combinatorial approach to protein docking with flexible side chains. J Comput Biol 2002;9:597-612.
– reference: Abagyan R, Totrov M. Biased probability monte carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol 1994;235:983-1002.
– reference: Frey KM, Georgiev I, Donald BR, Anderson AC. Predicting resistance mutations using protein design algorithms. Proc Natl Acad Sci U S A 2010;107:13707-13712.
– reference: Eriksson O, Zhou Y, Elofsson A. Side chain-positioning as an integer programming problem. Algorithms in Bioinformatics. Springer; 2001. pp 128-141.
– reference: Roberts KE, Cushing PR, Boisguerin P, Madden DR, Donald BR. Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity. PLOS Comput Biol 2012;8:e1002477
– reference: Fu X, Apgar JR, Keating AE. Modeling backbone flexibility to achieve sequence diversity: the design of novel α-helical ligands for bcl-x l. J Mol Biol 2007;371:1099-1117.
– reference: Kolmogorov V. Convergent tree-reweighted message passing for energy minimization. IEEE Trans Pattern Anal Machine Intell 2006;28:1568-1583.
– reference: Pierce NA, Winfree E. Protein design is NP-hard. Protein Eng 2002;15:779-782.
– reference: Kingsford CL, Chazelle B, Singh M. Solving and analyzing side-chain positioning problems using linear and integer programming. Bioinformatics 2005;21:1028-1039.
– reference: Hart PE, Nilsson NJ, Raphael B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 1968;4:100-107.
– reference: Gilpin A, Sandholm T. Information-theoretic approaches to branching in search. Discrete Optimization 2011;8:147-159.
– reference: Spielman DA, Teng SH. Smoothed Analysis of Algorithms: Why the Simplex Algorithm Usually Takes Polynomial Time. J. Acm 2004;51:385-463.
– reference: Chen C, Georgiev I, Anderson AC, Donald BR. Computational structure-based redesign of enzyme activity. Proc Natl Acad Sci U S A 2009;106:3764-3769.
– reference: Green DF, Dennis AT, Fam PS, Tidor B, Jasanoff A. Rational design of new binding specificity by simultaneous mutagenesis of calmodulin and a target peptide. Biochemistry 2006;45:12547-12559.
– reference: Sarkar CA, Lowenhaupt K, Horan T, Boone TC, Tidor B, Lauffenburger DA. Rational cytokine design for increased lifetime and enhanced potency using ph-activated histidine switching. Nat Biotechnol 2002;20:908-913.
– reference: Cooper MC, de Givry S, Schiex T. Optimal soft arc consistency. IJCAI 2007;7:68-73.
– reference: Georgiev I, Acharya P, Schmidt SD, Li Y, Wycuff D, Ofek G, Doria-Rose N, Luongo TS, Yang Y, Zhou T, Donald BR, Mascola JR, Kwong PD. Design of epitope-specific probes for sera analysis and antibody isolation. Retrovirology 2012;9:P50
– reference: Bradley SP, Hax AC, Magnanti TL. Applied mathematical programming. MA: Addison-Wesley Reading; 1977.
– reference: Cooper M, Schiex T. Arc consistency for soft constraints. Artif Intell 2004;154:199-227.
– reference: Boyd S, Vandenberghe L. Convex optimization. Cambridge University Press; 2004.
– reference: Gorczynski MJ, Grembecka J, Zhou Y, Kong Y, Roudaia L, Douvas MG, Newman M, Bielnicka I, Baber G, Corpora T, Shi J, Sridharan M, Lilien R, Donald BR, Speck NA, Brown ML, Bushweller JH. Allosteric inhibition of the protein-protein interaction between the leukemia-associated proteins Runx1 and CBFbeta. Chem Biol 2007;14:1186-1197.
– reference: Shapovalov MV, Dunbrack RL. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 2011;19:844-858.
– reference: Wainwright MJ, Jaakkola TS, Willsky AS. MAP estimation via agreement on trees: message-passing and linear programming. IEEE Trans Inf Theory 2005;51:3697-3717.
– reference: Russell SJ, Norvig P. Artificial Intelligence: A Modern Approach, 2 ed. Pearson Education; 2003.
– reference: Larrosa J. Node and arc consistency in weighted CSP. Proc AAAI02 2002;2002:48-53.
– reference: Stevens BW, Lilien RH, Georgiev I, Donald BR, Anderson AC. Redesigning the PheA domain of gramicidin synthetase leads to a new understanding of the enzyme's mechanism and selectivity. Biochemistry 2006;45:15495-15504.
– reference: Word JM, Lovell SC, LaBean TH, Taylor HC, Zalis ME, Presley BK, Richardson JS, Richardson DC. Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J Mol Biol 1999;285:1711-1733.
– reference: Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, DeBolt S, Ferguson D, Seibel G, Kollman P. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 1995;91:1-41.
– reference: Larrosa J, Schiex T. Solving weighted CSP by maintaining arc consistency. Artif Intell 2004;159:1-26.
– reference: Mandell DJ, Kortemme T. Backbone flexibility in computational protein design. Curr Opin Biotechnol 2009;20:420-428.
– reference: Georgiev I, Lilien RH, Donald BR. Improved Pruning algorithms and Divide-and-Conquer strategies for Dead-End Elimination, with application to protein design. Bioinformatics 2006;22:e174-83.
– reference: Tind J, Wolsey LA. An elementary survey of general duality theory in mathematical programming. Math Program 1981;21:241-261.
– reference: Mackworth AK. Consistency in networks of relations. Artif Intell 1977;8:99-118.
– reference: Georgiev I, Donald BR. Dead-end elimination with backbone flexibility. Bioinformatics 2007;23:185-194.
– reference: Gainza P, Roberts KE, Georgiev I, Lilien RH, Keedy DA, Chen C, Reza F, Anderson AC, Richardson DC, Richardson JS, Donald BR. OSPREY: protein design with ensembles, flexibility, and provable algorithms. Methods Enzymol 2013;523:87-107.
– reference: Applegate D, Bixby R, Chvatal V, Cook W. Finding cuts in the TSP (A preliminary report). DIMACS Technical Report 95-05. 1995.
– reference: Karmarkar N. A New Polynomial-time Algorithm for Linear Programming. Combinatorica 1984;4:373-395.
– reference: Joh NH, Wang T, Bhate MP, Acharya R, Wu Y, Grabe M, Hong M, Grigoryan G, DeGrado WF. De novo design of a transmembrane Zn2+-transporting four-helix bundle. Science 2014;346:1520-1524.
– reference: Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 1992;89:10915-10919.
– reference: Villali J, Kern D. Choreographing an enzyme's dance. Curr Opin Chem Biol 2010;14:636-643.
– reference: Pierce NA, Spriet JA, Desmet J, Mayo SL. Conformational splitting: a more powerful criterion for dead-end elimination. J Comput Chem 2000;21:999-1009.
– reference: Babor M, Mandell DJ, Kortemme T. Assessment of flexible backbone protein design methods for sequence library prediction in the therapeutic antibody Herceptin: HER2 interface. Protein Sci 2011;20:1082-1089.
– reference: Lippow SM, Wittrup KD, Tidor B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol 2007;25:1171-1176.
– reference: Leach AR, Lemon AP. Exploring the conformational space of protein side chains using dead-end elimination and the A* algorithm. Proteins 1998;33:227-239.
– reference: Weiss Y, Yanover C, Meltzer T. MAP estimation, linear programming and belief propagation with convex free energies. CoRR 2012; abs/1206.5286.
– reference: Reeve SM, Gainza P, Frey KM, Georgiev I, Donald BR, Anderson AC. Protein design algorithms predict viable resistance to an experimental antifolate. Proc Natl Acad Sci 2015;112:749-754.
– reference: Silver NW, King BM, Nalam MNL, Cao H, Ali A, Kiran Kumar Reddy GS, Rana TM, Schiffer CA, Tidor B. Efficient Computation of Small-Molecule Configurational Binding Entropy and Free Energy Changes by Ensemble Enumeration. J Chem Theory Comput 2013;9:5098-5115.
– reference: Georgiev I, Keedy D, Richardson JS, Richardson DC, Donald BR. Algorithm for backrub motions in protein design. Bioinformatics 2008;24:196-204.
– reference: Achterberg T, Koch T, Martin A. Branching rules revisited. Oper Res Lett 2005;33:42-54.
– reference: Gainza P, Roberts KE, Donald BR. Protein design using continuous rotamers. PLOS Comput Biol 2012; 8:e1002335
– reference: Clark LA, Boriack-Sjodin P, Eldredge J, Fitch C, Friedman B, Hanf KJM, Jarpe M, Liparoto SF, Li Y, Lugovskoy A, Miller S, Rushe M, Sherman W, Simon K, Van Vlijmen H. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci 2006;15:949-960.
– reference: Yanover C, Meltzer T, Weiss Y. Linear programming relaxations and belief propagation-an empirical study. J Machine Learn Res 2006;7:1887-1907.
– reference: Georgiev I, Lilien RH, Donald BR. The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles. J Comput Chem 2008;29:1527-1542.
– reference: Hallen MA, Keedy DA, Donald BR. Dead-end elimination with perturbations (DEEPer): a provable protein design algorithm with continuous sidechain and backbone flexibility. Proteins 2013;81:18-39.
– reference: Rudicell RS, Kwon YD, Ko S, Pegu A, Louder MK, Georgiev IS, Wu X, Zhu J, Boyington JC, Chen X, Shi W, Yang Z, Doria-Rose NA, McKee K, O'Dell S, Schmidt SD, Chuang G, Druz A, Soto C, Yang Y, Zhang B, Zhou T, Todd J, Lloyd KE, Eudailey J, Roberts KE, Donald BR, Bailer RT, Ledgerwood J, Mullikin JC, Shapiro L, Koup RA, Graham BS, Nason MC, Connors M, Haynes BF, Rao SS, Roederer M, Kwong PD, Mascola JR, Nabel GJ. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. J Virol 2014;88:12669-12682.
– reference: Lovell SC, Word JM, Richardson JS, Richardson DC. The penultimate rotamer library. Proteins 2000;40:389-408.
– reference: Patsalo V, Raleigh DP, Green DF. Rational and computational design of stabilized variants of cyanovirin-n that retain affinity and specificity for glycan ligands. Biochemistry 2011;50:10698-10712.
– reference: Desmet J, De Maeyer M, Hazes B, Lasters I. The dead-end elimination theorem and its use in protein side-chain positioning. Nature 1992;356:539-542.
– reference: Georgiev IS, Rudicell RS, Saunders KO, Shi W, Kirys T, McKee K, O'Dell S, Chuang G, Yang Z, Ofek G, Connors M, Mascola JR, Nabel GJ, Kwong PD. Antibodies VRC01 and 10e8 Neutralize HIV-1 with High Breadth and Potency Even with Ig-Framework Regions Substantially Reverted to Germline. J Immunol (Baltimore, Md.: 1950) 2014;192:1100-1106.
– reference: De Givry S, Heras F, Zytnicki M, Larrosa J. Existential arc consistency: getting closer to full arc consistency in weighted CSPs. IJCAI 2005;5:84-89.
– reference: Lipovšek D, Antipov E, Armstrong KA, Olsen MJ, Klibanov AM, Tidor B, Wittrup KD. Selection of horseradish peroxidase variants with enhanced enantioselectivity by yeast surface display. Chem Biol 2007;14:1176-1185.
– reference: Chazelle B, Kingsford C, Singh M. A semidefinite programming approach to side chain positioning with new rounding strategies. Informs J Comput 2004;16:380-392.
– reference: Kortemme T, Morozov AV, Baker D. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J Mol Biol 2003;326:1239-1259.
– reference: Hong E, Lippow SM, Tidor B, Lozano-Pérez T. Rotamer optimization for protein design through MAP estimation and problem-size reduction. J Comput Chem 2009;30:1923-1945.
– reference: Grigoryan G, Reinke AW, Keating AE. Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 2009;458:859-864.
– reference: Goldstein R. Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophys J 1994;66:1335-1340.
– reference: Parai MK, Huggins DJ, Cao H, Nalam MNL, Ali A, Schiffer CA, Tidor B, Rana TM. Design, synthesis, and biological and structural evaluations of novel hiv-1 protease inhibitors to combat drug resistance. J Med Chem 2012;55:6328-6341.
– year: 2011
– volume: 88
  start-page: 12669
  year: 2014
  end-page: 12682
  article-title: Enhanced potency of a broadly neutralizing HIV‐1 antibody in vitro improves protection against lentiviral infection in vivo
  publication-title: J Virol
– volume: 16
  start-page: 380
  year: 2004
  end-page: 392
  article-title: A semidefinite programming approach to side chain positioning with new rounding strategies
  publication-title: Informs J Comput
– volume: 356
  start-page: 539
  year: 1992
  end-page: 542
  article-title: The dead‐end elimination theorem and its use in protein side‐chain positioning
  publication-title: Nature
– volume: 154
  start-page: 199
  year: 2004
  end-page: 227
  article-title: Arc consistency for soft constraints
  publication-title: Artif Intell
– volume: 24
  start-page: 196
  year: 2008
  end-page: 204
  article-title: Algorithm for backrub motions in protein design
  publication-title: Bioinformatics
– volume: 14
  start-page: 1186
  year: 2007
  end-page: 1197
  article-title: Allosteric inhibition of the protein‐protein interaction between the leukemia‐associated proteins Runx1 and CBFbeta
  publication-title: Chem Biol
– volume: 8
  start-page: 99
  year: 1977
  end-page: 118
  article-title: Consistency in networks of relations
  publication-title: Artif Intell
– volume: 112
  start-page: 749
  year: 2015
  end-page: 754
  article-title: Protein design algorithms predict viable resistance to an experimental antifolate
  publication-title: Proc Natl Acad Sci
– volume: 19
  start-page: 844
  year: 2011
  end-page: 858
  article-title: A smoothed backbone‐dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions
  publication-title: Structure
– volume: 20
  start-page: 420
  year: 2009
  end-page: 428
  article-title: Backbone flexibility in computational protein design
  publication-title: Curr Opin Biotechnol
– start-page: 128
  year: 2001
  end-page: 141
  article-title: Side chain‐positioning as an integer programming problem
  publication-title: Algorithms in Bioinformatics. Springer
– volume: 14
  start-page: 1176
  year: 2007
  end-page: 1185
  article-title: Selection of horseradish peroxidase variants with enhanced enantioselectivity by yeast surface display
  publication-title: Chem Biol
– volume: 7
  start-page: 68
  year: 2007
  end-page: 73
  article-title: Optimal soft arc consistency
  publication-title: IJCAI
– volume: 29
  start-page: 2129
  year: 2013
  end-page: 2136
  article-title: A new framework for computational protein design through cost function network optimization
  publication-title: Bioinformatics
– volume: 21
  start-page: 999
  year: 2000
  end-page: 1009
  article-title: Conformational splitting: a more powerful criterion for dead‐end elimination
  publication-title: J Comput Chem
– start-page: 553
  year: 2008
  end-page: 560
  article-title: Fixing max‐product: convergent message passing algorithms for MAP LP‐relaxations
  publication-title: Adv Neural Inf Process Syst
– volume: 7
  start-page: 1887
  year: 2006
  end-page: 1907
  article-title: Linear programming relaxations and belief propagation–an empirical study
  publication-title: J Machine Learn Res
– volume: 14
  start-page: 636
  year: 2010
  end-page: 643
  article-title: Choreographing an enzyme's dance
  publication-title: Curr Opin Chem Biol
– volume: 4
  start-page: 373
  year: 1984
  end-page: 395
  article-title: A New Polynomial‐time Algorithm for Linear Programming
  publication-title: Combinatorica
– year: 2012
  article-title: MAP estimation, linear programming and belief propagation with convex free energies
  publication-title: CoRR
– volume: 50
  start-page: 10698
  year: 2011
  end-page: 10712
  article-title: Rational and computational design of stabilized variants of cyanovirin‐n that retain affinity and specificity for glycan ligands
  publication-title: Biochemistry
– volume: 51
  start-page: 3697
  year: 2005
  end-page: 3717
  article-title: MAP estimation via agreement on trees: message‐passing and linear programming
  publication-title: IEEE Trans Inf Theory
– volume: 9029
  start-page: 154
  year: 2015
  end-page: 166
– volume: 9
  start-page: 597
  year: 2002
  end-page: 612
  article-title: A combinatorial approach to protein docking with flexible side chains
  publication-title: J Comput Biol
– volume: 28
  start-page: 1568
  year: 2006
  end-page: 1583
  article-title: Convergent tree‐reweighted message passing for energy minimization
  publication-title: IEEE Trans Pattern Anal Machine Intell
– volume: 15
  start-page: 779
  year: 2002
  end-page: 782
  article-title: Protein design is NP‐hard
  publication-title: Protein Eng
– volume: 192
  start-page: 1100
  year: 2014
  end-page: 1106
  article-title: Antibodies VRC01 and 10e8 Neutralize HIV‐1 with High Breadth and Potency Even with Ig‐Framework Regions Substantially Reverted to Germline
  publication-title: J Immunol (Baltimore, Md.: 1950)
– volume: 9
  start-page: P50
  year: 2012
  article-title: Design of epitope‐specific probes for sera analysis and antibody isolation
  publication-title: Retrovirology
– volume: 8
  start-page: 147
  year: 2011
  end-page: 159
  article-title: Information‐theoretic approaches to branching in search
  publication-title: Discrete Optimization
– volume: 371
  start-page: 1099
  year: 2007
  end-page: 1117
  article-title: Modeling backbone flexibility to achieve sequence diversity: the design of novel ‐helical ligands for bcl‐x l
  publication-title: J Mol Biol
– volume: 33
  start-page: 227
  year: 1998
  end-page: 239
  article-title: Exploring the conformational space of protein side chains using dead‐end elimination and the A* algorithm
  publication-title: Proteins
– volume: 35
  start-page: 133
  year: 1999
  end-page: 152
  article-title: Effective energy function for proteins in solution
  publication-title: Proteins
– volume: 25
  start-page: 1171
  year: 2007
  end-page: 1176
  article-title: Computational design of antibody‐affinity improvement beyond in vivo maturation
  publication-title: Nat Biotechnol
– volume: 89
  start-page: 10915
  year: 1992
  end-page: 10919
  article-title: Amino acid substitution matrices from protein blocks
  publication-title: Proc Natl Acad Sci U S A
– year: 2004
– volume: 33
  start-page: 42
  year: 2005
  end-page: 54
  article-title: Branching rules revisited
  publication-title: Oper Res Lett
– volume: 45
  start-page: 12547
  year: 2006
  end-page: 12559
  article-title: Rational design of new binding specificity by simultaneous mutagenesis of calmodulin and a target peptide
  publication-title: Biochemistry
– volume: 285
  start-page: 1711
  year: 1999
  end-page: 1733
  article-title: Visualizing and quantifying molecular goodness‐of‐fit: small‐probe contact dots with explicit hydrogen atoms
  publication-title: J Mol Biol
– year: 1993
– volume: 51
  start-page: 385
  year: 2004
  end-page: 463
  article-title: Smoothed Analysis of Algorithms: Why the Simplex Algorithm Usually Takes Polynomial Time
  publication-title: J. Acm
– volume: 2002
  start-page: 48
  year: 2002
  end-page: 53
  article-title: Node and arc consistency in weighted CSP
  publication-title: Proc AAAI02
– volume: 106
  start-page: 3764
  year: 2009
  end-page: 3769
  article-title: Computational structure‐based redesign of enzyme activity
  publication-title: Proc Natl Acad Sci U S A
– volume: 91
  start-page: 1
  year: 1995
  end-page: 41
  article-title: AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules
  publication-title: Comput Phys Commun
– volume: 9
  start-page: 5098
  year: 2013
  end-page: 5115
  article-title: Efficient Computation of Small‐Molecule Configurational Binding Entropy and Free Energy Changes by Ensemble Enumeration
  publication-title: J Chem Theory Comput
– volume: 20
  start-page: 1082
  year: 2011
  end-page: 1089
  article-title: Assessment of flexible backbone protein design methods for sequence library prediction in the therapeutic antibody Herceptin: HER2 interface
  publication-title: Protein Sci
– volume: 326
  start-page: 1239
  year: 2003
  end-page: 1259
  article-title: An orientation‐dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein–protein complexes
  publication-title: J Mol Biol
– volume: 19
  start-page: 1505
  year: 1998
  end-page: 1514
  article-title: Radical performance enhancements for combinatorial optimization algorithms based on the dead‐end elimination theorem
  publication-title: J Comput Chem
– volume: 523
  start-page: 87
  year: 2013
  end-page: 107
  article-title: OSPREY: protein design with ensembles, flexibility, and provable algorithms
  publication-title: Methods Enzymol
– volume: 29
  start-page: 1527
  year: 2008
  end-page: 1542
  article-title: The minimized dead‐end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles
  publication-title: J Comput Chem
– volume: 8
  start-page: e1002335
  year: 2012
  article-title: Protein design using continuous rotamers
  publication-title: PLOS Comput Biol
– year: 2003
– volume: 8
  start-page: e1002477
  year: 2012
  article-title: Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity
  publication-title: PLOS Comput Biol
– year: 2010
  article-title: Toulbar2, an open source exact cost function network solver
  publication-title: Technical report, INRIA
– volume: 4
  start-page: 100
  year: 1968
  end-page: 107
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Trans Syst Sci Cybern
– volume: 159
  start-page: 1
  year: 2004
  end-page: 26
  article-title: Solving weighted CSP by maintaining arc consistency
  publication-title: Artif Intell
– year: 1995
  publication-title: Finding cuts in the TSP (A preliminary report). DIMACS Technical Report 95‐05
– volume: 45
  start-page: 15495
  year: 2006
  end-page: 15504
  article-title: Redesigning the PheA domain of gramicidin synthetase leads to a new understanding of the enzyme's mechanism and selectivity
  publication-title: Biochemistry
– year: 1977
– volume: 15
  start-page: 949
  year: 2006
  end-page: 960
  article-title: Affinity enhancement of an in vivo matured therapeutic antibody using structure‐based computational design
  publication-title: Protein Sci
– volume: 81
  start-page: 18
  year: 2013
  end-page: 39
  article-title: Dead‐end elimination with perturbations (DEEPer): a provable protein design algorithm with continuous sidechain and backbone flexibility
  publication-title: Proteins
– volume: 23
  start-page: 185
  year: 2007
  end-page: 194
  article-title: Dead‐end elimination with backbone flexibility
  publication-title: Bioinformatics
– volume: 40
  start-page: 389
  year: 2000
  end-page: 408
  article-title: The penultimate rotamer library
  publication-title: Proteins
– volume: 346
  start-page: 1520
  year: 2014
  end-page: 1524
  article-title: De novo design of a transmembrane Zn2+‐transporting four‐helix bundle
  publication-title: Science
– volume: 5
  start-page: 84
  year: 2005
  end-page: 89
  article-title: Existential arc consistency: getting closer to full arc consistency in weighted CSPs
  publication-title: IJCAI
– volume: 235
  start-page: 983
  year: 1994
  end-page: 1002
  article-title: Biased probability monte carlo conformational searches and electrostatic calculations for peptides and proteins
  publication-title: J Mol Biol
– volume: 19
  start-page: 1589
  year: 2003
  end-page: 1591
  article-title: PISCES: a protein sequence culling server
  publication-title: Bioinformatics
– volume: 21
  start-page: 241
  year: 1981
  end-page: 261
  article-title: An elementary survey of general duality theory in mathematical programming
  publication-title: Math Program
– volume: 107
  start-page: 13707
  year: 2010
  end-page: 13712
  article-title: Predicting resistance mutations using protein design algorithms
  publication-title: Proc Natl Acad Sci U S A
– volume: 22
  start-page: e174
  year: 2006
  end-page: 83
  article-title: Improved Pruning algorithms and Divide‐and‐Conquer strategies for Dead‐End Elimination, with application to protein design
  publication-title: Bioinformatics
– volume: 458
  start-page: 859
  year: 2009
  end-page: 864
  article-title: Design of protein‐interaction specificity gives selective bZIP‐binding peptides
  publication-title: Nature
– volume: 55
  start-page: 6328
  year: 2012
  end-page: 6341
  article-title: Design, synthesis, and biological and structural evaluations of novel hiv‐1 protease inhibitors to combat drug resistance
  publication-title: J Med Chem
– volume: 30
  start-page: 1923
  year: 2009
  end-page: 1945
  article-title: Rotamer optimization for protein design through MAP estimation and problem‐size reduction
  publication-title: J Comput Chem
– volume: 20
  start-page: 908
  year: 2002
  end-page: 913
  article-title: Rational cytokine design for increased lifetime and enhanced potency using ph‐activated histidine switching
  publication-title: Nat Biotechnol
– volume: 21
  start-page: 1028
  year: 2005
  end-page: 1039
  article-title: Solving and analyzing side‐chain positioning problems using linear and integer programming
  publication-title: Bioinformatics
– volume: 66
  start-page: 1335
  year: 1994
  end-page: 1340
  article-title: Efficient rotamer elimination applied to protein side‐chains and related spin glasses
  publication-title: Biophys J
– year: 2013
– reference: 21645855 - Structure. 2011 Jun 8;19(6):844-58
– reference: 22532795 - PLoS Comput Biol. 2012;8(4):e1002477
– reference: 9779790 - Proteins. 1998 Nov 1;33(2):227-39
– reference: 21488406 - Nature. 1992 Apr 9;356(6369):539-42
– reference: 17597151 - J Mol Biol. 2007 Aug 24;371(4):1099-117
– reference: 23842814 - Bioinformatics. 2013 Sep 1;29(17):2129-36
– reference: 25525248 - Science. 2014 Dec 19;346(6216):1520-4
– reference: 18293294 - J Comput Chem. 2008 Jul 30;29(10):1527-42
– reference: 20643959 - Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13707-12
– reference: 25552560 - Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):749-54
– reference: 9917407 - J Mol Biol. 1999 Jan 29;285(4):1711-33
– reference: 12589766 - J Mol Biol. 2003 Feb 28;326(4):1239-59
– reference: 20822946 - Curr Opin Chem Biol. 2010 Oct;14(5):636-43
– reference: 24391217 - J Immunol. 2014 Feb 1;192(3):1100-6
– reference: 17961829 - Chem Biol. 2007 Oct;14(10):1176-85
– reference: 22821798 - Proteins. 2013 Jan;81(1):18-39
– reference: 10861930 - Proteins. 2000 Aug 15;40(3):389-408
– reference: 16873469 - Bioinformatics. 2006 Jul 15;22(14):e174-83
– reference: 12912846 - Bioinformatics. 2003 Aug 12;19(12):1589-91
– reference: 17891135 - Nat Biotechnol. 2007 Oct;25(10):1171-6
– reference: 22032696 - Biochemistry. 2011 Dec 13;50(49):10698-712
– reference: 10223287 - Proteins. 1999 May 1;35(2):133-52
– reference: 12468711 - Protein Eng. 2002 Oct;15(10):779-82
– reference: 12323095 - J Comput Biol. 2002;9(4):597-612
– reference: 17646295 - Bioinformatics. 2007 Jul 1;23(13):i185-94
– reference: 23422427 - Methods Enzymol. 2013;523:87-107
– reference: 12161759 - Nat Biotechnol. 2002 Sep;20(9):908-13
– reference: 8061189 - Biophys J. 1994 May;66(5):1335-40
– reference: 16986540 - IEEE Trans Pattern Anal Mach Intell. 2006 Oct;28(10):1568-83
– reference: 8289329 - J Mol Biol. 1994 Jan 21;235(3):983-1002
– reference: 17961830 - Chem Biol. 2007 Oct;14(10):1186-97
– reference: 25142607 - J Virol. 2014 Nov;88(21):12669-82
– reference: 18586714 - Bioinformatics. 2008 Jul 1;24(13):i196-204
– reference: 19370028 - Nature. 2009 Apr 16;458(7240):859-64
– reference: 26744898 - J Comput Biol. 2016 Jun;23(6):413-24
– reference: 17029410 - Biochemistry. 2006 Oct 17;45(41):12547-59
– reference: 17176071 - Biochemistry. 2006 Dec 26;45(51):15495-504
– reference: 19228942 - Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3764-9
– reference: 19123203 - J Comput Chem. 2009 Sep;30(12):1923-45
– reference: 22708897 - J Med Chem. 2012 Jul 26;55(14):6328-41
– reference: 21465611 - Protein Sci. 2011 Jun;20(6):1082-9
– reference: 16597831 - Protein Sci. 2006 May;15(5):949-60
– reference: 1438297 - Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915-9
– reference: 15546935 - Bioinformatics. 2005 Apr 1;21(7):1028-36
– reference: 22279426 - PLoS Comput Biol. 2012 Jan;8(1):e1002335
– reference: 19709874 - Curr Opin Biotechnol. 2009 Aug;20(4):420-8
– reference: 24250277 - J Chem Theory Comput. 2013 Nov 12;9(11):5098-5115
SSID ssj0006936
Score 2.2595289
Snippet ABSTRACT Despite significant successes in structure‐based computational protein design in recent years, protein design algorithms must be improved to increase...
Despite significant successes in structure-based computational protein design in recent years, protein design algorithms must be improved to increase the...
SourceID unpaywall
pubmedcentral
proquest
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1859
SubjectTerms A search
Algorithms
Amino Acid Sequence
Amino acids
combinatorial search
Computational Biology - methods
computational protein design
Design
Protein Conformation
Protein Engineering - methods
Sequence Analysis, Protein - methods
Software
structure-based design
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6aWqHxwmXjEhjISNMekJIljp3LY5ko1WBlGisbe4kcx4VqrVu1qWD8eo6di1RAE7xZshM59rHPd3I-fwbYlwiJ0Y8krghl6LJU5a6QYeHGgoZCGoEnqzN7MowGI3Z8yS-3IGjOwljSvswnnp7OPD35ZrmVi5k8bHhihww9bmICnm7EEX53oDsanva-tIqe3F7DaRKrGCaHrJUkpeZsW-lRROi4_3bNIP74G6z8kx25vdYLcfNdTKebCNa6oP59OGs6XzFPrr11mXvy52-6jv_1dQ_gXg1ISa-qeghbSu_Abk9jMD67IQfEUkTtv_cduPOmKW0fNRfF7cL7vliV5KtYuOOlUsRw61VlV2Q-JhhvtwckV0TogrTsbYIVxApFTDQpLJXkEYz6b8-PBm59R4M74ej-3AIBV5SnhUqUr1LOhZBFlHMmY54qSlWSIyBULKWBwMDJl0HiF4Wfj33FOCtwB3gMHT3X6imQiOdUGPl7KigLI6MjJMcsUhJjHnSzqQMHdtKyRaXDkYnltaGlxTy7GL7Ljq8-Dz6dpB-yCwf2mlnN6hW5yoLYN1CMBsyBV201jpRJkAit5mvTBgNkk_n0b2tDaWCywZEDTypDaTtEEUuiTXIH4g0TahsYLe_NGjQCq-ldz7sD-62xtU9VytI0MxOSWft14LW1w1uaZKdnH89t6dm_vfM53EUwyCui4h50yuVavUDAVeYv6yX2C7dpKag
  priority: 102
  providerName: Unpaywall
Title Fast gap-free enumeration of conformations and sequences for protein design
URI https://api.istex.fr/ark:/67375/WNG-JZVHSM9L-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.24870
https://www.ncbi.nlm.nih.gov/pubmed/26235965
https://www.proquest.com/docview/1709937214
https://www.proquest.com/docview/1710652950
https://www.proquest.com/docview/1722164526
https://pubmed.ncbi.nlm.nih.gov/PMC4727861
https://www.ncbi.nlm.nih.gov/pmc/articles/4727861
UnpaywallVersion submittedVersion
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0887-3585
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0134
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006936
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL2ahtB44WODLTAmI017QEqXOLaTSHspE6WaaJnGygYSshzHhWojrfqhMZ74CfxGfgnXTpOqgCbBmyVfS3F8r32ufXwMsKsREuM6kvgq0pHPUpP5Ske5HysaKW0FnpzObKcr2j12dM7PV-CgugtT6kPUG242Mtx8bQNcZZP9hWio1TFoUMTbNmEPI-HyqZOFdpRI3fuAZRQhKK61Sen-oilCUvs3v_4NX_5Jk1ybFSN1faUuL5ehrFuLWvfgY9WLkoJy0ZhNs4b-9pvA4_928z7cnYNU0iy96gGsmGIdNpoFJuhfrskecbRRtx-_DrdfVKW1w-rxuA3otNRkSj6p0c_vP_pjY4hl3JvS28iwTzALr69NTogqclJzuglWECcfMShI7ggmD6HXenl62PbnLzf4A46Lop8jDBNZmpvEBCblXCmdi4wzHfPUUGqSDGGiYSkNFaZTgQ6TIM-DrB8YxlmO88IjWC2GhdkCInhGlRXFp4qySFh1Id1nwmjMhHDxTT3YcyMoR6U6h1TjC0tWi7k8676SRx_etd920tfyzIPtaojlPE4nMowDC9BoyDx4Vlfjv7LHJqoww5m1wbTZnocGN9lQGtozYuHBZuk19QdRRJg8FdyDeMmfagOr8L1cUww-O6VvhugyEaEHu7Xn1a1KvWkq7YBI5yAePHeedIOJPD55c-pKj__F-AncQaDISxLjNqxOxzPzFMHYNNtxQbcDt3rd4-b7X26NM10
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD5CQ6i8cNm4BAYYadoDUrrEsZ3kcUyUMtqCRscmXiwncaHaSKteBOOJn8Bv5JdwjtOmKqBJ8GbJx1Jin2N_x_78GWAnR0iM60jimyiPfJHazDd5VPix4ZHJSeDJ6cx2e6p9LA5P5emCm0N3YSp9iHrDjSLDzdcU4LQhvbdSDSUhgyZHwI0Z-1WhMFEhTHS0Uo9SqXshsIojhMW1OinfW7VFUEr9-fVvCPNPomRjXo7NxRdzfr4OZt1q1LpZPbk6dSKGREI5a85nWTP_9pvE43__6C24scCpbL9yrNtwxZabsLVfYo7--YLtMsccdVvym3Dt-bLUOFi-H7cF3ZaZzthHM_75_cdgYi0j0r2tHI6NBgwT8frm5JSZsmA1rZthBXMKEsOSFY5jcgeOWy_6B21_8XiDP5S4LvoFIjGVpYVNbGBTKY3JC5VJkccytZzbJEOkaEXKQ4MZVZCHSVAUQTYIrJCiwKnhLmyUo9LeB6Zkxg3p4nPDRaRIYCgfCGVzTIZw_U092HVDqMeVQIc2kzPiq8VSn_Re6sMP79vvumlHn3iwvRxjvQjVqQ7jgDAaD4UHT-tq7Cs6OTGlHc3JBjNnOhINLrPhPKRjYuXBvcpt6g_iCDJlqqQH8ZpD1QYk8r1eUw4_ObFvgQAzUaEHO7Xr1a0qyWmuaUC0cxAPnjlXusREvz1603elB_9i_AQa7X63ozuveq8fwnXEjbLiNG7Dxmwyt48Qm82yxy4CfwHgNzXO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD5CQ7C9cNm4BAYYadoDUrrEtZ34cWyUMtYyjY1NvFhO7IxqI616EYwnfgK_kV_CsdOmKqBJ8GbJx1Jin2N_x_78GWAjR0iM60ga6mbeDJm0WajzpgkTTZs6dwJPXme20xXtY7Z3yk-n3Bx3F6bSh6g33Fxk-PnaBbgdmGJrrhrqhAwaFAE3ZuzXGZepY_TtHs7Vo4T0LwRWcYSwuFYnpVvztghKXX9-_RvC_JMouTwpB_ryi764WASzfjVq3a6eXB15EUNHQjlvTMZZI__2m8Tjf__oHbg1xalku3Ksu3DNlquwtl1ijv75kmwSzxz1W_KrcOPlrLS8M3s_bg06LT0akzM9-Pn9RzG0ljjSva0cjvQLgol4fXNyRHRpSE3rJlhBvIJEryTGc0zuwXHr1dFOO5w-3hD2OK6LoUEkJjJpbGojKznXOjci4yxPuLSU2jRDpGiZpLHGjCrK4zQyJsqKyDLODE4N92Gp7Jf2IRDBM6qdLj7VlDWFExjKCyZsjskQrr8ygE0_hGpQCXQoPTx3fLWEq5Pua7X38UP7fUfuq5MA1mdjrKahOlJxEjmMRmMWwPO6GvvKnZzo0vYnzgYzZ3ckGl1lQ2nsjolFAA8qt6k_iCLI5FLwAJIFh6oNnMj3Yk3Z--TFvhkCzFTEAWzUrle3qiSnqXIDoryDBPDCu9IVJurg8N2RLz36F-NncPNgt6X233TfPoYVhI28ojSuw9J4OLFPEJqNs6c-AH8BQWU1Ug
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6aWqHxwmXjEhjISNMekJIljp3LY5ko1WBlGisbe4kcx4VqrVu1qWD8eo6di1RAE7xZshM59rHPd3I-fwbYlwiJ0Y8krghl6LJU5a6QYeHGgoZCGoEnqzN7MowGI3Z8yS-3IGjOwljSvswnnp7OPD35ZrmVi5k8bHhihww9bmICnm7EEX53oDsanva-tIqe3F7DaRKrGCaHrJUkpeZsW-lRROi4_3bNIP74G6z8kx25vdYLcfNdTKebCNa6oP59OGs6XzFPrr11mXvy52-6jv_1dQ_gXg1ISa-qeghbSu_Abk9jMD67IQfEUkTtv_cduPOmKW0fNRfF7cL7vliV5KtYuOOlUsRw61VlV2Q-JhhvtwckV0TogrTsbYIVxApFTDQpLJXkEYz6b8-PBm59R4M74ej-3AIBV5SnhUqUr1LOhZBFlHMmY54qSlWSIyBULKWBwMDJl0HiF4Wfj33FOCtwB3gMHT3X6imQiOdUGPl7KigLI6MjJMcsUhJjHnSzqQMHdtKyRaXDkYnltaGlxTy7GL7Ljq8-Dz6dpB-yCwf2mlnN6hW5yoLYN1CMBsyBV201jpRJkAit5mvTBgNkk_n0b2tDaWCywZEDTypDaTtEEUuiTXIH4g0TahsYLe_NGjQCq-ldz7sD-62xtU9VytI0MxOSWft14LW1w1uaZKdnH89t6dm_vfM53EUwyCui4h50yuVavUDAVeYv6yX2C7dpKag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+gap-free+enumeration+of+conformations+and+sequences+for+protein+design&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Roberts%2C+Kyle+E&rft.au=Gainza%2C+Pablo&rft.au=Hallen%2C+Mark+A&rft.au=Donald%2C+Bruce+R&rft.date=2015-10-01&rft.issn=0887-3585&rft.eissn=1097-0134&rft.volume=83&rft.issue=10&rft.spage=1859&rft.epage=1877&rft_id=info:doi/10.1002%2Fprot.24870&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon