Energetic benefits and adaptations in mammalian limbs: Scale effects and selective pressures

Differences in limb size and shape are fundamental to mammalian morphological diversity; however, their relevance to locomotor costs has long been subject to debate. In particular, it remains unknown if scale effects in whole limb morphology could partially underlie decreasing mass-specific locomoto...

Full description

Saved in:
Bibliographic Details
Published inEvolution Vol. 69; no. 6; pp. 1546 - 1559
Main Authors Kilbourne, Brandon M., Hoffman, Louwrens C.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.06.2015
Society for the Study of Evolution
Oxford University Press
Subjects
Online AccessGet full text
ISSN0014-3820
1558-5646
1558-5646
DOI10.1111/evo.12675

Cover

Abstract Differences in limb size and shape are fundamental to mammalian morphological diversity; however, their relevance to locomotor costs has long been subject to debate. In particular, it remains unknown if scale effects in whole limb morphology could partially underlie decreasing mass-specific locomotor costs with increasing limb length. Whole fore- and hindlimb inertial properties reflecting limb size and shape—moment of inertia (MOI), mass, mass distribution, and natural frequency—were regressed against limb length for 44 species of quadrupedal mammals. Limb mass, MOI, and center of mass position are negatively allometric, having a strong potential for lowering mass-specific locomotor costs in large terrestrial mammals. Negative allometry of limb MOI results in a 40% reduction in MOI relative to isometry's prediction for our largest sampled taxa. However, fitting regression residuals to adaptive diversification models reveals that codiversification of limb mass, limb length, and body mass likely results from selection for differing locomotor modes of running, climbing, digging, and swimming. The observed allometric scaling does not result from selection for energetically beneficial whole limb morphology with increasing size. Instead, our data suggest that it is a consequence of differing morphological adaptations and body size distributions among quadrupedal mammals, highlighting the role of differing limb functions in mammalian evolution.
AbstractList Differences in limb size and shape are fundamental to mammalian morphological diversity; however, their relevance to locomotor costs has long been subject to debate. In particular, it remains unknown if scale effects in whole limb morphology could partially underlie decreasing mass‐specific locomotor costs with increasing limb length. Whole fore‐ and hindlimb inertial properties reflecting limb size and shape—moment of inertia (MOI), mass, mass distribution, and natural frequency—were regressed against limb length for 44 species of quadrupedal mammals. Limb mass, MOI, and center of mass position are negatively allometric, having a strong potential for lowering mass‐specific locomotor costs in large terrestrial mammals. Negative allometry of limb MOI results in a 40% reduction in MOI relative to isometry's prediction for our largest sampled taxa. However, fitting regression residuals to adaptive diversification models reveals that codiversification of limb mass, limb length, and body mass likely results from selection for differing locomotor modes of running, climbing, digging, and swimming. The observed allometric scaling does not result from selection for energetically beneficial whole limb morphology with increasing size. Instead, our data suggest that it is a consequence of differing morphological adaptations and body size distributions among quadrupedal mammals, highlighting the role of differing limb functions in mammalian evolution.
Differences in limb size and shape are fundamental to mammalian morphological diversity; however, their relevance to locomotor costs has long been subject to debate. In particular, it remains unknown if scale effects in whole limb morphology could partially underlie decreasing mass-specific locomotor costs with increasing limb length. Whole fore- and hindlimb inertial properties reflecting limb size and shape-moment of inertia (MOI), mass, mass distribution, and natural frequency-were regressed against limb length for 44 species of quadrupedal mammals. Limb mass, MOI, and center of mass position are negatively allometric, having a strong potential for lowering mass-specific locomotor costs in large terrestrial mammals. Negative allometry of limb MOI results in a 40% reduction in MOI relative to isometry's prediction for our largest sampled taxa. However, fitting regression residuals to adaptive diversification models reveals that codiversification of limb mass, limb length, and body mass likely results from selection for differing locomotor modes of running, climbing, digging, and swimming. The observed allometric scaling does not result from selection for energetically beneficial whole limb morphology with increasing size. Instead, our data suggest that it is a consequence of differing morphological adaptations and body size distributions among quadrupedal mammals, highlighting the role of differing limb functions in mammalian evolution.Differences in limb size and shape are fundamental to mammalian morphological diversity; however, their relevance to locomotor costs has long been subject to debate. In particular, it remains unknown if scale effects in whole limb morphology could partially underlie decreasing mass-specific locomotor costs with increasing limb length. Whole fore- and hindlimb inertial properties reflecting limb size and shape-moment of inertia (MOI), mass, mass distribution, and natural frequency-were regressed against limb length for 44 species of quadrupedal mammals. Limb mass, MOI, and center of mass position are negatively allometric, having a strong potential for lowering mass-specific locomotor costs in large terrestrial mammals. Negative allometry of limb MOI results in a 40% reduction in MOI relative to isometry's prediction for our largest sampled taxa. However, fitting regression residuals to adaptive diversification models reveals that codiversification of limb mass, limb length, and body mass likely results from selection for differing locomotor modes of running, climbing, digging, and swimming. The observed allometric scaling does not result from selection for energetically beneficial whole limb morphology with increasing size. Instead, our data suggest that it is a consequence of differing morphological adaptations and body size distributions among quadrupedal mammals, highlighting the role of differing limb functions in mammalian evolution.
Author Hoffman, Louwrens C.
Kilbourne, Brandon M.
Author_xml – sequence: 1
  givenname: Brandon M.
  surname: Kilbourne
  fullname: Kilbourne, Brandon M.
  email: Brandon.Kilbourne@wiko-berlin.de
  organization: Committee on Evolutionary Biology, University of Chicago, 1025 E 57th Street, Culver Hall 402, 60637, Chicago, Illinois
– sequence: 2
  givenname: Louwrens C.
  surname: Hoffman
  fullname: Hoffman, Louwrens C.
  organization: Department of Animal Sciences, Stellenbosch University, 7602, Private Bag X1, Matieland, South Africa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25929545$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAQhi0EguXjwA9oZamXXgLjxI7t3iq0pUioSEC7FyTLcSaVt4mzxAkt_76GXajEpT54RnqfeUczs0-2Qx-QkGMGJyy9U3zoT1heSrFFZkwIlYmSl9tkBsB4Vqgc9sh-jEsA0ILpXbKXC51rwcWM3M0DDj9x9I5WGLDxY6Q21NTWdjXa0fchUh9oZ7vOtt4G2vquip_ojbMtUmwadJuKiG3K_QPS1YAxTuk7JDuNbSMebeIB-f5lfnv2Nbu8Or84-3yZeQFKZMLVWkqtJauUw4LVWPNScihA6RotNM5VwFWBWKcohGtUJRimWbiwVsrigHxc-66G_n7COJrOR4dtawP2UzRMgmZKph7_R0sNpchzWST0wxt02U9DSIM8GQquVFpnot5vqKnqsDarwXd2eDQvK07A6Rr47Vt8fNUZmKfbmXQ783w7M_9x9ZykinfrimUc--GfI5fASwZJz9a6jyP-edXt8MuUskhOi2_nRi2uF3pxy40u_gJlp6U5
ContentType Journal Article
Copyright Copyrightc 2015 Society for the Study of Evolution
2015 The Author(s). © 2015 The Society for the Study of Evolution.
2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Copyright Wiley Subscription Services, Inc. Jun 2015
Copyright_xml – notice: Copyrightc 2015 Society for the Study of Evolution
– notice: 2015 The Author(s). © 2015 The Society for the Study of Evolution.
– notice: 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
– notice: Copyright Wiley Subscription Services, Inc. Jun 2015
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
DOI 10.1111/evo.12675
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Ecology Abstracts

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1558-5646
EndPage 1559
ExternalDocumentID 3782752891
25929545
EVO12675
24704610
ark_67375_WNG_8WRW9WT4_9
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
--Z
-JH
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29G
2AX
31~
33P
3O-
3SF
4.4
41~
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
5WD
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAISJ
AAKGQ
AAMMB
AANHP
AAONW
AAPSS
AAPXW
AARHZ
AASGY
AAUAY
AAVAP
AAWDT
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABDFA
ABDPE
ABEJV
ABEML
ABGNP
ABIME
ABJNI
ABLJU
ABMNT
ABPIB
ABPLY
ABPPZ
ABPTD
ABPVW
ABSQW
ABTLG
ABWJO
ABXSQ
ABXVV
ABXZS
ABZEO
ACAHQ
ACBWZ
ACCZN
ACFBH
ACFRR
ACGFO
ACGFS
ACGOD
ACHIC
ACIPB
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACSTJ
ACUFI
ACUTJ
ACVCV
ACXBN
ACXQS
ACYXJ
ACZBC
ADBBV
ADEOM
ADGKP
ADHSS
ADIPN
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADQBN
ADULT
ADXAS
ADXHL
ADZMN
AEFGJ
AEGXH
AEIMD
AENEX
AEPYG
AEUPB
AFAZZ
AFBPY
AFFDN
AFFIJ
AFGKR
AFGWE
AFKWF
AFNWH
AFRAH
AFYAG
AFZJQ
AGMDO
AGQPQ
AGUYK
AGXDD
AHGBF
AHXOZ
AI.
AIAGR
AIDQK
AIDYY
AILXY
AIURR
AJAOE
AJBYB
AJDVS
AJNCP
AJXKR
AKPMI
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANFBD
APJGH
AQVQM
ASPBG
AS~
ATGXG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
D0L
D0S
DC7
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FAC
FAL
FAS
FD6
FEDTE
FJD
FJW
G-S
G.N
GODZA
GTFYD
H.T
H.X
H13
HF~
HGD
HQ2
HTVGU
HVGLF
HZ~
IAG
IAO
IEA
IEP
IOF
IPSME
ISM
ITC
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
KOP
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NHB
NQS
NU-
O66
O9-
OBOKY
OIG
OJZSN
OK1
OVD
OWPYF
P-O
P2P
P2W
P2X
P4D
PQ0
PQQKQ
Q.N
Q11
Q5J
QB0
R.K
RBO
ROL
ROX
RWL
RX1
RXW
SA0
SJN
SUPJJ
TAE
TCN
TEORI
TN5
UB1
UBC
UHB
UQL
V8K
VH1
VJK
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WNSPC
WOHZO
WQJ
WYISQ
XG1
XSW
YXE
YYP
YZZ
ZCA
ZCG
ZZTAW
~02
~IA
~KM
~WT
ACSIT
AGORE
CGR
CUY
CVF
ECM
EIF
NPM
XOL
7QG
7QL
7QP
7QR
7SN
7SS
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-i5085-5cd9779971b8ce31ded467403089dea0fccb0483eedb0455cf8b51e95145aa773
IEDL.DBID DR2
ISSN 0014-3820
1558-5646
IngestDate Sun Sep 28 07:39:50 EDT 2025
Sun Sep 28 10:23:44 EDT 2025
Fri Jul 25 10:42:48 EDT 2025
Mon Jul 21 06:00:42 EDT 2025
Thu Sep 25 07:34:07 EDT 2025
Thu Jul 03 21:24:16 EDT 2025
Sun Sep 21 06:18:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords macroevolution
phylogenetics
allometry
mammals
morphological evolution
Adaptation
Language English
License 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i5085-5cd9779971b8ce31ded467403089dea0fccb0483eedb0455cf8b51e95145aa773
Notes istex:0233F38E0514F379274F849FFFE5F502F88896E2
ArticleID:EVO12675
ark:/67375/WNG-8WRW9WT4-9
Figure S1. Experimental setup to measure limb inertial properties. Tabel S1. Mammalian species sampled for our study. Tabel S2. Estimation of measurement error in our methodology to measure limb inertial properties. Tabel S3. Exponents predicted by geometric similarity for the inertial properties included in this study along with a short definition of each inertial property. Tabel S4. Phylogenies used to scale divergence times within the composite phylogeny. Tabel S5. Tests for phylogenetic signal when using GLS residuals. Tabel S6. Results of PGLS regressions estimating λ alongside other regression parameters. Tabel S7. Parameter estimates for single-rate Brownian motion and single-optimum Ornstein-Uhlenbeck models. Tabel S8. Parameter estimates for Brownian motion models based upon locomotor specializations. Tabel S9. Parameter estimates for Ornstein-Uhlenbeck models based upon locomotor specializations. Tabel S10. Parameter estimates for Brownian motion models based upon body size. Tabel S11. Parameter estimates for Ornstein-Uhlenbeck models based upon differences in body size. Tabel S12. Differences in the scaling of limb length, limb mass, and limb MOI between cursors (N = 25) and scansors (N = 7).
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 25929545
PQID 1705488095
PQPubID 42232
PageCount 14
ParticipantIDs proquest_miscellaneous_1709187779
proquest_miscellaneous_1690652273
proquest_journals_1705488095
pubmed_primary_25929545
wiley_primary_10_1111_evo_12675_EVO12675
jstor_primary_24704610
istex_primary_ark_67375_WNG_8WRW9WT4_9
PublicationCentury 2000
PublicationDate June 2015
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: June 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: St. Louis
PublicationTitle Evolution
PublicationTitleAlternate Evolution
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Society for the Study of Evolution
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: Society for the Study of Evolution
– name: Oxford University Press
References McMahon, T. A. 1975. Using body size to understand the structural design of mammals: quadrupedal locomotion. J. App. Physiol. 39:619-627.
Maes, L., M. Herbin, R. Hackert, V.L. Bels, and A. Abourachid. 2008. Steady locomotion in dogs: temporal and associated spatial coordination patterns and the effect of speed. J. Exp. Biol. 211:138-149.
Hildebrand, M. 1988. Form and function in vertebrate feeding and locomotion. Amer. Zool. 727-738.
Smith, R. J. 1993. Logarithmic transformation bias in allometry. Am. J. Phys. Anthropol. 90:215-228.
Steudel, K. 1990a. The work and energetic cost of locomotion. I. The effects of limb mass distribution in quadrupeds. J. Exp. Biol. 154:273-285.
Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877-884.
Arellano, C. J., and R. Kram. 2014. Partitioning the metabolic cost of human running: a task-by-task approach. Inter. Comp. Biol. 54:1084-1098.
Heglund, N. C., and C. R. Taylor. 1988. Speed, stride frequency, and energy cost per stride: how do they change with body size and gait? J. Exp. Biol. 138:301-318.
Hildebrand, M., and J. P. Hurley. 1985. Energy of the oscillating legs of a fast-moving cheetah, pronghorn, jackrabbit, and elephant. J. Morph. 184:23-31.
Myers, M. J., and K. Steudel. 1985. Effect of limb mass and its distribution on the energetic cost of running. J. Exp. Biol. 116:363-373.
Taylor, C. R., N. C. Heglund, and G. M. O. Maloiy. 1982. Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J. Exp. Biol. 97:1-21.
Browning, R. C., J. R. Modica, R. Kram, and A. Goswami. 2007. The effects of adding mass to the legs on the energetics and biomechanics of walking. Med. Sci. Sports Exerc. 39:515-525.
Meredith, R. W., J. E. Janecka, J. Gatesy, O. A. Ryder, C. A. Fisher, E.C. Teeling, A. Goodbla, E. Eizirik, T.L.L. Simão, T. Stadler et al. 2011. Impacts of Cretaceous terrestrial revolution and KPg extinction on mammalian diversification. Science 334:521-524.
Gotschall, J. S., and R. Kram. 2005. Energy cost and muscular activity required for leg swing during walking. J. Appl. Physiol. 99:23-30.
Beaulieu, J. M., D.-C. Jhwueng, C. Boettiger, and B. C. O'Meara. 2012. Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution 66:2369-2383.
Nyakatura, J. A., M. S. Fischer, and M. Schmidt. 2008. Gait parameter adjustments of cotton-top tamarins (Saguinus oedipus, Callitrichidae) to locomotion on inclined arboreal substrates. Am. J. Phys. Anthropol. 135:13-26.
Dumont, E. R., L. M. Dávalos, A. Goldberg, S. E. Santana, K. Rex, and C. C. Voigt. 2012. Morphological innovation, diversification and invasion of a new adaptive zone Proc. R. Soc. B 279:1797-1805.
Smith, R. J. 2009. Use and misuse of the reduced major axis for line-fitting. Am. J. Phys. Anthropol. 140:476-486.
Taylor, C. R., A. Shkolnik, R. Dmi'el, D. Baharav, and A. Borut. 1974. Running in cheetahs, gazelles, and goats: energy cost and limb configuration. Am. J. Physiol. 227:848-850.
Warton, D. I., R. A. Duursma, D. S. Falster, and S. Taskinen. 2012. SMATR 3-an R package for estimation and inference about allometric lines. Met. Ecol. Evol. 3:257-259.
Holt, N.C., T.J. Roberts, and G.N. Askew. 2014. The energetic benefit of tendon springs in running: is the reduction of muscle work important? J. Exp. Biol. 217: 4365-4371.
Warton, D. I., I. J. Wright, D. S. Falster, and M. Westoby. 2006. Bivariate line-fitting methods for allometry. Biol. Rev. 81:259-291.
Luo, Z.-X. 2007. Transformation and diversification in early mammal evolution. Nature 450:1011-1019.
Coombs, W.P. Jr. 1978. Theoretical aspects of cursorial adaptations in dinosaurs. Quart. Rev. Biol. 53:393-418.
Kilbourne, B. M., and L. C. Hoffman. 2013. Scale effects between body size and limb design in quadrupedal mammals. PLoS ONE 8:e78392. doi:10.1371/journal.pone.0078392.
Lull, R. S. 1904. Adaptations to aquatic, arboreal, fossorial and cursorial habits in mammals. IV. Cursorial adaptations. Am. Nat. 28:1-11.
López-Fernández, H., J. H. Arbour, K. O. Winemiller, and R. L. Honeycutt. 2013. Testing for ancient adaptive radiations in neotropical cichlid fishes. Evolution 67:1321-1337.
Moore, A. L., J. E. Budny, A. P. Russell, and M. T. Butcher. 2013. Architectural specialization of the intrinsic thoracic limb musculature of the American badger (Taxidea taxus). J. Morph. 274:35-48.
Lee, D. V., J. E. A. Bertram, J. T. Anttonen, I. G. Ros, S. L. Harris, and A. A. Biewener. 2011. A collisional perspective on quadrupedal gait dynamics. J. R. Soc. Interface 8:1480-1486.
Lieberman, D. E., O. M. Pearson, J. D. Polk, B. Demes, and A. W. Crompton. 2003. Optimization of long bone growth and remodeling in response to loading in tapered mammalian limbs. J. Exp. Biol. 206:3125-3138.
Lapiedra O, Sol D, Carranza S, Beaulieu JM. 2013 Behavioural changes and the adaptive diversification of pigeons and doves. Proc R Soc B 280: 20122893. http://dx.doi.org/10.1098/rspb.2012.2893.
Rocha-Barbosa, O., M. Fiuza De Castro Loguercio, S. Renous, and J.-P. Gasc. 2005. Limb joint kinematics and their relation to increasing speed in the guinea pig Cavia porcellus (Mammalia: Rodentia). J. Zool. 266:293-305.
Boettiger, C., C. Coop, and P. Ralph. 2012. Is your phylogeny informative? Measuring the power of comparative methods. Evolution 66:2240-2251.
Heglund, N. C., M. A. Fedak, C. R. Taylor, and G. A. Cavagna. 1982. Energetics and mechanics of terrestrial locomotion. IV. Total mechanical energy changes as a function of speed and body size in birds and mammals. J. Exp. Biol. 97:57-66.
Raichlen, D.A. 2006. Effects of limb mass distribution on mechanical power outputs during quadrupedalism. J. Exp. Biol. 209:633-644.
Fish, F. E., P. B. Frappell, R. V. Baudinette, and P. M. MacFarlane. 2001. Energetics of terrestrial locomotion of the platypus Ornithorhynchus anatinus. J. Exp. Biol. 204:797-803.
Pollock, C. M., and R. E. Shadwick. 1994. Allometry of muscle, tendon, and elastic energy storage capacity in mammals. Am. J. Physiol. 266:1022-1031.
Wickler, S. J., D. F. Hoyt, H. M. Clayton, D. R. Mullineaux, E. A. Cogger, E. Sandoval, R. McGuire, and C. Lopez. 2004. Energetic and kinematic consequences of weighting the distal limb. Equine Vet. J. 36:772-777.
Kram, R., and C. R. Taylor. 1990. Energetics of running: a new perspective. Nature 346:265-267.
Strang, K. T., and K. Steudel. 1990. Explaining the scaling of transport costs: the role of stride frequency and stride length. J. Zool. 221:343-358.
Ruina, A., J. E. A. Bertram, and M. Srinivasan. 2005. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. J. Theor. Biol. 237:170-192.
Steudel, K. 1990b. The work and energetic cost of locomotion. II. Partitioning the cost of internal and external work within a species. J. Exp. Biol. 154: 287-303.
Doke, J., J. M. Donelan, and A. D. Kuo. 2005. Mechanics and energetics of swinging the human leg. J. Exp. Biol. 208:439-445.
Marsh, R. L., D. J. Ellerby, J. A. Carr, H. T. Henry, and C. I. Buchanan. 2004. Partitioning the energetics of walking and running: swinging the limbs is expensive. Science 303:80-83.
Collar, D. C., B. C. O'Meara, P. C. Wainwright, and T. J. Near. 2009. Piscivory limits diversification of feeding morphology in centrarchid fishes. Evolution 63:1557-1573.
Gregory, W. K. 1912. Notes on the principles of quadrupedal locomotion and on the mechanism of limbs in hoofed animals. Ann. NY Acad. Sci. 22:267-294.
Myers, M. J. 1997. Morphological conservation of limb natural pendular period in the domestic dog (Canis familiaris): implications for locomotor energetics. J. Morph. 234:183-196.
Umberger, B. R. 2010. Stance and swing phase costs in human walking. J. R. Soc. Interface 7:1329-1340.
Nakagawa, S., and I. C. Cuthill. 2007. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82:591-605.
Gillis, G. B., J. P. Flynn, P. McGuigan, and A. A. Biewener. 2005. Patterns of strain and activation in the thigh muscles of goats across gaits during level locomotion. J. Exp. Biol. 208:4599-4611.
Hurvich, C. M., and C. L. Tsai. 1989. Regression and time series model selection in small samples. Biometrika 76:297-307.
Scales, J. A., A. A. King, and M. A. Butler. 2009. Running for your life or running for your dinner: what drives fiber-type evolution in lizard locomotor muscles? Am. Nat. 173:543-553.
Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125:1-15.
Taylor, C. R., N. C. Heglund, T. A. McMahon, and T. R. Looney. 1980. Energetic cost of generating muscular force during running. J. Exp. Biol. 86:9-18.
O'Meara, B. C., C. Ane, M. J. Sanderson, and P. C. Wainwright. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922-933.
Wagenmakers, E.-J., and S. Farrell. 2004. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11:192-196.
Hutchinson, J. R., D. Schwerda, D. J. Famini, R. H. I. Dale, M. S. Fischer, and R. Kram. 2006. The locomotor kinematics of Asian and African elephants: changes with speed and size. J. Exp. Biol. 209:3812-3827.
Biewener, A. A. 1989. Scaling body support in mammals: limb posture and muscle mechanics. Science 245:45-48.
Pontzer, H. 2007. Effective limb length and the scaling of locomotor cost in terrestrial animals. J. Exp. Biol. 210:1752-1761.
Hudson, P. E., S. A. Corr, R. C. Payne-Davis, S. N. Clancy, E. Lane, and A. M. Wilson. 2011. Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb. J. Anat. 218:363-374.
Revell, L. J. 2010. Phylogenetic signal and linear regression on species data. Met. Ecol. Evol. 1:319-329.
Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Met. Ecol. Evol. 3:217-223.
Isler, K., R. C. Payne, M. M. Günther, S. K. S. Thorpe, Y. Li, R. Savage, and R. H. Cromp
2007; 39
2014; 217
1997; 234
2002; 15
1990; 346
1980; 86
2013; 67
1982; 97
1974; 227
1985; 125
2013; 280
2010; 180
2013; 8
1999; 401
1990; 221
1994; 266
2006; 60
2003; 206
2010; 1
1989; 76
2006; 209
2005; 266
2004; 36
2007; 210
1956; 42
2007; 450
1985
2011; 65
2013; 274
2012; 66
2010; 7
2014; 54
1988; 138
1988
1944
2011; 334
2009; 63
2004; 303
2011; 218
2012
1904; 28
1978; 53
1975; 39
2005; 237
2007
2009; 173
1993; 90
1912; 22
1985; 184
2011; 8
2001; 204
2006; 81
2004; 11
2012; 3
1989; 245
2005; 208
1985; 116
2007; 82
2009; 140
2014
2008; 135
2012; 279
2008; 211
1990; 154
2005; 99
References_xml – reference: Lee, D. V., J. E. A. Bertram, J. T. Anttonen, I. G. Ros, S. L. Harris, and A. A. Biewener. 2011. A collisional perspective on quadrupedal gait dynamics. J. R. Soc. Interface 8:1480-1486.
– reference: Myers, M. J. 1997. Morphological conservation of limb natural pendular period in the domestic dog (Canis familiaris): implications for locomotor energetics. J. Morph. 234:183-196.
– reference: Lapiedra O, Sol D, Carranza S, Beaulieu JM. 2013 Behavioural changes and the adaptive diversification of pigeons and doves. Proc R Soc B 280: 20122893. http://dx.doi.org/10.1098/rspb.2012.2893.
– reference: Smith, R. J. 1993. Logarithmic transformation bias in allometry. Am. J. Phys. Anthropol. 90:215-228.
– reference: Smith, R. J. 2009. Use and misuse of the reduced major axis for line-fitting. Am. J. Phys. Anthropol. 140:476-486.
– reference: Collar, D. C., J. A. Schulte, II, and J. B. Losos. 2011. Evolution of extreme body size disparity in monitor lizards (Varanus). Evolution 65:2664-2680.
– reference: Hutchinson, J. R., D. Schwerda, D. J. Famini, R. H. I. Dale, M. S. Fischer, and R. Kram. 2006. The locomotor kinematics of Asian and African elephants: changes with speed and size. J. Exp. Biol. 209:3812-3827.
– reference: Myers, M. J., and K. Steudel. 1985. Effect of limb mass and its distribution on the energetic cost of running. J. Exp. Biol. 116:363-373.
– reference: Hildebrand, M. 1988. Form and function in vertebrate feeding and locomotion. Amer. Zool. 727-738.
– reference: Hildebrand, M., and J. P. Hurley. 1985. Energy of the oscillating legs of a fast-moving cheetah, pronghorn, jackrabbit, and elephant. J. Morph. 184:23-31.
– reference: Kilbourne, B. M., and L. C. Hoffman. 2013. Scale effects between body size and limb design in quadrupedal mammals. PLoS ONE 8:e78392. doi:10.1371/journal.pone.0078392.
– reference: Taylor, C. R., A. Shkolnik, R. Dmi'el, D. Baharav, and A. Borut. 1974. Running in cheetahs, gazelles, and goats: energy cost and limb configuration. Am. J. Physiol. 227:848-850.
– reference: Browning, R. C., J. R. Modica, R. Kram, and A. Goswami. 2007. The effects of adding mass to the legs on the energetics and biomechanics of walking. Med. Sci. Sports Exerc. 39:515-525.
– reference: Gotschall, J. S., and R. Kram. 2005. Energy cost and muscular activity required for leg swing during walking. J. Appl. Physiol. 99:23-30.
– reference: Marsh, R. L., D. J. Ellerby, J. A. Carr, H. T. Henry, and C. I. Buchanan. 2004. Partitioning the energetics of walking and running: swinging the limbs is expensive. Science 303:80-83.
– reference: Gillis, G. B., J. P. Flynn, P. McGuigan, and A. A. Biewener. 2005. Patterns of strain and activation in the thigh muscles of goats across gaits during level locomotion. J. Exp. Biol. 208:4599-4611.
– reference: Gregory, W. K. 1912. Notes on the principles of quadrupedal locomotion and on the mechanism of limbs in hoofed animals. Ann. NY Acad. Sci. 22:267-294.
– reference: Pollock, C. M., and R. E. Shadwick. 1994. Allometry of muscle, tendon, and elastic energy storage capacity in mammals. Am. J. Physiol. 266:1022-1031.
– reference: Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125:1-15.
– reference: Rocha-Barbosa, O., M. Fiuza De Castro Loguercio, S. Renous, and J.-P. Gasc. 2005. Limb joint kinematics and their relation to increasing speed in the guinea pig Cavia porcellus (Mammalia: Rodentia). J. Zool. 266:293-305.
– reference: Coombs, W.P. Jr. 1978. Theoretical aspects of cursorial adaptations in dinosaurs. Quart. Rev. Biol. 53:393-418.
– reference: Kram, R., and C. R. Taylor. 1990. Energetics of running: a new perspective. Nature 346:265-267.
– reference: Umberger, B. R. 2010. Stance and swing phase costs in human walking. J. R. Soc. Interface 7:1329-1340.
– reference: Warton, D. I., I. J. Wright, D. S. Falster, and M. Westoby. 2006. Bivariate line-fitting methods for allometry. Biol. Rev. 81:259-291.
– reference: Fish, F. E., P. B. Frappell, R. V. Baudinette, and P. M. MacFarlane. 2001. Energetics of terrestrial locomotion of the platypus Ornithorhynchus anatinus. J. Exp. Biol. 204:797-803.
– reference: Pontzer, H. 2007. Effective limb length and the scaling of locomotor cost in terrestrial animals. J. Exp. Biol. 210:1752-1761.
– reference: Maes, L., M. Herbin, R. Hackert, V.L. Bels, and A. Abourachid. 2008. Steady locomotion in dogs: temporal and associated spatial coordination patterns and the effect of speed. J. Exp. Biol. 211:138-149.
– reference: Taylor, C. R., N. C. Heglund, and G. M. O. Maloiy. 1982. Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J. Exp. Biol. 97:1-21.
– reference: Dumont, E. R., L. M. Dávalos, A. Goldberg, S. E. Santana, K. Rex, and C. C. Voigt. 2012. Morphological innovation, diversification and invasion of a new adaptive zone Proc. R. Soc. B 279:1797-1805.
– reference: Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877-884.
– reference: Beaulieu, J. M., D.-C. Jhwueng, C. Boettiger, and B. C. O'Meara. 2012. Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution 66:2369-2383.
– reference: O'Meara, B. C., C. Ane, M. J. Sanderson, and P. C. Wainwright. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922-933.
– reference: Arellano, C. J., and R. Kram. 2014. Partitioning the metabolic cost of human running: a task-by-task approach. Inter. Comp. Biol. 54:1084-1098.
– reference: Lull, R. S. 1904. Adaptations to aquatic, arboreal, fossorial and cursorial habits in mammals. IV. Cursorial adaptations. Am. Nat. 28:1-11.
– reference: Heglund, N. C., and C. R. Taylor. 1988. Speed, stride frequency, and energy cost per stride: how do they change with body size and gait? J. Exp. Biol. 138:301-318.
– reference: Holt, N.C., T.J. Roberts, and G.N. Askew. 2014. The energetic benefit of tendon springs in running: is the reduction of muscle work important? J. Exp. Biol. 217: 4365-4371.
– reference: Wagenmakers, E.-J., and S. Farrell. 2004. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11:192-196.
– reference: Blomberg, S. P. and T. Garland, Jr. 2002. Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15:899-910.
– reference: Flaherty, E. A., M. Ben-David, and W. P. Smith. 2010. Quadrupedal locomotor performance in two species of arboreal squirrels: predicting energy savings of gliding. J. Comp. Physiol. B 180:1067-1078.
– reference: Taylor, C. R., N. C. Heglund, T. A. McMahon, and T. R. Looney. 1980. Energetic cost of generating muscular force during running. J. Exp. Biol. 86:9-18.
– reference: Steudel, K. 1990a. The work and energetic cost of locomotion. I. The effects of limb mass distribution in quadrupeds. J. Exp. Biol. 154:273-285.
– reference: Nyakatura, J. A., M. S. Fischer, and M. Schmidt. 2008. Gait parameter adjustments of cotton-top tamarins (Saguinus oedipus, Callitrichidae) to locomotion on inclined arboreal substrates. Am. J. Phys. Anthropol. 135:13-26.
– reference: Heglund, N. C., M. A. Fedak, C. R. Taylor, and G. A. Cavagna. 1982. Energetics and mechanics of terrestrial locomotion. IV. Total mechanical energy changes as a function of speed and body size in birds and mammals. J. Exp. Biol. 97:57-66.
– reference: McMahon, T. A. 1975. Using body size to understand the structural design of mammals: quadrupedal locomotion. J. App. Physiol. 39:619-627.
– reference: Biewener, A. A. 1989. Scaling body support in mammals: limb posture and muscle mechanics. Science 245:45-48.
– reference: Strang, K. T., and K. Steudel. 1990. Explaining the scaling of transport costs: the role of stride frequency and stride length. J. Zool. 221:343-358.
– reference: Luo, Z.-X. 2007. Transformation and diversification in early mammal evolution. Nature 450:1011-1019.
– reference: Boettiger, C., C. Coop, and P. Ralph. 2012. Is your phylogeny informative? Measuring the power of comparative methods. Evolution 66:2240-2251.
– reference: Raichlen, D.A. 2006. Effects of limb mass distribution on mechanical power outputs during quadrupedalism. J. Exp. Biol. 209:633-644.
– reference: Meredith, R. W., J. E. Janecka, J. Gatesy, O. A. Ryder, C. A. Fisher, E.C. Teeling, A. Goodbla, E. Eizirik, T.L.L. Simão, T. Stadler et al. 2011. Impacts of Cretaceous terrestrial revolution and KPg extinction on mammalian diversification. Science 334:521-524.
– reference: Collar, D. C., B. C. O'Meara, P. C. Wainwright, and T. J. Near. 2009. Piscivory limits diversification of feeding morphology in centrarchid fishes. Evolution 63:1557-1573.
– reference: Scales, J. A., A. A. King, and M. A. Butler. 2009. Running for your life or running for your dinner: what drives fiber-type evolution in lizard locomotor muscles? Am. Nat. 173:543-553.
– reference: Lieberman, D. E., O. M. Pearson, J. D. Polk, B. Demes, and A. W. Crompton. 2003. Optimization of long bone growth and remodeling in response to loading in tapered mammalian limbs. J. Exp. Biol. 206:3125-3138.
– reference: Moore, A. L., J. E. Budny, A. P. Russell, and M. T. Butcher. 2013. Architectural specialization of the intrinsic thoracic limb musculature of the American badger (Taxidea taxus). J. Morph. 274:35-48.
– reference: Nakagawa, S., and I. C. Cuthill. 2007. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82:591-605.
– reference: Warton, D. I., R. A. Duursma, D. S. Falster, and S. Taskinen. 2012. SMATR 3-an R package for estimation and inference about allometric lines. Met. Ecol. Evol. 3:257-259.
– reference: López-Fernández, H., J. H. Arbour, K. O. Winemiller, and R. L. Honeycutt. 2013. Testing for ancient adaptive radiations in neotropical cichlid fishes. Evolution 67:1321-1337.
– reference: Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Met. Ecol. Evol. 3:217-223.
– reference: Wickler, S. J., D. F. Hoyt, H. M. Clayton, D. R. Mullineaux, E. A. Cogger, E. Sandoval, R. McGuire, and C. Lopez. 2004. Energetic and kinematic consequences of weighting the distal limb. Equine Vet. J. 36:772-777.
– reference: Hurvich, C. M., and C. L. Tsai. 1989. Regression and time series model selection in small samples. Biometrika 76:297-307.
– reference: Revell, L. J. 2010. Phylogenetic signal and linear regression on species data. Met. Ecol. Evol. 1:319-329.
– reference: Steudel, K. 1990b. The work and energetic cost of locomotion. II. Partitioning the cost of internal and external work within a species. J. Exp. Biol. 154: 287-303.
– reference: Isler, K., R. C. Payne, M. M. Günther, S. K. S. Thorpe, Y. Li, R. Savage, and R. H. Crompton. 2006. Inertial properties of hominoid limb segments. J. Anat. 209:201-218.
– reference: Hudson, P. E., S. A. Corr, R. C. Payne-Davis, S. N. Clancy, E. Lane, and A. M. Wilson. 2011. Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb. J. Anat. 218:363-374.
– reference: Ruina, A., J. E. A. Bertram, and M. Srinivasan. 2005. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. J. Theor. Biol. 237:170-192.
– reference: Doke, J., J. M. Donelan, and A. D. Kuo. 2005. Mechanics and energetics of swinging the human leg. J. Exp. Biol. 208:439-445.
– reference: Smith, J. M., and R. J. Savage. 1956. Some locomotory adaptations in mammals. Zool. J. Linn. Soc. 42:603-622.
– volume: 180
  start-page: 1067
  year: 2010
  end-page: 1078
  article-title: Quadrupedal locomotor performance in two species of arboreal squirrels: predicting energy savings of gliding
  publication-title: J. Comp. Physiol. B
– start-page: 38
  year: 1985
  end-page: 57
– volume: 15
  start-page: 899
  year: 2002
  end-page: 910
  article-title: Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods
  publication-title: J. Evol. Biol.
– volume: 173
  start-page: 543
  year: 2009
  end-page: 553
  article-title: Running for your life or running for your dinner: what drives fiber‐type evolution in lizard locomotor muscles?
  publication-title: Am. Nat.
– volume: 8
  start-page: 1480
  year: 2011
  end-page: 1486
  article-title: A collisional perspective on quadrupedal gait dynamics
  publication-title: J. R. Soc. Interface
– volume: 210
  start-page: 1752
  year: 2007
  end-page: 1761
  article-title: Effective limb length and the scaling of locomotor cost in terrestrial animals
  publication-title: J. Exp. Biol.
– volume: 303
  start-page: 80
  year: 2004
  end-page: 83
  article-title: Partitioning the energetics of walking and running: swinging the limbs is expensive
  publication-title: Science
– volume: 54
  start-page: 1084
  year: 2014
  end-page: 1098
  article-title: Partitioning the metabolic cost of human running: a task‐by‐task approach
  publication-title: Inter. Comp. Biol.
– volume: 60
  start-page: 922
  year: 2006
  end-page: 933
  article-title: Testing for different rates of continuous trait evolution using likelihood
  publication-title: Evolution
– volume: 3
  start-page: 257
  year: 2012
  end-page: 259
  article-title: SMATR 3—an R package for estimation and inference about allometric lines
  publication-title: Met. Ecol. Evol.
– volume: 135
  start-page: 13
  year: 2008
  end-page: 26
  article-title: Gait parameter adjustments of cotton‐top tamarins ( , Callitrichidae) to locomotion on inclined arboreal substrates
  publication-title: Am. J. Phys. Anthropol.
– volume: 266
  start-page: 1022
  year: 1994
  end-page: 1031
  article-title: Allometry of muscle, tendon, and elastic energy storage capacity in mammals
  publication-title: Am. J. Physiol.
– volume: 209
  start-page: 633
  year: 2006
  end-page: 644
  article-title: Effects of limb mass distribution on mechanical power outputs during quadrupedalism
  publication-title: J. Exp. Biol
– volume: 245
  start-page: 45
  year: 1989
  end-page: 48
  article-title: Scaling body support in mammals: limb posture and muscle mechanics
  publication-title: Science
– volume: 53
  start-page: 393
  year: 1978
  end-page: 418
  article-title: Theoretical aspects of cursorial adaptations in dinosaurs
  publication-title: Quart. Rev. Biol
– volume: 97
  start-page: 57
  year: 1982
  end-page: 66
  article-title: Energetics and mechanics of terrestrial locomotion. IV. Total mechanical energy changes as a function of speed and body size in birds and mammals
  publication-title: J. Exp. Biol.
– volume: 7
  start-page: 1329
  year: 2010
  end-page: 1340
  article-title: Stance and swing phase costs in human walking
  publication-title: J. R. Soc. Interface
– volume: 82
  start-page: 591
  year: 2007
  end-page: 605
  article-title: Effect size, confidence interval and statistical significance: a practical guide for biologists
  publication-title: Biol. Rev.
– volume: 99
  start-page: 23
  year: 2005
  end-page: 30
  article-title: Energy cost and muscular activity required for leg swing during walking
  publication-title: J. Appl. Physiol.
– volume: 138
  start-page: 301
  year: 1988
  end-page: 318
  article-title: Speed, stride frequency, and energy cost per stride: how do they change with body size and gait?
  publication-title: J. Exp. Biol.
– volume: 11
  start-page: 192
  year: 2004
  end-page: 196
  article-title: AIC model selection using Akaike weights
  publication-title: Psychon. Bull. Rev.
– volume: 208
  start-page: 439
  year: 2005
  end-page: 445
  article-title: Mechanics and energetics of swinging the human leg
  publication-title: J. Exp. Biol.
– volume: 66
  start-page: 2240
  year: 2012
  end-page: 2251
  article-title: Is your phylogeny informative? Measuring the power of comparative methods
  publication-title: Evolution
– start-page: 245
  year: 2007
  end-page: 268
– year: 2014
  article-title: lmodel2: model II regression
– volume: 125
  start-page: 1
  year: 1985
  end-page: 15
  article-title: Phylogenies and the comparative method
  publication-title: Am. Nat.
– volume: 346
  start-page: 265
  year: 1990
  end-page: 267
  article-title: Energetics of running: a new perspective
  publication-title: Nature
– volume: 217
  start-page: 4365
  year: 2014
  end-page: 4371
  article-title: The energetic benefit of tendon springs in running: is the reduction of muscle work important
  publication-title: J. Exp. Biol
– volume: 42
  start-page: 603
  year: 1956
  end-page: 622
  article-title: Some locomotory adaptations in mammals
  publication-title: Zool. J. Linn. Soc.
– volume: 86
  start-page: 9
  year: 1980
  end-page: 18
  article-title: Energetic cost of generating muscular force during running
  publication-title: J. Exp. Biol.
– volume: 8
  start-page: e78392
  year: 2013
  article-title: Scale effects between body size and limb design in quadrupedal mammals
  publication-title: PLoS ONE
– volume: 39
  start-page: 619
  year: 1975
  end-page: 627
  article-title: Using body size to understand the structural design of mammals: quadrupedal locomotion
  publication-title: J. App. Physiol.
– volume: 234
  start-page: 183
  year: 1997
  end-page: 196
  article-title: Morphological conservation of limb natural pendular period in the domestic dog ( ): implications for locomotor energetics
  publication-title: J. Morph.
– volume: 154
  start-page: 287
  year: 1990
  end-page: 303
  article-title: The work and energetic cost of locomotion. II. Partitioning the cost of internal and external work within a species
  publication-title: J. Exp. Biol
– volume: 208
  start-page: 4599
  year: 2005
  end-page: 4611
  article-title: Patterns of strain and activation in the thigh muscles of goats across gaits during level locomotion
  publication-title: J. Exp. Biol.
– volume: 66
  start-page: 2369
  year: 2012
  end-page: 2383
  article-title: Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution
  publication-title: Evolution
– volume: 22
  start-page: 267
  year: 1912
  end-page: 294
  article-title: Notes on the principles of quadrupedal locomotion and on the mechanism of limbs in hoofed animals
  publication-title: Ann. NY Acad. Sci.
– volume: 227
  start-page: 848
  year: 1974
  end-page: 850
  article-title: Running in cheetahs, gazelles, and goats: energy cost and limb configuration
  publication-title: Am. J. Physiol.
– volume: 184
  start-page: 23
  year: 1985
  end-page: 31
  article-title: Energy of the oscillating legs of a fast‐moving cheetah, pronghorn, jackrabbit, and elephant
  publication-title: J. Morph.
– year: 1944
– volume: 280
  year: 2013
  article-title: Behavioural changes and the adaptive diversification of pigeons and doves
  publication-title: Proc R Soc B
– volume: 36
  start-page: 772
  year: 2004
  end-page: 777
  article-title: Energetic and kinematic consequences of weighting the distal limb
  publication-title: Equine Vet. J.
– year: 2012
  article-title: R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing
– volume: 450
  start-page: 1011
  year: 2007
  end-page: 1019
  article-title: Transformation and diversification in early mammal evolution
  publication-title: Nature
– volume: 116
  start-page: 363
  year: 1985
  end-page: 373
  article-title: Effect of limb mass and its distribution on the energetic cost of running
  publication-title: J. Exp. Biol.
– volume: 140
  start-page: 476
  year: 2009
  end-page: 486
  article-title: Use and misuse of the reduced major axis for line‐fitting
  publication-title: Am. J. Phys. Anthropol.
– volume: 97
  start-page: 1
  year: 1982
  end-page: 21
  article-title: Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals
  publication-title: J. Exp. Biol.
– volume: 206
  start-page: 3125
  year: 2003
  end-page: 3138
  article-title: Optimization of long bone growth and remodeling in response to loading in tapered mammalian limbs
  publication-title: J. Exp. Biol.
– start-page: 727
  year: 1988
  end-page: 738
  article-title: Form and function in vertebrate feeding and locomotion
  publication-title: Amer. Zool
– volume: 279
  start-page: 1797
  year: 2012
  end-page: 1805
  article-title: Morphological innovation, diversification and invasion of a new adaptive zone
  publication-title: Proc. R. Soc. B
– volume: 39
  start-page: 515
  year: 2007
  end-page: 525
  article-title: The effects of adding mass to the legs on the energetics and biomechanics of walking
  publication-title: Med. Sci. Sports Exerc.
– volume: 209
  start-page: 201
  year: 2006
  end-page: 218
  article-title: Inertial properties of hominoid limb segments
  publication-title: J. Anat.
– volume: 3
  start-page: 217
  year: 2012
  end-page: 223
  article-title: phytools: an R package for phylogenetic comparative biology (and other things)
  publication-title: Met. Ecol. Evol.
– volume: 65
  start-page: 2664
  year: 2011
  end-page: 2680
  article-title: Evolution of extreme body size disparity in monitor lizards ( )
  publication-title: Evolution
– volume: 401
  start-page: 877
  year: 1999
  end-page: 884
  article-title: Inferring the historical patterns of biological evolution
  publication-title: Nature
– volume: 274
  start-page: 35
  year: 2013
  end-page: 48
  article-title: Architectural specialization of the intrinsic thoracic limb musculature of the American badger ( )
  publication-title: J. Morph.
– volume: 334
  start-page: 521
  year: 2011
  end-page: 524
  article-title: Impacts of Cretaceous terrestrial revolution and KPg extinction on mammalian diversification
  publication-title: Science
– volume: 90
  start-page: 215
  year: 1993
  end-page: 228
  article-title: Logarithmic transformation bias in allometry
  publication-title: Am. J. Phys. Anthropol.
– volume: 211
  start-page: 138
  year: 2008
  end-page: 149
  article-title: Steady locomotion in dogs: temporal and associated spatial coordination patterns and the effect of speed
  publication-title: J. Exp. Biol
– volume: 266
  start-page: 293
  year: 2005
  end-page: 305
  article-title: Limb joint kinematics and their relation to increasing speed in the guinea pig (Mammalia: Rodentia)
  publication-title: J. Zool.
– volume: 76
  start-page: 297
  year: 1989
  end-page: 307
  article-title: Regression and time series model selection in small samples
  publication-title: Biometrika
– volume: 218
  start-page: 363
  year: 2011
  end-page: 374
  article-title: Functional anatomy of the cheetah ( ) hindlimb
  publication-title: J. Anat.
– volume: 204
  start-page: 797
  year: 2001
  end-page: 803
  article-title: Energetics of terrestrial locomotion of the platypus
  publication-title: J. Exp. Biol.
– volume: 81
  start-page: 259
  year: 2006
  end-page: 291
  article-title: Bivariate line‐fitting methods for allometry
  publication-title: Biol. Rev.
– volume: 1
  start-page: 319
  year: 2010
  end-page: 329
  article-title: Phylogenetic signal and linear regression on species data
  publication-title: Met. Ecol. Evol.
– volume: 67
  start-page: 1321
  year: 2013
  end-page: 1337
  article-title: Testing for ancient adaptive radiations in neotropical cichlid fishes
  publication-title: Evolution
– volume: 209
  start-page: 3812
  year: 2006
  end-page: 3827
  article-title: The locomotor kinematics of Asian and African elephants: changes with speed and size
  publication-title: J. Exp. Biol.
– volume: 154
  start-page: 273
  year: 1990
  end-page: 285
  article-title: The work and energetic cost of locomotion. I. The effects of limb mass distribution in quadrupeds
  publication-title: J. Exp. Biol.
– volume: 28
  start-page: 1
  year: 1904
  end-page: 11
  article-title: Adaptations to aquatic, arboreal, fossorial and cursorial habits in mammals
  publication-title: Am. Nat.
– volume: 237
  start-page: 170
  year: 2005
  end-page: 192
  article-title: A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo‐elastic leg behavior in running and the walk‐to‐run transition
  publication-title: J. Theor. Biol.
– volume: 221
  start-page: 343
  year: 1990
  end-page: 358
  article-title: Explaining the scaling of transport costs: the role of stride frequency and stride length
  publication-title: J. Zool.
– volume: 63
  start-page: 1557
  year: 2009
  end-page: 1573
  article-title: Piscivory limits diversification of feeding morphology in centrarchid fishes
  publication-title: Evolution
SSID ssj0009519
Score 2.2330434
Snippet Differences in limb size and shape are fundamental to mammalian morphological diversity; however, their relevance to locomotor costs has long been subject to...
SourceID proquest
pubmed
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1546
SubjectTerms Adaptation
Adaptation, Physiological
Allometry
Animal behavior
Animal morphology
Animals
Biodiversity
Biological adaptation
Biological Evolution
Body size
Body Size - physiology
Cost efficiency
Evolution
Extremities - anatomy & histology
Extremities - physiology
Gyration
Locomotion
Locomotion - physiology
macroevolution
Mammals
Mammals - anatomy & histology
Mammals - physiology
Mass
morphological evolution
Morphology
Phylogenetics
Regression analysis
Species Specificity
Swimming
Title Energetic benefits and adaptations in mammalian limbs: Scale effects and selective pressures
URI https://api.istex.fr/ark:/67375/WNG-8WRW9WT4-9/fulltext.pdf
https://www.jstor.org/stable/24704610
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fevo.12675
https://www.ncbi.nlm.nih.gov/pubmed/25929545
https://www.proquest.com/docview/1705488095
https://www.proquest.com/docview/1690652273
https://www.proquest.com/docview/1709187779
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0014-3820
  databaseCode: DR2
  dateStart: 20000101
  customDbUrl:
  isFulltext: true
  eissn: 1558-5646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009519
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RaxQxEA6lUPBFrbV62koKIr7s0dwmm019knJtKVihtl4fCiHJJnDU2yvdO7H-emeS3bVKkeLL7kISNruTmXxJZr4h5G0OkxoLjmeOWZnxwmCaFz_K3G7gzMmqFAUGCn86KY7O-fGFuFghH7pYmMQP0W-4oWZEe40KbmxzR8n99_mQjQDvgv1luYhHtKejO4S7LEFfxrMcprmWVQi9ePqWAEjxX_7ofBHvQ5l_gtY46xw8IZddf5OzydVwubBD9_MvKsf__KCn5HGLRunHNHzWyYqvn5G1lJ_ydoNcjjEyEMMcqQWbGKaLhpq6oqYy1-kIv6HTms7MbBa3S-i36cw2e_QLCN7T1lUktmhiuh2wrDQ63i7h8pycH4zP9o-yNh1DNhUYoiBcBWBRKcls6XzOKl9hqhIkvFGVN7vBOYsE9TDrwl0IF0ormAdBcGGMlPkmWa3ntX9JqCxgmQMLcxFsybkpjStZUDYEYVVReT8g76Jg9HWi3NDm5go90KTQk5NDXU5OJ2pyxrUakM0oub7iiMtIIT8gW50odauVjUbqIDRYSgzITl8M-oSHJKb28yXUQeZmAKUy_0cdCSgLiRTh_S_SMPndAaHw6BTe8D4Kuy_oVlsgZh3FrMdfP8eHVw-v-po8AsQmkq_aFlld3Cz9NqCihX0Th_8v6mgHNA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQQvfA_KBhgJIV5SzY0dJ9NeEHQU2Io0OroHkGU7jlSNptPSIthfz53zwUAIIV6SSD4rTs5n_2zf_Q7gaYyTGi-ciBy3KhKJoTQvfhC57UJwp_JUJhQofDBORkfi7bE8XoPdNham5ofoNtzIMsJ4TQZOG9IXrNx_XfT5AAHvJbhM53Nklq8OBxcod3kNfrmIYpzoGl4h8uPpqiIkpb_5rfVG_BPO_BW2hnln7wZ8bltcu5uc9FdL23fnv5E5_u8n3YTrDSBlL-oedAvWfHkbrtQpKr_fgU9DCg6kSEdmcVgsZsuKmTJnJjen9Sl-xWYlm5v5POyYsC-zua122AfUvWeNt0ioUYWMOzi4suB7u8LLXTjaG05ejqImI0M0kxSlIF2OeDHLFLep8zHPfU7ZSojzJsu92S6cs8RRjxMv3qV0RWol96gJIY1RKt6A9XJR-vvAVIIrHVyby8KmQpjUuJQXmS0KabMk974Hz4Jm9GnNuqHN2Qk5oSmpp-PXOp0eTrPpROisBxtBdZ3gQKjAIt-DrVaXujHMShN7EI1ZmezBk64YTYrOSUzpFyuUIfJmxKUq_ouMQqBFXIr4_nt1P_nZAJnR6Sm-4XnQdlfQLrhQzTqoWQ8_vg8PD_5d9DFcHU0O9vX-m_G7TbiGAE7WrmtbsL48W_mHCJKW9lGwhR9UZwtQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIRAvfA8KA4yEEC-p5saOE3hC0DK-ChrbuodJlu3YUjWaVkuLgL-eOycpAyGEeEki2VacnM_-nX33O4BHKS5qPDiROG5VIjJDaV78IHE7QXCnylxmFCj8fpztHog3R_JoA551sTANP8R6w400I87XpOCLMpxRcv9l3ucDxLvn4LzI0LoiRLQ3OMO4yxvsy0WS4jrX0gqRG8-6KSJS-plfO2fEP8HMX1FrXHZGV-C463DjbXLSXy1t333_jcvxP7_oKlxu4Sh73oyfa7Dhq-twoUlQ-e0GHA8pNJDiHJnFSTFMlzUzVclMaRbNGX7NphWbmdks7pewz9OZrZ-yTyh5z1pfkdiijvl2cGpl0fN2hZebcDAa7r_YTdp8DMlUUoyCdCWixaJQ3ObOp7z0JeUqIcabovRmJzhniaEel128S-lCbiX3KAghjVEq3YLNal7528BUhnYOWuYy2FwIkxuX81DYEKQtstL7HjyOgtGLhnNDm9MTckFTUk_Gr3Q-2ZsUk32hix5sRcmtKw6EihzyPdjuRKlbtaw1cQfRjFXIHjxcF6NC0SmJqfx8hXWIuhlRqUr_UkchzCImRXz_rWaY_OyALOjsFN_wJAp7XdCZWyhmHcWsh4cf4sOdf6_6AC5-fDnS716P396FS4jeZOO3tg2by9OVv4cIaWnvR034ASz-Cf8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energetic+benefits+and+adaptations+in+mammalian+limbs%3A+Scale+effects+and+selective+pressures&rft.jtitle=Evolution&rft.au=Kilbourne%2C+Brandon+M.&rft.au=Hoffman%2C+Louwrens+C.&rft.date=2015-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0014-3820&rft.eissn=1558-5646&rft.volume=69&rft.issue=6&rft.spage=1546&rft.epage=1559&rft_id=info:doi/10.1111%2Fevo.12675&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_8WRW9WT4_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-3820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-3820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-3820&client=summon