Wet and Wrinkled Finger Recognition Using Voting Classification and GLCM Algorithm

The automated wrinkle fingerprint recognition techniques rely on some principles from the domain of pattern recognition. There are two prevalent techniques for wrinkle fingerprint recognition. The first method is based on the pixel intensity of the wrinkles, and the second relies upon the pattern of...

Full description

Saved in:
Bibliographic Details
Published in2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N) pp. 1713 - 1718
Main Authors Kumar, Puneet, Sharma, Suarabh
Format Conference Proceeding
LanguageEnglish
Published IEEE 17.12.2021
Subjects
Online AccessGet full text
DOI10.1109/ICAC3N53548.2021.9725564

Cover

Abstract The automated wrinkle fingerprint recognition techniques rely on some principles from the domain of pattern recognition. There are two prevalent techniques for wrinkle fingerprint recognition. The first method is based on the pixel intensity of the wrinkles, and the second relies upon the pattern of fingerprint orientation fields. In this research paper classification method is proposed for the wet and wrinkled image recognition. The proposed method is the combination of threshold segmentation, Grey Level C0-occurrence Matrix algorithm to extract the attributes and voting classification to recognize wet image. The proposed method is executed in python and the analysis of results is done with regard to accuracy, precision and recall. The accuracy of the proposed model is achieved up to 96 percent.
AbstractList The automated wrinkle fingerprint recognition techniques rely on some principles from the domain of pattern recognition. There are two prevalent techniques for wrinkle fingerprint recognition. The first method is based on the pixel intensity of the wrinkles, and the second relies upon the pattern of fingerprint orientation fields. In this research paper classification method is proposed for the wet and wrinkled image recognition. The proposed method is the combination of threshold segmentation, Grey Level C0-occurrence Matrix algorithm to extract the attributes and voting classification to recognize wet image. The proposed method is executed in python and the analysis of results is done with regard to accuracy, precision and recall. The accuracy of the proposed model is achieved up to 96 percent.
Author Kumar, Puneet
Sharma, Suarabh
Author_xml – sequence: 1
  givenname: Puneet
  surname: Kumar
  fullname: Kumar, Puneet
  email: itpun96@gmail.com
  organization: Chandigarh University,Department of Computer Science and Engineering,Punjab,India,140301
– sequence: 2
  givenname: Suarabh
  surname: Sharma
  fullname: Sharma, Suarabh
  email: suarabh.e8616@cumail.in
  organization: Chandigarh University,Department of Computer Science and Engineering,Mohali,India,140301
BookMark eNotj81OwzAQhI0EByh9Ai5-gQQ7Xv_kWEW0IAWQqkKP1WJvgkXqoCQX3p4UehppRjP65oZdpj4RY1yKXEpR3j9Vq0q9aKXB5YUoZF7aQmsDF2xZWieN0aCclPaabfc0cUyB74eYvjoKfB1TSwPfku_bFKfYJ_42zh5_76eTVB2OY2yix7_s1N3U1TNfdW0_xOnzeMuuGuxGWp51wXbrh131mNWvmxmsziI4laEqJAVojAXlncRSFhiCNQKpQf3hAb21FjEYVEGAFgA4g5MrPThvlFqwu__ZSESH7yEecfg5nI-qX-tnTe0
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICAC3N53548.2021.9725564
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665438117
1665438118
EndPage 1718
ExternalDocumentID 9725564
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i483-a321ed4f6743c81a912add760aefa5bc4ac777aad6a3d045044a166e89c48c633
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:36 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i483-a321ed4f6743c81a912add760aefa5bc4ac777aad6a3d045044a166e89c48c633
PageCount 6
ParticipantIDs ieee_primary_9725564
PublicationCentury 2000
PublicationDate 2021-Dec.-17
PublicationDateYYYYMMDD 2021-12-17
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-17
  day: 17
PublicationDecade 2020
PublicationTitle 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N)
PublicationTitleAbbrev ICAC3N
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7823677
Snippet The automated wrinkle fingerprint recognition techniques rely on some principles from the domain of pattern recognition. There are two prevalent techniques for...
SourceID ieee
SourceType Publisher
StartPage 1713
SubjectTerms Computational modeling
Feature extraction
Fingerprint recognition
Fingers
GLCM
Image recognition
Image segmentation
Measurement
Outs Segmentation
Voting Classification
Wet and Wrinkled
Title Wet and Wrinkled Finger Recognition Using Voting Classification and GLCM Algorithm
URI https://ieeexplore.ieee.org/document/9725564
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NT8MgFMDJtpMnNZvxOxw82q58lNLj0lincYtZpu62UHjVZbM1S3fxr7ewD6Px4I0QCIRHeA_4vfcQujJa23jUwqs3R-bV96_ckzQLvTzITcgyQsFBNIOh6D_x-0k4aaDrnS8MADj4DHxbdH_5ptQr-1TWjSMbMIs3UTOSYu2rtYVzgrh7l_QSNgxZ6JAtSvxN8x95U5zaSPfRYDvgmhaZ-6sq8_Xnr1iM_53RAep8O-jhx53qOUQNKNpo9AIVVoXB9Y27mC_A4NS92eHRFhIqC-wQAfxcWtoZu4yYlhVy4nF9bx-SAe4tXsvlrHp776BxejNO-t4mZYI345J5ilEChufWs0BLomJC6_MrEoGCXIWZ5kpHUaSUEYqZ2pgLOFdECJCx5lILxo5QqygLOEZYgqJEaxPnIuCKaklzExgWGskU1FbKCWrb5Zh-rINiTDcrcfp39RnasyKxHAiJzlGrWq7gotbmVXbpxPgFM4OhMA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEICtUgaYALWINx4YSRo_44xVRCnQVKgq0K1ybAeqlgRV6cKvJ3YfCMTAZlmybPks35393R0AV1opm4-ae9XhSL3K_8o8gVPmZUGmGUkRNg6iSfq8-0TvR2xUA9ebWBhjjIPPjG-b7i9fF2phn8paUWgTZtEtsM0opWwZrbXGc4KodRe3Y9JnhDloCyN_NeBH5RSnODp7IFlPueRFpv6iTH31-Ssb43_XtA-a3yF68HGjfA5AzeQNMHgxJZS5hpXPnU9nRsOOe7WDgzUmVOTQQQLwubC8M3Q1MS0t5ATkxt724gS2Z6_FfFK-vTfBsHMzjLveqmiCN6GCeJJgZDTNbGyBEkhGCFc3WMgDaTLJUkWlCsNQSs0l0ZU5F1AqEedGRIoKxQk5BPW8yM0RgMJIjJTSUcYDKrESONOBJkwLIk1lpxyDht2O8ccyLcZ4tRMnf3dfgp3uMOmNe3f9h1Owa8VjqRAUnoF6OV-Y80q3l-mFE-kX04OkfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+3rd+International+Conference+on+Advances+in+Computing%2C+Communication+Control+and+Networking+%28ICAC3N%29&rft.atitle=Wet+and+Wrinkled+Finger+Recognition+Using+Voting+Classification+and+GLCM+Algorithm&rft.au=Kumar%2C+Puneet&rft.au=Sharma%2C+Suarabh&rft.date=2021-12-17&rft.pub=IEEE&rft.spage=1713&rft.epage=1718&rft_id=info:doi/10.1109%2FICAC3N53548.2021.9725564&rft.externalDocID=9725564