Clustering Methods for Multidimensional Data from Social Media

Popular platforms like Instagram, Facebook, YouTube, Linkedin, and Twitter have become essential tools for various purposes generating massive amounts of unstructured data. Fast processing and analysis of this data need efficient Machine Learning methods. Clustering algorithms can organize and group...

Full description

Saved in:
Bibliographic Details
Published in2024 MIT Art, Design and Technology School of Computing International Conference (MITADTSoCiCon) pp. 1 - 7
Main Authors Ikramuddin, Ikramuddin, Avasthi, Sandhya, Tyagi, Meenakshi
Format Conference Proceeding
LanguageEnglish
Published IEEE 25.04.2024
Subjects
Online AccessGet full text
DOI10.1109/MITADTSoCiCon60330.2024.10575244

Cover

Abstract Popular platforms like Instagram, Facebook, YouTube, Linkedin, and Twitter have become essential tools for various purposes generating massive amounts of unstructured data. Fast processing and analysis of this data need efficient Machine Learning methods. Clustering algorithms can organize and group such data efficiently and that's why efficient clustering algorithms are need of the hour. The data coming through social media platforms has various dimensions and a single algorithm cannot extract all the dimensions. Ensemble clustering is an efficient model by aggregating multiple base clustering algorithms that deal with the same data. This review paper explores different methods of ensemble clustering and performs the comparison of the same. In addition, discusses different ways to make consensus function efficient to explore insights from the given multidimensional data and how different strategies can be used in building an efficient model for clustering. But still, none of the clustering or ensemble clustering models or algorithms can be said this be the ideal one. Because as the need arises different clustering algorithm is used. So keep in mind that whether it is clustering or ensemble clustering if we apply the two different algorithms to the same data the result is different and as per the need the clustering models and algorithms are used.
AbstractList Popular platforms like Instagram, Facebook, YouTube, Linkedin, and Twitter have become essential tools for various purposes generating massive amounts of unstructured data. Fast processing and analysis of this data need efficient Machine Learning methods. Clustering algorithms can organize and group such data efficiently and that's why efficient clustering algorithms are need of the hour. The data coming through social media platforms has various dimensions and a single algorithm cannot extract all the dimensions. Ensemble clustering is an efficient model by aggregating multiple base clustering algorithms that deal with the same data. This review paper explores different methods of ensemble clustering and performs the comparison of the same. In addition, discusses different ways to make consensus function efficient to explore insights from the given multidimensional data and how different strategies can be used in building an efficient model for clustering. But still, none of the clustering or ensemble clustering models or algorithms can be said this be the ideal one. Because as the need arises different clustering algorithm is used. So keep in mind that whether it is clustering or ensemble clustering if we apply the two different algorithms to the same data the result is different and as per the need the clustering models and algorithms are used.
Author Ikramuddin, Ikramuddin
Avasthi, Sandhya
Tyagi, Meenakshi
Author_xml – sequence: 1
  givenname: Ikramuddin
  surname: Ikramuddin
  fullname: Ikramuddin, Ikramuddin
  email: ikram.amani815@gmail.com
  organization: ABES Engineering College,Department of CSE,Ghaziabad,India
– sequence: 2
  givenname: Sandhya
  surname: Avasthi
  fullname: Avasthi, Sandhya
  email: sandhya_avasthi@yahoo.com
  organization: ABES Engineering College,Department of CSE,Ghaziabad,India
– sequence: 3
  givenname: Meenakshi
  surname: Tyagi
  fullname: Tyagi, Meenakshi
  email: Meenakshi.tyagi@kiet.edu
  organization: KIET Group of Institutions,Department of Management,Ghaziabad,India
BookMark eNo1j7tOwzAUQI0EA5T-AYNHlgRf2_FjQapSHpUaMTR7dVPfgKXERkk68PcgAdORznCkc8MuU07E2D2IEkD4h2bXbrbtIdexzskIpUQphdQliMpWUusLtvbWO1UJZaSz_po91sN5XmiK6Z03tHzkMPM-T7w5D0sMcaQ0x5xw4FtckPdTHvkhn-KPaChEvGVXPQ4zrf-4Yu3zU1u_Fvu3l1292RdRe1sop71B7brKYecDGgMKAJxWQRCFk5bO2B4RnPCyq4TtwKImIwm87WWnVuzuNxuJ6Pg5xRGnr-P_lfoGXdVJTg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MITADTSoCiCon60330.2024.10575244
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350362879
EndPage 7
ExternalDocumentID 10575244
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i497-38496a48b58ab9da6613111843d0eedc42867faa18092b507b17a4e62e197f2b3
IEDL.DBID RIE
IngestDate Wed Jul 10 10:27:43 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i497-38496a48b58ab9da6613111843d0eedc42867faa18092b507b17a4e62e197f2b3
PageCount 7
ParticipantIDs ieee_primary_10575244
PublicationCentury 2000
PublicationDate 2024-April-25
PublicationDateYYYYMMDD 2024-04-25
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-25
  day: 25
PublicationDecade 2020
PublicationTitle 2024 MIT Art, Design and Technology School of Computing International Conference (MITADTSoCiCon)
PublicationTitleAbbrev MITADTSoCiCon
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8707112
Snippet Popular platforms like Instagram, Facebook, YouTube, Linkedin, and Twitter have become essential tools for various purposes generating massive amounts of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms clustering
Clustering algorithms
consensus function
Ensemble clustering
Learning systems
Machine learning
Machine learning algorithms
Reviews
Social networking (online)
unlabeled data
unsupervised learning methods
Video on demand
Title Clustering Methods for Multidimensional Data from Social Media
URI https://ieeexplore.ieee.org/document/10575244
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH64HcSTihN_k4MHL-36I2mbiyCdYwgbghN2G0nzCkNpZbYX_3pf0k1RELyVByUJj-R7Ly_f9wCuheRpyQPjFUWJHjcoPK2E8YxArgThVefp6SyZPPOHhVhsyOqOC4OI7vEZ-vbT1fJNXbT2qmxoe9IKwqMe9NIs6chau3Cz0c0c0ma_G82f6nyV11USUKZO-V_E_e1vPxqoOPwY78NsO3L3bOTFbxvtFx-_RBn_PbUDGHxT9djjFwgdwg5WR3Cbv7ZWAIEsbOpaRL8zCk6ZY9saq-ffaXGwkWoUswwT1tF0ma3bqAHMx_fzfOJtGiV4Ky7pjMi4TBTPtMiUlkYR5MZ0hGU8NgGNXlCGkaSlUlaqK9IUAOowVRyTCEOZlpGOj6Ff1RWeACPHZUrqMNYUSKk01LJEMgRo4tLGLqcwsGtfvnVSGMvtss_-sJ_DnnWBLb9E4gL6zbrFS0LxRl85730C8o2dMg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7oBPWk4sTf5uDBS7v-SNrmIkjnmLoNwQq7jaRJYUxa0fbiX-9LuikKgrfyoCThkXzv5eX7HsAl4zQuqKecPC-0Q5VmjhRMOYppKhjiVevp8SQaPtP7KZsuyeqWC6O1to_PtGs-bS1fVXljrsp6pictQzxahw1GKWUtXWsTrpbKmT3c7jf97KlK52lVRh7m6pgBBtRd_fijhYpFkMEOTFZjtw9HFm5TSzf_-CXL-O_J7UL3m6xHHr9gaA_WdLkP1-lLYyQQ0ELGtkn0O8HwlFi-rTKK_q0aB-mLWhDDMSEtUZeYyo3oQja4zdKhs2yV4Mwpx1MioTwSNJEsEZIrgaAb4iGW0FB5OHqOOUYUF0IYsa5AYggo_VhQHQXa53ERyPAAOmVV6kMg6LpEcOmHEkMpEfuSFxoNnlZhYaKXI-iatc9eWzGM2WrZx3_YL2BrmI1Hs9Hd5OEEto07TDEmYKfQqd8afYaYXstz68lPYGegfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+MIT+Art%2C+Design+and+Technology+School+of+Computing+International+Conference+%28MITADTSoCiCon%29&rft.atitle=Clustering+Methods+for+Multidimensional+Data+from+Social+Media&rft.au=Ikramuddin%2C+Ikramuddin&rft.au=Avasthi%2C+Sandhya&rft.au=Tyagi%2C+Meenakshi&rft.date=2024-04-25&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FMITADTSoCiCon60330.2024.10575244&rft.externalDocID=10575244