Energetic benefits and adaptations in mammalian limbs: Scale effects and selective pressures
Differences in limb size and shape are fundamental to mammalian morphological diversity; however, their relevance to locomotor costs has long been subject to debate. In particular, it remains unknown if scale effects in whole limb morphology could partially underlie decreasing mass-specific locomoto...
Saved in:
Published in | Evolution Vol. 69; no. 6; pp. 1546 - 1559 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.06.2015
Society for the Study of Evolution Oxford University Press |
Subjects | |
Online Access | Get full text |
ISSN | 0014-3820 1558-5646 1558-5646 |
DOI | 10.1111/evo.12675 |
Cover
Abstract | Differences in limb size and shape are fundamental to mammalian morphological diversity; however, their relevance to locomotor costs has long been subject to debate. In particular, it remains unknown if scale effects in whole limb morphology could partially underlie decreasing mass-specific locomotor costs with increasing limb length. Whole fore- and hindlimb inertial properties reflecting limb size and shape—moment of inertia (MOI), mass, mass distribution, and natural frequency—were regressed against limb length for 44 species of quadrupedal mammals. Limb mass, MOI, and center of mass position are negatively allometric, having a strong potential for lowering mass-specific locomotor costs in large terrestrial mammals. Negative allometry of limb MOI results in a 40% reduction in MOI relative to isometry's prediction for our largest sampled taxa. However, fitting regression residuals to adaptive diversification models reveals that codiversification of limb mass, limb length, and body mass likely results from selection for differing locomotor modes of running, climbing, digging, and swimming. The observed allometric scaling does not result from selection for energetically beneficial whole limb morphology with increasing size. Instead, our data suggest that it is a consequence of differing morphological adaptations and body size distributions among quadrupedal mammals, highlighting the role of differing limb functions in mammalian evolution. |
---|---|
AbstractList | Differences in limb size and shape are fundamental to mammalian morphological diversity; however, their relevance to locomotor costs has long been subject to debate. In particular, it remains unknown if scale effects in whole limb morphology could partially underlie decreasing mass‐specific locomotor costs with increasing limb length. Whole fore‐ and hindlimb inertial properties reflecting limb size and shape—moment of inertia (MOI), mass, mass distribution, and natural frequency—were regressed against limb length for 44 species of quadrupedal mammals. Limb mass, MOI, and center of mass position are negatively allometric, having a strong potential for lowering mass‐specific locomotor costs in large terrestrial mammals. Negative allometry of limb MOI results in a 40% reduction in MOI relative to isometry's prediction for our largest sampled taxa. However, fitting regression residuals to adaptive diversification models reveals that codiversification of limb mass, limb length, and body mass likely results from selection for differing locomotor modes of running, climbing, digging, and swimming. The observed allometric scaling does not result from selection for energetically beneficial whole limb morphology with increasing size. Instead, our data suggest that it is a consequence of differing morphological adaptations and body size distributions among quadrupedal mammals, highlighting the role of differing limb functions in mammalian evolution. Differences in limb size and shape are fundamental to mammalian morphological diversity; however, their relevance to locomotor costs has long been subject to debate. In particular, it remains unknown if scale effects in whole limb morphology could partially underlie decreasing mass-specific locomotor costs with increasing limb length. Whole fore- and hindlimb inertial properties reflecting limb size and shape-moment of inertia (MOI), mass, mass distribution, and natural frequency-were regressed against limb length for 44 species of quadrupedal mammals. Limb mass, MOI, and center of mass position are negatively allometric, having a strong potential for lowering mass-specific locomotor costs in large terrestrial mammals. Negative allometry of limb MOI results in a 40% reduction in MOI relative to isometry's prediction for our largest sampled taxa. However, fitting regression residuals to adaptive diversification models reveals that codiversification of limb mass, limb length, and body mass likely results from selection for differing locomotor modes of running, climbing, digging, and swimming. The observed allometric scaling does not result from selection for energetically beneficial whole limb morphology with increasing size. Instead, our data suggest that it is a consequence of differing morphological adaptations and body size distributions among quadrupedal mammals, highlighting the role of differing limb functions in mammalian evolution.Differences in limb size and shape are fundamental to mammalian morphological diversity; however, their relevance to locomotor costs has long been subject to debate. In particular, it remains unknown if scale effects in whole limb morphology could partially underlie decreasing mass-specific locomotor costs with increasing limb length. Whole fore- and hindlimb inertial properties reflecting limb size and shape-moment of inertia (MOI), mass, mass distribution, and natural frequency-were regressed against limb length for 44 species of quadrupedal mammals. Limb mass, MOI, and center of mass position are negatively allometric, having a strong potential for lowering mass-specific locomotor costs in large terrestrial mammals. Negative allometry of limb MOI results in a 40% reduction in MOI relative to isometry's prediction for our largest sampled taxa. However, fitting regression residuals to adaptive diversification models reveals that codiversification of limb mass, limb length, and body mass likely results from selection for differing locomotor modes of running, climbing, digging, and swimming. The observed allometric scaling does not result from selection for energetically beneficial whole limb morphology with increasing size. Instead, our data suggest that it is a consequence of differing morphological adaptations and body size distributions among quadrupedal mammals, highlighting the role of differing limb functions in mammalian evolution. |
Author | Hoffman, Louwrens C. Kilbourne, Brandon M. |
Author_xml | – sequence: 1 givenname: Brandon M. surname: Kilbourne fullname: Kilbourne, Brandon M. email: Brandon.Kilbourne@wiko-berlin.de organization: Committee on Evolutionary Biology, University of Chicago, 1025 E 57th Street, Culver Hall 402, 60637, Chicago, Illinois – sequence: 2 givenname: Louwrens C. surname: Hoffman fullname: Hoffman, Louwrens C. organization: Department of Animal Sciences, Stellenbosch University, 7602, Private Bag X1, Matieland, South Africa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25929545$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1P3DAQhi0EguXjwA9oZamXXgLjxI7t3iq0pUioSEC7FyTLcSaVt4mzxAkt_76GXajEpT54RnqfeUczs0-2Qx-QkGMGJyy9U3zoT1heSrFFZkwIlYmSl9tkBsB4Vqgc9sh-jEsA0ILpXbKXC51rwcWM3M0DDj9x9I5WGLDxY6Q21NTWdjXa0fchUh9oZ7vOtt4G2vquip_ojbMtUmwadJuKiG3K_QPS1YAxTuk7JDuNbSMebeIB-f5lfnv2Nbu8Or84-3yZeQFKZMLVWkqtJauUw4LVWPNScihA6RotNM5VwFWBWKcohGtUJRimWbiwVsrigHxc-66G_n7COJrOR4dtawP2UzRMgmZKph7_R0sNpchzWST0wxt02U9DSIM8GQquVFpnot5vqKnqsDarwXd2eDQvK07A6Rr47Vt8fNUZmKfbmXQ783w7M_9x9ZykinfrimUc--GfI5fASwZJz9a6jyP-edXt8MuUskhOi2_nRi2uF3pxy40u_gJlp6U5 |
ContentType | Journal Article |
Copyright | Copyrightc 2015 Society for the Study of Evolution 2015 The Author(s). © 2015 The Society for the Study of Evolution. 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution. Copyright Wiley Subscription Services, Inc. Jun 2015 |
Copyright_xml | – notice: Copyrightc 2015 Society for the Study of Evolution – notice: 2015 The Author(s). © 2015 The Society for the Study of Evolution. – notice: 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution. – notice: Copyright Wiley Subscription Services, Inc. Jun 2015 |
DBID | BSCLL CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.1111/evo.12675 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Ecology Abstracts Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1558-5646 |
EndPage | 1559 |
ExternalDocumentID | 3782752891 25929545 EVO12675 24704610 ark_67375_WNG_8WRW9WT4_9 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- --Z -JH -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29G 2AX 31~ 33P 3O- 3SF 4.4 41~ 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 5WD 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAISJ AAKGQ AAMMB AANHP AAONW AAPSS AAPXW AARHZ AASGY AAUAY AAVAP AAWDT AAXRX AAZKR ABBHK ABCQN ABCUV ABDFA ABDPE ABEJV ABEML ABGNP ABIME ABJNI ABLJU ABMNT ABPIB ABPLY ABPPZ ABPTD ABPVW ABSQW ABTLG ABWJO ABXSQ ABXVV ABXZS ABZEO ACAHQ ACBWZ ACCZN ACFBH ACFRR ACGFO ACGFS ACGOD ACHIC ACIPB ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACSCC ACSTJ ACUFI ACUTJ ACVCV ACXBN ACXQS ACYXJ ACZBC ADBBV ADEOM ADGKP ADHSS ADIPN ADIZJ ADKYN ADMGS ADNMO ADOZA ADQBN ADULT ADXAS ADXHL ADZMN AEFGJ AEGXH AEIMD AENEX AEPYG AEUPB AFAZZ AFBPY AFFDN AFFIJ AFGKR AFGWE AFKWF AFNWH AFRAH AFYAG AFZJQ AGMDO AGQPQ AGUYK AGXDD AHGBF AHXOZ AI. AIAGR AIDQK AIDYY AILXY AIURR AJAOE AJBYB AJDVS AJNCP AJXKR AKPMI ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANFBD APJGH AQVQM ASPBG AS~ ATGXG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BCRHZ BDRZF BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CBGCD COF CS3 CUYZI D-E D-F D0L D0S DC7 DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FAC FAL FAS FD6 FEDTE FJD FJW G-S G.N GODZA GTFYD H.T H.X H13 HF~ HGD HQ2 HTVGU HVGLF HZ~ IAG IAO IEA IEP IOF IPSME ISM ITC IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 KOP LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NHB NQS NU- O66 O9- OBOKY OIG OJZSN OK1 OVD OWPYF P-O P2P P2W P2X P4D PQ0 PQQKQ Q.N Q11 Q5J QB0 R.K RBO ROL ROX RWL RX1 RXW SA0 SJN SUPJJ TAE TCN TEORI TN5 UB1 UBC UHB UQL V8K VH1 VJK W8V W99 WBKPD WH7 WHG WIH WIK WNSPC WOHZO WQJ WYISQ XG1 XSW YXE YYP YZZ ZCA ZCG ZZTAW ~02 ~IA ~KM ~WT ACSIT AGORE CGR CUY CVF ECM EIF NPM XOL 7QG 7QL 7QP 7QR 7SN 7SS 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-i5085-5cd9779971b8ce31ded467403089dea0fccb0483eedb0455cf8b51e95145aa773 |
IEDL.DBID | DR2 |
ISSN | 0014-3820 1558-5646 |
IngestDate | Sun Sep 28 07:39:50 EDT 2025 Sun Sep 28 10:23:44 EDT 2025 Fri Jul 25 10:42:48 EDT 2025 Mon Jul 21 06:00:42 EDT 2025 Thu Sep 25 07:34:07 EDT 2025 Thu Jul 03 21:24:16 EDT 2025 Sun Sep 21 06:18:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | macroevolution phylogenetics allometry mammals morphological evolution Adaptation |
Language | English |
License | 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i5085-5cd9779971b8ce31ded467403089dea0fccb0483eedb0455cf8b51e95145aa773 |
Notes | istex:0233F38E0514F379274F849FFFE5F502F88896E2 ArticleID:EVO12675 ark:/67375/WNG-8WRW9WT4-9 Figure S1. Experimental setup to measure limb inertial properties. Tabel S1. Mammalian species sampled for our study. Tabel S2. Estimation of measurement error in our methodology to measure limb inertial properties. Tabel S3. Exponents predicted by geometric similarity for the inertial properties included in this study along with a short definition of each inertial property. Tabel S4. Phylogenies used to scale divergence times within the composite phylogeny. Tabel S5. Tests for phylogenetic signal when using GLS residuals. Tabel S6. Results of PGLS regressions estimating λ alongside other regression parameters. Tabel S7. Parameter estimates for single-rate Brownian motion and single-optimum Ornstein-Uhlenbeck models. Tabel S8. Parameter estimates for Brownian motion models based upon locomotor specializations. Tabel S9. Parameter estimates for Ornstein-Uhlenbeck models based upon locomotor specializations. Tabel S10. Parameter estimates for Brownian motion models based upon body size. Tabel S11. Parameter estimates for Ornstein-Uhlenbeck models based upon differences in body size. Tabel S12. Differences in the scaling of limb length, limb mass, and limb MOI between cursors (N = 25) and scansors (N = 7). SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 25929545 |
PQID | 1705488095 |
PQPubID | 42232 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1709187779 proquest_miscellaneous_1690652273 proquest_journals_1705488095 pubmed_primary_25929545 wiley_primary_10_1111_evo_12675_EVO12675 jstor_primary_24704610 istex_primary_ark_67375_WNG_8WRW9WT4_9 |
PublicationCentury | 2000 |
PublicationDate | June 2015 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: June 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: St. Louis |
PublicationTitle | Evolution |
PublicationTitleAlternate | Evolution |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Society for the Study of Evolution Oxford University Press |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Society for the Study of Evolution – name: Oxford University Press |
References | McMahon, T. A. 1975. Using body size to understand the structural design of mammals: quadrupedal locomotion. J. App. Physiol. 39:619-627. Maes, L., M. Herbin, R. Hackert, V.L. Bels, and A. Abourachid. 2008. Steady locomotion in dogs: temporal and associated spatial coordination patterns and the effect of speed. J. Exp. Biol. 211:138-149. Hildebrand, M. 1988. Form and function in vertebrate feeding and locomotion. Amer. Zool. 727-738. Smith, R. J. 1993. Logarithmic transformation bias in allometry. Am. J. Phys. Anthropol. 90:215-228. Steudel, K. 1990a. The work and energetic cost of locomotion. I. The effects of limb mass distribution in quadrupeds. J. Exp. Biol. 154:273-285. Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877-884. Arellano, C. J., and R. Kram. 2014. Partitioning the metabolic cost of human running: a task-by-task approach. Inter. Comp. Biol. 54:1084-1098. Heglund, N. C., and C. R. Taylor. 1988. Speed, stride frequency, and energy cost per stride: how do they change with body size and gait? J. Exp. Biol. 138:301-318. Hildebrand, M., and J. P. Hurley. 1985. Energy of the oscillating legs of a fast-moving cheetah, pronghorn, jackrabbit, and elephant. J. Morph. 184:23-31. Myers, M. J., and K. Steudel. 1985. Effect of limb mass and its distribution on the energetic cost of running. J. Exp. Biol. 116:363-373. Taylor, C. R., N. C. Heglund, and G. M. O. Maloiy. 1982. Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J. Exp. Biol. 97:1-21. Browning, R. C., J. R. Modica, R. Kram, and A. Goswami. 2007. The effects of adding mass to the legs on the energetics and biomechanics of walking. Med. Sci. Sports Exerc. 39:515-525. Meredith, R. W., J. E. Janecka, J. Gatesy, O. A. Ryder, C. A. Fisher, E.C. Teeling, A. Goodbla, E. Eizirik, T.L.L. Simão, T. Stadler et al. 2011. Impacts of Cretaceous terrestrial revolution and KPg extinction on mammalian diversification. Science 334:521-524. Gotschall, J. S., and R. Kram. 2005. Energy cost and muscular activity required for leg swing during walking. J. Appl. Physiol. 99:23-30. Beaulieu, J. M., D.-C. Jhwueng, C. Boettiger, and B. C. O'Meara. 2012. Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution 66:2369-2383. Nyakatura, J. A., M. S. Fischer, and M. Schmidt. 2008. Gait parameter adjustments of cotton-top tamarins (Saguinus oedipus, Callitrichidae) to locomotion on inclined arboreal substrates. Am. J. Phys. Anthropol. 135:13-26. Dumont, E. R., L. M. Dávalos, A. Goldberg, S. E. Santana, K. Rex, and C. C. Voigt. 2012. Morphological innovation, diversification and invasion of a new adaptive zone Proc. R. Soc. B 279:1797-1805. Smith, R. J. 2009. Use and misuse of the reduced major axis for line-fitting. Am. J. Phys. Anthropol. 140:476-486. Taylor, C. R., A. Shkolnik, R. Dmi'el, D. Baharav, and A. Borut. 1974. Running in cheetahs, gazelles, and goats: energy cost and limb configuration. Am. J. Physiol. 227:848-850. Warton, D. I., R. A. Duursma, D. S. Falster, and S. Taskinen. 2012. SMATR 3-an R package for estimation and inference about allometric lines. Met. Ecol. Evol. 3:257-259. Holt, N.C., T.J. Roberts, and G.N. Askew. 2014. The energetic benefit of tendon springs in running: is the reduction of muscle work important? J. Exp. Biol. 217: 4365-4371. Warton, D. I., I. J. Wright, D. S. Falster, and M. Westoby. 2006. Bivariate line-fitting methods for allometry. Biol. Rev. 81:259-291. Luo, Z.-X. 2007. Transformation and diversification in early mammal evolution. Nature 450:1011-1019. Coombs, W.P. Jr. 1978. Theoretical aspects of cursorial adaptations in dinosaurs. Quart. Rev. Biol. 53:393-418. Kilbourne, B. M., and L. C. Hoffman. 2013. Scale effects between body size and limb design in quadrupedal mammals. PLoS ONE 8:e78392. doi:10.1371/journal.pone.0078392. Lull, R. S. 1904. Adaptations to aquatic, arboreal, fossorial and cursorial habits in mammals. IV. Cursorial adaptations. Am. Nat. 28:1-11. López-Fernández, H., J. H. Arbour, K. O. Winemiller, and R. L. Honeycutt. 2013. Testing for ancient adaptive radiations in neotropical cichlid fishes. Evolution 67:1321-1337. Moore, A. L., J. E. Budny, A. P. Russell, and M. T. Butcher. 2013. Architectural specialization of the intrinsic thoracic limb musculature of the American badger (Taxidea taxus). J. Morph. 274:35-48. Lee, D. V., J. E. A. Bertram, J. T. Anttonen, I. G. Ros, S. L. Harris, and A. A. Biewener. 2011. A collisional perspective on quadrupedal gait dynamics. J. R. Soc. Interface 8:1480-1486. Lieberman, D. E., O. M. Pearson, J. D. Polk, B. Demes, and A. W. Crompton. 2003. Optimization of long bone growth and remodeling in response to loading in tapered mammalian limbs. J. Exp. Biol. 206:3125-3138. Lapiedra O, Sol D, Carranza S, Beaulieu JM. 2013 Behavioural changes and the adaptive diversification of pigeons and doves. Proc R Soc B 280: 20122893. http://dx.doi.org/10.1098/rspb.2012.2893. Rocha-Barbosa, O., M. Fiuza De Castro Loguercio, S. Renous, and J.-P. Gasc. 2005. Limb joint kinematics and their relation to increasing speed in the guinea pig Cavia porcellus (Mammalia: Rodentia). J. Zool. 266:293-305. Boettiger, C., C. Coop, and P. Ralph. 2012. Is your phylogeny informative? Measuring the power of comparative methods. Evolution 66:2240-2251. Heglund, N. C., M. A. Fedak, C. R. Taylor, and G. A. Cavagna. 1982. Energetics and mechanics of terrestrial locomotion. IV. Total mechanical energy changes as a function of speed and body size in birds and mammals. J. Exp. Biol. 97:57-66. Raichlen, D.A. 2006. Effects of limb mass distribution on mechanical power outputs during quadrupedalism. J. Exp. Biol. 209:633-644. Fish, F. E., P. B. Frappell, R. V. Baudinette, and P. M. MacFarlane. 2001. Energetics of terrestrial locomotion of the platypus Ornithorhynchus anatinus. J. Exp. Biol. 204:797-803. Pollock, C. M., and R. E. Shadwick. 1994. Allometry of muscle, tendon, and elastic energy storage capacity in mammals. Am. J. Physiol. 266:1022-1031. Wickler, S. J., D. F. Hoyt, H. M. Clayton, D. R. Mullineaux, E. A. Cogger, E. Sandoval, R. McGuire, and C. Lopez. 2004. Energetic and kinematic consequences of weighting the distal limb. Equine Vet. J. 36:772-777. Kram, R., and C. R. Taylor. 1990. Energetics of running: a new perspective. Nature 346:265-267. Strang, K. T., and K. Steudel. 1990. Explaining the scaling of transport costs: the role of stride frequency and stride length. J. Zool. 221:343-358. Ruina, A., J. E. A. Bertram, and M. Srinivasan. 2005. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. J. Theor. Biol. 237:170-192. Steudel, K. 1990b. The work and energetic cost of locomotion. II. Partitioning the cost of internal and external work within a species. J. Exp. Biol. 154: 287-303. Doke, J., J. M. Donelan, and A. D. Kuo. 2005. Mechanics and energetics of swinging the human leg. J. Exp. Biol. 208:439-445. Marsh, R. L., D. J. Ellerby, J. A. Carr, H. T. Henry, and C. I. Buchanan. 2004. Partitioning the energetics of walking and running: swinging the limbs is expensive. Science 303:80-83. Collar, D. C., B. C. O'Meara, P. C. Wainwright, and T. J. Near. 2009. Piscivory limits diversification of feeding morphology in centrarchid fishes. Evolution 63:1557-1573. Gregory, W. K. 1912. Notes on the principles of quadrupedal locomotion and on the mechanism of limbs in hoofed animals. Ann. NY Acad. Sci. 22:267-294. Myers, M. J. 1997. Morphological conservation of limb natural pendular period in the domestic dog (Canis familiaris): implications for locomotor energetics. J. Morph. 234:183-196. Umberger, B. R. 2010. Stance and swing phase costs in human walking. J. R. Soc. Interface 7:1329-1340. Nakagawa, S., and I. C. Cuthill. 2007. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82:591-605. Gillis, G. B., J. P. Flynn, P. McGuigan, and A. A. Biewener. 2005. Patterns of strain and activation in the thigh muscles of goats across gaits during level locomotion. J. Exp. Biol. 208:4599-4611. Hurvich, C. M., and C. L. Tsai. 1989. Regression and time series model selection in small samples. Biometrika 76:297-307. Scales, J. A., A. A. King, and M. A. Butler. 2009. Running for your life or running for your dinner: what drives fiber-type evolution in lizard locomotor muscles? Am. Nat. 173:543-553. Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125:1-15. Taylor, C. R., N. C. Heglund, T. A. McMahon, and T. R. Looney. 1980. Energetic cost of generating muscular force during running. J. Exp. Biol. 86:9-18. O'Meara, B. C., C. Ane, M. J. Sanderson, and P. C. Wainwright. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922-933. Wagenmakers, E.-J., and S. Farrell. 2004. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11:192-196. Hutchinson, J. R., D. Schwerda, D. J. Famini, R. H. I. Dale, M. S. Fischer, and R. Kram. 2006. The locomotor kinematics of Asian and African elephants: changes with speed and size. J. Exp. Biol. 209:3812-3827. Biewener, A. A. 1989. Scaling body support in mammals: limb posture and muscle mechanics. Science 245:45-48. Pontzer, H. 2007. Effective limb length and the scaling of locomotor cost in terrestrial animals. J. Exp. Biol. 210:1752-1761. Hudson, P. E., S. A. Corr, R. C. Payne-Davis, S. N. Clancy, E. Lane, and A. M. Wilson. 2011. Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb. J. Anat. 218:363-374. Revell, L. J. 2010. Phylogenetic signal and linear regression on species data. Met. Ecol. Evol. 1:319-329. Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Met. Ecol. Evol. 3:217-223. Isler, K., R. C. Payne, M. M. Günther, S. K. S. Thorpe, Y. Li, R. Savage, and R. H. Cromp 2007; 39 2014; 217 1997; 234 2002; 15 1990; 346 1980; 86 2013; 67 1982; 97 1974; 227 1985; 125 2013; 280 2010; 180 2013; 8 1999; 401 1990; 221 1994; 266 2006; 60 2003; 206 2010; 1 1989; 76 2006; 209 2005; 266 2004; 36 2007; 210 1956; 42 2007; 450 1985 2011; 65 2013; 274 2012; 66 2010; 7 2014; 54 1988; 138 1988 1944 2011; 334 2009; 63 2004; 303 2011; 218 2012 1904; 28 1978; 53 1975; 39 2005; 237 2007 2009; 173 1993; 90 1912; 22 1985; 184 2011; 8 2001; 204 2006; 81 2004; 11 2012; 3 1989; 245 2005; 208 1985; 116 2007; 82 2009; 140 2014 2008; 135 2012; 279 2008; 211 1990; 154 2005; 99 |
References_xml | – reference: Lee, D. V., J. E. A. Bertram, J. T. Anttonen, I. G. Ros, S. L. Harris, and A. A. Biewener. 2011. A collisional perspective on quadrupedal gait dynamics. J. R. Soc. Interface 8:1480-1486. – reference: Myers, M. J. 1997. Morphological conservation of limb natural pendular period in the domestic dog (Canis familiaris): implications for locomotor energetics. J. Morph. 234:183-196. – reference: Lapiedra O, Sol D, Carranza S, Beaulieu JM. 2013 Behavioural changes and the adaptive diversification of pigeons and doves. Proc R Soc B 280: 20122893. http://dx.doi.org/10.1098/rspb.2012.2893. – reference: Smith, R. J. 1993. Logarithmic transformation bias in allometry. Am. J. Phys. Anthropol. 90:215-228. – reference: Smith, R. J. 2009. Use and misuse of the reduced major axis for line-fitting. Am. J. Phys. Anthropol. 140:476-486. – reference: Collar, D. C., J. A. Schulte, II, and J. B. Losos. 2011. Evolution of extreme body size disparity in monitor lizards (Varanus). Evolution 65:2664-2680. – reference: Hutchinson, J. R., D. Schwerda, D. J. Famini, R. H. I. Dale, M. S. Fischer, and R. Kram. 2006. The locomotor kinematics of Asian and African elephants: changes with speed and size. J. Exp. Biol. 209:3812-3827. – reference: Myers, M. J., and K. Steudel. 1985. Effect of limb mass and its distribution on the energetic cost of running. J. Exp. Biol. 116:363-373. – reference: Hildebrand, M. 1988. Form and function in vertebrate feeding and locomotion. Amer. Zool. 727-738. – reference: Hildebrand, M., and J. P. Hurley. 1985. Energy of the oscillating legs of a fast-moving cheetah, pronghorn, jackrabbit, and elephant. J. Morph. 184:23-31. – reference: Kilbourne, B. M., and L. C. Hoffman. 2013. Scale effects between body size and limb design in quadrupedal mammals. PLoS ONE 8:e78392. doi:10.1371/journal.pone.0078392. – reference: Taylor, C. R., A. Shkolnik, R. Dmi'el, D. Baharav, and A. Borut. 1974. Running in cheetahs, gazelles, and goats: energy cost and limb configuration. Am. J. Physiol. 227:848-850. – reference: Browning, R. C., J. R. Modica, R. Kram, and A. Goswami. 2007. The effects of adding mass to the legs on the energetics and biomechanics of walking. Med. Sci. Sports Exerc. 39:515-525. – reference: Gotschall, J. S., and R. Kram. 2005. Energy cost and muscular activity required for leg swing during walking. J. Appl. Physiol. 99:23-30. – reference: Marsh, R. L., D. J. Ellerby, J. A. Carr, H. T. Henry, and C. I. Buchanan. 2004. Partitioning the energetics of walking and running: swinging the limbs is expensive. Science 303:80-83. – reference: Gillis, G. B., J. P. Flynn, P. McGuigan, and A. A. Biewener. 2005. Patterns of strain and activation in the thigh muscles of goats across gaits during level locomotion. J. Exp. Biol. 208:4599-4611. – reference: Gregory, W. K. 1912. Notes on the principles of quadrupedal locomotion and on the mechanism of limbs in hoofed animals. Ann. NY Acad. Sci. 22:267-294. – reference: Pollock, C. M., and R. E. Shadwick. 1994. Allometry of muscle, tendon, and elastic energy storage capacity in mammals. Am. J. Physiol. 266:1022-1031. – reference: Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125:1-15. – reference: Rocha-Barbosa, O., M. Fiuza De Castro Loguercio, S. Renous, and J.-P. Gasc. 2005. Limb joint kinematics and their relation to increasing speed in the guinea pig Cavia porcellus (Mammalia: Rodentia). J. Zool. 266:293-305. – reference: Coombs, W.P. Jr. 1978. Theoretical aspects of cursorial adaptations in dinosaurs. Quart. Rev. Biol. 53:393-418. – reference: Kram, R., and C. R. Taylor. 1990. Energetics of running: a new perspective. Nature 346:265-267. – reference: Umberger, B. R. 2010. Stance and swing phase costs in human walking. J. R. Soc. Interface 7:1329-1340. – reference: Warton, D. I., I. J. Wright, D. S. Falster, and M. Westoby. 2006. Bivariate line-fitting methods for allometry. Biol. Rev. 81:259-291. – reference: Fish, F. E., P. B. Frappell, R. V. Baudinette, and P. M. MacFarlane. 2001. Energetics of terrestrial locomotion of the platypus Ornithorhynchus anatinus. J. Exp. Biol. 204:797-803. – reference: Pontzer, H. 2007. Effective limb length and the scaling of locomotor cost in terrestrial animals. J. Exp. Biol. 210:1752-1761. – reference: Maes, L., M. Herbin, R. Hackert, V.L. Bels, and A. Abourachid. 2008. Steady locomotion in dogs: temporal and associated spatial coordination patterns and the effect of speed. J. Exp. Biol. 211:138-149. – reference: Taylor, C. R., N. C. Heglund, and G. M. O. Maloiy. 1982. Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J. Exp. Biol. 97:1-21. – reference: Dumont, E. R., L. M. Dávalos, A. Goldberg, S. E. Santana, K. Rex, and C. C. Voigt. 2012. Morphological innovation, diversification and invasion of a new adaptive zone Proc. R. Soc. B 279:1797-1805. – reference: Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877-884. – reference: Beaulieu, J. M., D.-C. Jhwueng, C. Boettiger, and B. C. O'Meara. 2012. Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution 66:2369-2383. – reference: O'Meara, B. C., C. Ane, M. J. Sanderson, and P. C. Wainwright. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922-933. – reference: Arellano, C. J., and R. Kram. 2014. Partitioning the metabolic cost of human running: a task-by-task approach. Inter. Comp. Biol. 54:1084-1098. – reference: Lull, R. S. 1904. Adaptations to aquatic, arboreal, fossorial and cursorial habits in mammals. IV. Cursorial adaptations. Am. Nat. 28:1-11. – reference: Heglund, N. C., and C. R. Taylor. 1988. Speed, stride frequency, and energy cost per stride: how do they change with body size and gait? J. Exp. Biol. 138:301-318. – reference: Holt, N.C., T.J. Roberts, and G.N. Askew. 2014. The energetic benefit of tendon springs in running: is the reduction of muscle work important? J. Exp. Biol. 217: 4365-4371. – reference: Wagenmakers, E.-J., and S. Farrell. 2004. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11:192-196. – reference: Blomberg, S. P. and T. Garland, Jr. 2002. Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15:899-910. – reference: Flaherty, E. A., M. Ben-David, and W. P. Smith. 2010. Quadrupedal locomotor performance in two species of arboreal squirrels: predicting energy savings of gliding. J. Comp. Physiol. B 180:1067-1078. – reference: Taylor, C. R., N. C. Heglund, T. A. McMahon, and T. R. Looney. 1980. Energetic cost of generating muscular force during running. J. Exp. Biol. 86:9-18. – reference: Steudel, K. 1990a. The work and energetic cost of locomotion. I. The effects of limb mass distribution in quadrupeds. J. Exp. Biol. 154:273-285. – reference: Nyakatura, J. A., M. S. Fischer, and M. Schmidt. 2008. Gait parameter adjustments of cotton-top tamarins (Saguinus oedipus, Callitrichidae) to locomotion on inclined arboreal substrates. Am. J. Phys. Anthropol. 135:13-26. – reference: Heglund, N. C., M. A. Fedak, C. R. Taylor, and G. A. Cavagna. 1982. Energetics and mechanics of terrestrial locomotion. IV. Total mechanical energy changes as a function of speed and body size in birds and mammals. J. Exp. Biol. 97:57-66. – reference: McMahon, T. A. 1975. Using body size to understand the structural design of mammals: quadrupedal locomotion. J. App. Physiol. 39:619-627. – reference: Biewener, A. A. 1989. Scaling body support in mammals: limb posture and muscle mechanics. Science 245:45-48. – reference: Strang, K. T., and K. Steudel. 1990. Explaining the scaling of transport costs: the role of stride frequency and stride length. J. Zool. 221:343-358. – reference: Luo, Z.-X. 2007. Transformation and diversification in early mammal evolution. Nature 450:1011-1019. – reference: Boettiger, C., C. Coop, and P. Ralph. 2012. Is your phylogeny informative? Measuring the power of comparative methods. Evolution 66:2240-2251. – reference: Raichlen, D.A. 2006. Effects of limb mass distribution on mechanical power outputs during quadrupedalism. J. Exp. Biol. 209:633-644. – reference: Meredith, R. W., J. E. Janecka, J. Gatesy, O. A. Ryder, C. A. Fisher, E.C. Teeling, A. Goodbla, E. Eizirik, T.L.L. Simão, T. Stadler et al. 2011. Impacts of Cretaceous terrestrial revolution and KPg extinction on mammalian diversification. Science 334:521-524. – reference: Collar, D. C., B. C. O'Meara, P. C. Wainwright, and T. J. Near. 2009. Piscivory limits diversification of feeding morphology in centrarchid fishes. Evolution 63:1557-1573. – reference: Scales, J. A., A. A. King, and M. A. Butler. 2009. Running for your life or running for your dinner: what drives fiber-type evolution in lizard locomotor muscles? Am. Nat. 173:543-553. – reference: Lieberman, D. E., O. M. Pearson, J. D. Polk, B. Demes, and A. W. Crompton. 2003. Optimization of long bone growth and remodeling in response to loading in tapered mammalian limbs. J. Exp. Biol. 206:3125-3138. – reference: Moore, A. L., J. E. Budny, A. P. Russell, and M. T. Butcher. 2013. Architectural specialization of the intrinsic thoracic limb musculature of the American badger (Taxidea taxus). J. Morph. 274:35-48. – reference: Nakagawa, S., and I. C. Cuthill. 2007. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82:591-605. – reference: Warton, D. I., R. A. Duursma, D. S. Falster, and S. Taskinen. 2012. SMATR 3-an R package for estimation and inference about allometric lines. Met. Ecol. Evol. 3:257-259. – reference: López-Fernández, H., J. H. Arbour, K. O. Winemiller, and R. L. Honeycutt. 2013. Testing for ancient adaptive radiations in neotropical cichlid fishes. Evolution 67:1321-1337. – reference: Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Met. Ecol. Evol. 3:217-223. – reference: Wickler, S. J., D. F. Hoyt, H. M. Clayton, D. R. Mullineaux, E. A. Cogger, E. Sandoval, R. McGuire, and C. Lopez. 2004. Energetic and kinematic consequences of weighting the distal limb. Equine Vet. J. 36:772-777. – reference: Hurvich, C. M., and C. L. Tsai. 1989. Regression and time series model selection in small samples. Biometrika 76:297-307. – reference: Revell, L. J. 2010. Phylogenetic signal and linear regression on species data. Met. Ecol. Evol. 1:319-329. – reference: Steudel, K. 1990b. The work and energetic cost of locomotion. II. Partitioning the cost of internal and external work within a species. J. Exp. Biol. 154: 287-303. – reference: Isler, K., R. C. Payne, M. M. Günther, S. K. S. Thorpe, Y. Li, R. Savage, and R. H. Crompton. 2006. Inertial properties of hominoid limb segments. J. Anat. 209:201-218. – reference: Hudson, P. E., S. A. Corr, R. C. Payne-Davis, S. N. Clancy, E. Lane, and A. M. Wilson. 2011. Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb. J. Anat. 218:363-374. – reference: Ruina, A., J. E. A. Bertram, and M. Srinivasan. 2005. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. J. Theor. Biol. 237:170-192. – reference: Doke, J., J. M. Donelan, and A. D. Kuo. 2005. Mechanics and energetics of swinging the human leg. J. Exp. Biol. 208:439-445. – reference: Smith, J. M., and R. J. Savage. 1956. Some locomotory adaptations in mammals. Zool. J. Linn. Soc. 42:603-622. – volume: 180 start-page: 1067 year: 2010 end-page: 1078 article-title: Quadrupedal locomotor performance in two species of arboreal squirrels: predicting energy savings of gliding publication-title: J. Comp. Physiol. B – start-page: 38 year: 1985 end-page: 57 – volume: 15 start-page: 899 year: 2002 end-page: 910 article-title: Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods publication-title: J. Evol. Biol. – volume: 173 start-page: 543 year: 2009 end-page: 553 article-title: Running for your life or running for your dinner: what drives fiber‐type evolution in lizard locomotor muscles? publication-title: Am. Nat. – volume: 8 start-page: 1480 year: 2011 end-page: 1486 article-title: A collisional perspective on quadrupedal gait dynamics publication-title: J. R. Soc. Interface – volume: 210 start-page: 1752 year: 2007 end-page: 1761 article-title: Effective limb length and the scaling of locomotor cost in terrestrial animals publication-title: J. Exp. Biol. – volume: 303 start-page: 80 year: 2004 end-page: 83 article-title: Partitioning the energetics of walking and running: swinging the limbs is expensive publication-title: Science – volume: 54 start-page: 1084 year: 2014 end-page: 1098 article-title: Partitioning the metabolic cost of human running: a task‐by‐task approach publication-title: Inter. Comp. Biol. – volume: 60 start-page: 922 year: 2006 end-page: 933 article-title: Testing for different rates of continuous trait evolution using likelihood publication-title: Evolution – volume: 3 start-page: 257 year: 2012 end-page: 259 article-title: SMATR 3—an R package for estimation and inference about allometric lines publication-title: Met. Ecol. Evol. – volume: 135 start-page: 13 year: 2008 end-page: 26 article-title: Gait parameter adjustments of cotton‐top tamarins ( , Callitrichidae) to locomotion on inclined arboreal substrates publication-title: Am. J. Phys. Anthropol. – volume: 266 start-page: 1022 year: 1994 end-page: 1031 article-title: Allometry of muscle, tendon, and elastic energy storage capacity in mammals publication-title: Am. J. Physiol. – volume: 209 start-page: 633 year: 2006 end-page: 644 article-title: Effects of limb mass distribution on mechanical power outputs during quadrupedalism publication-title: J. Exp. Biol – volume: 245 start-page: 45 year: 1989 end-page: 48 article-title: Scaling body support in mammals: limb posture and muscle mechanics publication-title: Science – volume: 53 start-page: 393 year: 1978 end-page: 418 article-title: Theoretical aspects of cursorial adaptations in dinosaurs publication-title: Quart. Rev. Biol – volume: 97 start-page: 57 year: 1982 end-page: 66 article-title: Energetics and mechanics of terrestrial locomotion. IV. Total mechanical energy changes as a function of speed and body size in birds and mammals publication-title: J. Exp. Biol. – volume: 7 start-page: 1329 year: 2010 end-page: 1340 article-title: Stance and swing phase costs in human walking publication-title: J. R. Soc. Interface – volume: 82 start-page: 591 year: 2007 end-page: 605 article-title: Effect size, confidence interval and statistical significance: a practical guide for biologists publication-title: Biol. Rev. – volume: 99 start-page: 23 year: 2005 end-page: 30 article-title: Energy cost and muscular activity required for leg swing during walking publication-title: J. Appl. Physiol. – volume: 138 start-page: 301 year: 1988 end-page: 318 article-title: Speed, stride frequency, and energy cost per stride: how do they change with body size and gait? publication-title: J. Exp. Biol. – volume: 11 start-page: 192 year: 2004 end-page: 196 article-title: AIC model selection using Akaike weights publication-title: Psychon. Bull. Rev. – volume: 208 start-page: 439 year: 2005 end-page: 445 article-title: Mechanics and energetics of swinging the human leg publication-title: J. Exp. Biol. – volume: 66 start-page: 2240 year: 2012 end-page: 2251 article-title: Is your phylogeny informative? Measuring the power of comparative methods publication-title: Evolution – start-page: 245 year: 2007 end-page: 268 – year: 2014 article-title: lmodel2: model II regression – volume: 125 start-page: 1 year: 1985 end-page: 15 article-title: Phylogenies and the comparative method publication-title: Am. Nat. – volume: 346 start-page: 265 year: 1990 end-page: 267 article-title: Energetics of running: a new perspective publication-title: Nature – volume: 217 start-page: 4365 year: 2014 end-page: 4371 article-title: The energetic benefit of tendon springs in running: is the reduction of muscle work important publication-title: J. Exp. Biol – volume: 42 start-page: 603 year: 1956 end-page: 622 article-title: Some locomotory adaptations in mammals publication-title: Zool. J. Linn. Soc. – volume: 86 start-page: 9 year: 1980 end-page: 18 article-title: Energetic cost of generating muscular force during running publication-title: J. Exp. Biol. – volume: 8 start-page: e78392 year: 2013 article-title: Scale effects between body size and limb design in quadrupedal mammals publication-title: PLoS ONE – volume: 39 start-page: 619 year: 1975 end-page: 627 article-title: Using body size to understand the structural design of mammals: quadrupedal locomotion publication-title: J. App. Physiol. – volume: 234 start-page: 183 year: 1997 end-page: 196 article-title: Morphological conservation of limb natural pendular period in the domestic dog ( ): implications for locomotor energetics publication-title: J. Morph. – volume: 154 start-page: 287 year: 1990 end-page: 303 article-title: The work and energetic cost of locomotion. II. Partitioning the cost of internal and external work within a species publication-title: J. Exp. Biol – volume: 208 start-page: 4599 year: 2005 end-page: 4611 article-title: Patterns of strain and activation in the thigh muscles of goats across gaits during level locomotion publication-title: J. Exp. Biol. – volume: 66 start-page: 2369 year: 2012 end-page: 2383 article-title: Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution publication-title: Evolution – volume: 22 start-page: 267 year: 1912 end-page: 294 article-title: Notes on the principles of quadrupedal locomotion and on the mechanism of limbs in hoofed animals publication-title: Ann. NY Acad. Sci. – volume: 227 start-page: 848 year: 1974 end-page: 850 article-title: Running in cheetahs, gazelles, and goats: energy cost and limb configuration publication-title: Am. J. Physiol. – volume: 184 start-page: 23 year: 1985 end-page: 31 article-title: Energy of the oscillating legs of a fast‐moving cheetah, pronghorn, jackrabbit, and elephant publication-title: J. Morph. – year: 1944 – volume: 280 year: 2013 article-title: Behavioural changes and the adaptive diversification of pigeons and doves publication-title: Proc R Soc B – volume: 36 start-page: 772 year: 2004 end-page: 777 article-title: Energetic and kinematic consequences of weighting the distal limb publication-title: Equine Vet. J. – year: 2012 article-title: R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing – volume: 450 start-page: 1011 year: 2007 end-page: 1019 article-title: Transformation and diversification in early mammal evolution publication-title: Nature – volume: 116 start-page: 363 year: 1985 end-page: 373 article-title: Effect of limb mass and its distribution on the energetic cost of running publication-title: J. Exp. Biol. – volume: 140 start-page: 476 year: 2009 end-page: 486 article-title: Use and misuse of the reduced major axis for line‐fitting publication-title: Am. J. Phys. Anthropol. – volume: 97 start-page: 1 year: 1982 end-page: 21 article-title: Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals publication-title: J. Exp. Biol. – volume: 206 start-page: 3125 year: 2003 end-page: 3138 article-title: Optimization of long bone growth and remodeling in response to loading in tapered mammalian limbs publication-title: J. Exp. Biol. – start-page: 727 year: 1988 end-page: 738 article-title: Form and function in vertebrate feeding and locomotion publication-title: Amer. Zool – volume: 279 start-page: 1797 year: 2012 end-page: 1805 article-title: Morphological innovation, diversification and invasion of a new adaptive zone publication-title: Proc. R. Soc. B – volume: 39 start-page: 515 year: 2007 end-page: 525 article-title: The effects of adding mass to the legs on the energetics and biomechanics of walking publication-title: Med. Sci. Sports Exerc. – volume: 209 start-page: 201 year: 2006 end-page: 218 article-title: Inertial properties of hominoid limb segments publication-title: J. Anat. – volume: 3 start-page: 217 year: 2012 end-page: 223 article-title: phytools: an R package for phylogenetic comparative biology (and other things) publication-title: Met. Ecol. Evol. – volume: 65 start-page: 2664 year: 2011 end-page: 2680 article-title: Evolution of extreme body size disparity in monitor lizards ( ) publication-title: Evolution – volume: 401 start-page: 877 year: 1999 end-page: 884 article-title: Inferring the historical patterns of biological evolution publication-title: Nature – volume: 274 start-page: 35 year: 2013 end-page: 48 article-title: Architectural specialization of the intrinsic thoracic limb musculature of the American badger ( ) publication-title: J. Morph. – volume: 334 start-page: 521 year: 2011 end-page: 524 article-title: Impacts of Cretaceous terrestrial revolution and KPg extinction on mammalian diversification publication-title: Science – volume: 90 start-page: 215 year: 1993 end-page: 228 article-title: Logarithmic transformation bias in allometry publication-title: Am. J. Phys. Anthropol. – volume: 211 start-page: 138 year: 2008 end-page: 149 article-title: Steady locomotion in dogs: temporal and associated spatial coordination patterns and the effect of speed publication-title: J. Exp. Biol – volume: 266 start-page: 293 year: 2005 end-page: 305 article-title: Limb joint kinematics and their relation to increasing speed in the guinea pig (Mammalia: Rodentia) publication-title: J. Zool. – volume: 76 start-page: 297 year: 1989 end-page: 307 article-title: Regression and time series model selection in small samples publication-title: Biometrika – volume: 218 start-page: 363 year: 2011 end-page: 374 article-title: Functional anatomy of the cheetah ( ) hindlimb publication-title: J. Anat. – volume: 204 start-page: 797 year: 2001 end-page: 803 article-title: Energetics of terrestrial locomotion of the platypus publication-title: J. Exp. Biol. – volume: 81 start-page: 259 year: 2006 end-page: 291 article-title: Bivariate line‐fitting methods for allometry publication-title: Biol. Rev. – volume: 1 start-page: 319 year: 2010 end-page: 329 article-title: Phylogenetic signal and linear regression on species data publication-title: Met. Ecol. Evol. – volume: 67 start-page: 1321 year: 2013 end-page: 1337 article-title: Testing for ancient adaptive radiations in neotropical cichlid fishes publication-title: Evolution – volume: 209 start-page: 3812 year: 2006 end-page: 3827 article-title: The locomotor kinematics of Asian and African elephants: changes with speed and size publication-title: J. Exp. Biol. – volume: 154 start-page: 273 year: 1990 end-page: 285 article-title: The work and energetic cost of locomotion. I. The effects of limb mass distribution in quadrupeds publication-title: J. Exp. Biol. – volume: 28 start-page: 1 year: 1904 end-page: 11 article-title: Adaptations to aquatic, arboreal, fossorial and cursorial habits in mammals publication-title: Am. Nat. – volume: 237 start-page: 170 year: 2005 end-page: 192 article-title: A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo‐elastic leg behavior in running and the walk‐to‐run transition publication-title: J. Theor. Biol. – volume: 221 start-page: 343 year: 1990 end-page: 358 article-title: Explaining the scaling of transport costs: the role of stride frequency and stride length publication-title: J. Zool. – volume: 63 start-page: 1557 year: 2009 end-page: 1573 article-title: Piscivory limits diversification of feeding morphology in centrarchid fishes publication-title: Evolution |
SSID | ssj0009519 |
Score | 2.2330434 |
Snippet | Differences in limb size and shape are fundamental to mammalian morphological diversity; however, their relevance to locomotor costs has long been subject to... |
SourceID | proquest pubmed wiley jstor istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1546 |
SubjectTerms | Adaptation Adaptation, Physiological Allometry Animal behavior Animal morphology Animals Biodiversity Biological adaptation Biological Evolution Body size Body Size - physiology Cost efficiency Evolution Extremities - anatomy & histology Extremities - physiology Gyration Locomotion Locomotion - physiology macroevolution Mammals Mammals - anatomy & histology Mammals - physiology Mass morphological evolution Morphology Phylogenetics Regression analysis Species Specificity Swimming |
Title | Energetic benefits and adaptations in mammalian limbs: Scale effects and selective pressures |
URI | https://api.istex.fr/ark:/67375/WNG-8WRW9WT4-9/fulltext.pdf https://www.jstor.org/stable/24704610 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fevo.12675 https://www.ncbi.nlm.nih.gov/pubmed/25929545 https://www.proquest.com/docview/1705488095 https://www.proquest.com/docview/1690652273 https://www.proquest.com/docview/1709187779 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0014-3820 databaseCode: DR2 dateStart: 20000101 customDbUrl: isFulltext: true eissn: 1558-5646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009519 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RaxQxEA6lUPBFrbV62koKIr7s0dwmm019knJtKVihtl4fCiHJJnDU2yvdO7H-emeS3bVKkeLL7kISNruTmXxJZr4h5G0OkxoLjmeOWZnxwmCaFz_K3G7gzMmqFAUGCn86KY7O-fGFuFghH7pYmMQP0W-4oWZEe40KbmxzR8n99_mQjQDvgv1luYhHtKejO4S7LEFfxrMcprmWVQi9ePqWAEjxX_7ofBHvQ5l_gtY46xw8IZddf5OzydVwubBD9_MvKsf__KCn5HGLRunHNHzWyYqvn5G1lJ_ydoNcjjEyEMMcqQWbGKaLhpq6oqYy1-kIv6HTms7MbBa3S-i36cw2e_QLCN7T1lUktmhiuh2wrDQ63i7h8pycH4zP9o-yNh1DNhUYoiBcBWBRKcls6XzOKl9hqhIkvFGVN7vBOYsE9TDrwl0IF0ormAdBcGGMlPkmWa3ntX9JqCxgmQMLcxFsybkpjStZUDYEYVVReT8g76Jg9HWi3NDm5go90KTQk5NDXU5OJ2pyxrUakM0oub7iiMtIIT8gW50odauVjUbqIDRYSgzITl8M-oSHJKb28yXUQeZmAKUy_0cdCSgLiRTh_S_SMPndAaHw6BTe8D4Kuy_oVlsgZh3FrMdfP8eHVw-v-po8AsQmkq_aFlld3Cz9NqCihX0Th_8v6mgHNA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQQvfA_KBhgJIV5SzY0dJ9NeEHQU2Io0OroHkGU7jlSNptPSIthfz53zwUAIIV6SSD4rTs5n_2zf_Q7gaYyTGi-ciBy3KhKJoTQvfhC57UJwp_JUJhQofDBORkfi7bE8XoPdNham5ofoNtzIMsJ4TQZOG9IXrNx_XfT5AAHvJbhM53Nklq8OBxcod3kNfrmIYpzoGl4h8uPpqiIkpb_5rfVG_BPO_BW2hnln7wZ8bltcu5uc9FdL23fnv5E5_u8n3YTrDSBlL-oedAvWfHkbrtQpKr_fgU9DCg6kSEdmcVgsZsuKmTJnJjen9Sl-xWYlm5v5POyYsC-zua122AfUvWeNt0ioUYWMOzi4suB7u8LLXTjaG05ejqImI0M0kxSlIF2OeDHLFLep8zHPfU7ZSojzJsu92S6cs8RRjxMv3qV0RWol96gJIY1RKt6A9XJR-vvAVIIrHVyby8KmQpjUuJQXmS0KabMk974Hz4Jm9GnNuqHN2Qk5oSmpp-PXOp0eTrPpROisBxtBdZ3gQKjAIt-DrVaXujHMShN7EI1ZmezBk64YTYrOSUzpFyuUIfJmxKUq_ouMQqBFXIr4_nt1P_nZAJnR6Sm-4XnQdlfQLrhQzTqoWQ8_vg8PD_5d9DFcHU0O9vX-m_G7TbiGAE7WrmtbsL48W_mHCJKW9lGwhR9UZwtQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIRAvfA8KA4yEEC-p5saOE3hC0DK-ChrbuodJlu3YUjWaVkuLgL-eOycpAyGEeEki2VacnM_-nX33O4BHKS5qPDiROG5VIjJDaV78IHE7QXCnylxmFCj8fpztHog3R_JoA551sTANP8R6w400I87XpOCLMpxRcv9l3ucDxLvn4LzI0LoiRLQ3OMO4yxvsy0WS4jrX0gqRG8-6KSJS-plfO2fEP8HMX1FrXHZGV-C463DjbXLSXy1t333_jcvxP7_oKlxu4Sh73oyfa7Dhq-twoUlQ-e0GHA8pNJDiHJnFSTFMlzUzVclMaRbNGX7NphWbmdks7pewz9OZrZ-yTyh5z1pfkdiijvl2cGpl0fN2hZebcDAa7r_YTdp8DMlUUoyCdCWixaJQ3ObOp7z0JeUqIcabovRmJzhniaEel128S-lCbiX3KAghjVEq3YLNal7528BUhnYOWuYy2FwIkxuX81DYEKQtstL7HjyOgtGLhnNDm9MTckFTUk_Gr3Q-2ZsUk32hix5sRcmtKw6EihzyPdjuRKlbtaw1cQfRjFXIHjxcF6NC0SmJqfx8hXWIuhlRqUr_UkchzCImRXz_rWaY_OyALOjsFN_wJAp7XdCZWyhmHcWsh4cf4sOdf6_6AC5-fDnS716P396FS4jeZOO3tg2by9OVv4cIaWnvR034ASz-Cf8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energetic+benefits+and+adaptations+in+mammalian+limbs%3A+Scale+effects+and+selective+pressures&rft.jtitle=Evolution&rft.au=Kilbourne%2C+Brandon+M.&rft.au=Hoffman%2C+Louwrens+C.&rft.date=2015-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0014-3820&rft.eissn=1558-5646&rft.volume=69&rft.issue=6&rft.spage=1546&rft.epage=1559&rft_id=info:doi/10.1111%2Fevo.12675&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_8WRW9WT4_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-3820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-3820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-3820&client=summon |