Discrimination of Electrical Motor Faults in Thermal Images by using First-order Statistics and Classifiers

Fault detection and classification of an electrical equipment is a significant subject concerning the continuity of efficient working and necessary tasks. The heat concept creates a stimulating effect in case of failure among the electrical equipment. For this reason, thermal camera images can be fu...

Full description

Saved in:
Bibliographic Details
Published in2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) pp. 1 - 5
Main Authors Sakalli, Gonul, Koyuncu, Hasan
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.06.2022
Subjects
Online AccessGet full text
DOI10.1109/HORA55278.2022.9800010

Cover

Abstract Fault detection and classification of an electrical equipment is a significant subject concerning the continuity of efficient working and necessary tasks. The heat concept creates a stimulating effect in case of failure among the electrical equipment. For this reason, thermal camera images can be functional and are used to detect the malfunctions. In this paper, thermal camera images are utilized to detect 11 different conditions of induction motors that are 8 different short-circuit faults of stator windings, rotor failure, cooling fan failure, and no-load. First-order statistics (FOS) are considered to obtain the discriminative information among the thermal images. The classification unit of model is specified examining five efficient algorithms that are neural networks (NN), k-nearest neighbors (k-NN), random forest (RF), logistic regression (LR), and support vector machines (SVM). In the experiments, 10-fold cross validation is chosen as the test method, and four metrics (accuracy, specificity, sensitivity, AUC) are considered to evaluate the performance. Consequently, the best accuracy of 97.29% is observed by k-NN and RF techniques. In a detailed examination, it is revealed that the most qualified technique rises as RF for the proposed model by considering the accuracy and AUC rates.
AbstractList Fault detection and classification of an electrical equipment is a significant subject concerning the continuity of efficient working and necessary tasks. The heat concept creates a stimulating effect in case of failure among the electrical equipment. For this reason, thermal camera images can be functional and are used to detect the malfunctions. In this paper, thermal camera images are utilized to detect 11 different conditions of induction motors that are 8 different short-circuit faults of stator windings, rotor failure, cooling fan failure, and no-load. First-order statistics (FOS) are considered to obtain the discriminative information among the thermal images. The classification unit of model is specified examining five efficient algorithms that are neural networks (NN), k-nearest neighbors (k-NN), random forest (RF), logistic regression (LR), and support vector machines (SVM). In the experiments, 10-fold cross validation is chosen as the test method, and four metrics (accuracy, specificity, sensitivity, AUC) are considered to evaluate the performance. Consequently, the best accuracy of 97.29% is observed by k-NN and RF techniques. In a detailed examination, it is revealed that the most qualified technique rises as RF for the proposed model by considering the accuracy and AUC rates.
Author Koyuncu, Hasan
Sakalli, Gonul
Author_xml – sequence: 1
  givenname: Gonul
  orcidid: 0000-0002-7797-4466
  surname: Sakalli
  fullname: Sakalli, Gonul
  email: gonul9818@gmail.com
  organization: Konya Technical University,Electrical Electronics Engineering,Konya,Turkey
– sequence: 2
  givenname: Hasan
  orcidid: 0000-0003-4541-8833
  surname: Koyuncu
  fullname: Koyuncu, Hasan
  email: hkoyuncu@ktun.edu.tr
  organization: Konya Technical University,Electrical Electronics Engineering,Konya,Turkey
BookMark eNotkNFKwzAYRiPohc49gSB5gc4kbdL0ctTVDTYG2vuRpH_nj20qSXaxt7fgrg58Fwe-80Tu_eSBkFfOVpyz6m17_FxLKUq9EkyIVaUZY5zdkWVVaq6ULJTOJXskP-8YXcARvUk4eTr1dDOASwGdGehhSlOgjbkMKVL0tP2GMM77bjRniNRe6SWiP9MGQ0zZFDoI9CvNppjQRWp8R-vBxIg9QojP5KE3Q4TljQvSNpu23mb748euXu8zLLTMequEFZVQLAcjealtB1Z2vbJgStdXJc87qYyylStkISSAcpxbp1TurNUsX5CXfy0CwOl3PmfC9XQrkP8BXZJXzw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/HORA55278.2022.9800010
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665468350
1665468351
EndPage 5
ExternalDocumentID 9800010
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i485-fb62b292603ea5178bdeb5df6bea7cf9713d56a6b9c45425ee6c11bc663cbb803
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:12 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i485-fb62b292603ea5178bdeb5df6bea7cf9713d56a6b9c45425ee6c11bc663cbb803
ORCID 0000-0002-7797-4466
0000-0003-4541-8833
PageCount 5
ParticipantIDs ieee_primary_9800010
PublicationCentury 2000
PublicationDate 2022-June-9
PublicationDateYYYYMMDD 2022-06-09
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June-9
  day: 09
PublicationDecade 2020
PublicationTitle 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)
PublicationTitleAbbrev HORA
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7999225
Snippet Fault detection and classification of an electrical equipment is a significant subject concerning the continuity of efficient working and necessary tasks. The...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms electrical fault
fault classification
Feature extraction
first-order statistics
image analysis
induction motor
Induction motors
Radio frequency
Rotors
Sensitivity
Stator windings
Support vector machines
thermal image
Title Discrimination of Electrical Motor Faults in Thermal Images by using First-order Statistics and Classifiers
URI https://ieeexplore.ieee.org/document/9800010
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG7mTp7UbMbf6cGjsMFoaY9GR6bJ1JiZ7LbQ8mrIJhgHB_3r7Ss4o_HgjRBSSB99P9rvfR8h50pxbQND7DFgmReZMPZSZZe7cZ2QSJCe4Yb-9I5PnqLbOZt3yMWmFwYAHPgMfLx0Z_lZqWvcKhtIgSmJLdC3YsGbXq226TcYysHk_vES-cQQsBWGfvvwD9UUFzSSHTL9el2DFVn6daV8_fGLifG_37NL-t_tefRhE3j2SAeKHlle5-gBENmCc01LQ8dO4gatQKelra1pktarak3zgtq_w3rkFb15sf5kTdU7RQD8M01ymw16jo-TYh7a0DjTtMiok8_MDUpn98ksGc-uJl6rpODlkWCeUTxUobSlywhSFsRCZaBYZriCNNZG2kI1YzzlSuqI2UUMwHUQKG2zEa2UGI72SbcoCzggVGhUfxMhGJARjiAlSGHHiKIw1hEckh7O0-K14cpYtFN09PftY7KNtnLQK3lCutVbDac2yFfqzFn3E1BSqkU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG6WedCTms342x48CttYC_RodAR1TGNmsttCy8OQTTAODvrX21dwRuPBGyGkkD76frTf-z5CzqV0lQ4MnsWBJxZLHc-KpV7uqemERIL0BDf0o4kbPrHbGZ-1yMW6FwYADPgMbLw0Z_lJoSrcKusJH1MSXaBvcMYYr7u1mrbfQV_0wvvHS2QUQ8iW49jN4z90U0zYCLZJ9PXCGi2ysKtS2urjFxfjf79oh3S_G_Towzr07JIW5B2yuM7QByC2BWebFikdGZEbtAONCl1d0yCuluWKZjnV_4f2yUt686I9yorKd4oQ-GcaZDoftAwjJ8VMtCZypnGeUCOgmaUont0l02A0vQqtRkvBypjPrVS6jnSELl6GEPOB58sEJE9SV0LsqVToUjXhbuxKoRjXyxjAVYOBVDofUVL6_eEeaedFDvuE-gr133wHUhAMRxAChK_HYMzxFIMD0sF5mr_WbBnzZooO_759RjbDaTSej28md0dkC-1mgFjimLTLtwpOdMgv5amx9CdlLq2S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+International+Congress+on+Human-Computer+Interaction%2C+Optimization+and+Robotic+Applications+%28HORA%29&rft.atitle=Discrimination+of+Electrical+Motor+Faults+in+Thermal+Images+by+using+First-order+Statistics+and+Classifiers&rft.au=Sakalli%2C+Gonul&rft.au=Koyuncu%2C+Hasan&rft.date=2022-06-09&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FHORA55278.2022.9800010&rft.externalDocID=9800010