An investigation into non-invasive physical activity recognition using smartphones

Technology utilized to automatically monitor Activities of Daily Living (ADL) could be a key component in identifying deviations from normal functional profiles and providing feedback on interventions aimed at improving health. However, if activity recognition systems are to be implemented in real w...

Full description

Saved in:
Bibliographic Details
Published in2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vol. 2012; pp. 3340 - 3343
Main Authors Kelly, D., Caulfield, B.
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.01.2012
Subjects
Online AccessGet full text
ISBN1424441196
9781424441198
ISSN1094-687X
1557-170X
DOI10.1109/EMBC.2012.6346680

Cover

Abstract Technology utilized to automatically monitor Activities of Daily Living (ADL) could be a key component in identifying deviations from normal functional profiles and providing feedback on interventions aimed at improving health. However, if activity recognition systems are to be implemented in real world scenarios such as health and wellness monitoring, the activity sensing modality must unobtrusively fit the human environment rather than forcing humans to adhere to sensor specific conditions. Modern smart phones represent a ubiquitous computing device which has already undergone mainstream adoption. In this paper, we investigate the feasibility of using a modern smartphone, with limited placement constraints, as the sensing modality for an activity recognition system. A dataset of 4 subjects performing 7 activities, using varying sensor placement conditions, is utilized to investigate this. Initial experiments show that a decision tree classifier performs activity classification with precision and recall scores of 0.75 and 0.73 respectively. More importantly, as part of this initial experiment, 3 main problems, and subsequently 3 solutions, relating to unconstrained sensor placement were identified. Using our proposed solutions, classification precision and recall scores were improved by +13% and +14.6% respectively.
AbstractList Technology utilized to automatically monitor Activities of Daily Living (ADL) could be a key component in identifying deviations from normal functional profiles and providing feedback on interventions aimed at improving health. However, if activity recognition systems are to be implemented in real world scenarios such as health and wellness monitoring, the activity sensing modality must unobtrusively fit the human environment rather than forcing humans to adhere to sensor specific conditions. Modern smart phones represent a ubiquitous computing device which has already undergone mainstream adoption. In this paper, we investigate the feasibility of using a modern smartphone, with limited placement constraints, as the sensing modality for an activity recognition system. A dataset of 4 subjects performing 7 activities, using varying sensor placement conditions, is utilized to investigate this. Initial experiments show that a decision tree classifier performs activity classification with precision and recall scores of 0.75 and 0.73 respectively. More importantly, as part of this initial experiment, 3 main problems, and subsequently 3 solutions, relating to unconstrained sensor placement were identified. Using our proposed solutions, classification precision and recall scores were improved by +13% and +14.6% respectively.
Author Kelly, D.
Caulfield, B.
Author_xml – sequence: 1
  givenname: D.
  surname: Kelly
  fullname: Kelly, D.
  email: daniel.kelly@ucd.ie
  organization: Clarity Center for Sensor Web Technol., Univ. Coll. Dublin, Dublin, Ireland
– sequence: 2
  givenname: B.
  surname: Caulfield
  fullname: Caulfield, B.
  organization: Clarity Center for Sensor Web Technol., Univ. Coll. Dublin, Dublin, Ireland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23366641$$D View this record in MEDLINE/PubMed
BookMark eNo9kNtKA0EMhkes2IN9ABFkX2DrZs5zWZd6gIogCt6V2Tm0I-3u0tkW-vaOtpqbkORL8idD1Kub2iF0DcUEoFB3s5f7coILwBNOKOeyOENjJSRQJgQIKeAcDYFiSimA4j00SE0051J89tE4xq8imQRJCnqJ-pgQzjmFAXqb1lmo9y52Yam70PxEXZOl5XlK6xj2LmtXhxiMXmfadGEfukO2daZZ1uGX38VQL7O40duuXSXN8QpdeL2ObnzyI_TxMHsvn_L56-NzOZ3ngQjocq8srRwIw5ll1grsrbCWEOUNxZWx3ivhDeOOKC0qLD3DBgjjQlSEG8zICN0e57a7auPsot2GJOKw-DsuATdHIDjn_sun95FvD8BifA
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1109/EMBC.2012.6346680
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore digital library
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781457717871
1457717875
EndPage 3343
ExternalDocumentID 23366641
6346680
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 6IE
6IF
6IH
AAJGR
ACGFS
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIO
RNS
29F
29G
6IK
6IM
CGR
CUY
CVF
ECM
EIF
IPLJI
NPM
ID FETCH-LOGICAL-i371t-f9d4be17c65d5dd72fd7dd339fc42bcdff97fc56e39a7b28f52c135677b36c253
IEDL.DBID RIE
ISBN 1424441196
9781424441198
ISSN 1094-687X
1557-170X
IngestDate Thu Jan 02 22:16:24 EST 2025
Wed Aug 27 02:44:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i371t-f9d4be17c65d5dd72fd7dd339fc42bcdff97fc56e39a7b28f52c135677b36c253
PMID 23366641
PageCount 4
ParticipantIDs pubmed_primary_23366641
ieee_primary_6346680
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Conf Proc IEEE Eng Med Biol Soc
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000818304
ssj0020051
ssj0061641
Score 1.9983934
Snippet Technology utilized to automatically monitor Activities of Daily Living (ADL) could be a key component in identifying deviations from normal functional...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 3340
SubjectTerms Acceleration
Activities of Daily Living
Cell Phone
Conferences
Feature extraction
Humans
Legged locomotion
Microcomputers
Monitoring
Motor Activity
Reproducibility of Results
Torso
Title An investigation into non-invasive physical activity recognition using smartphones
URI https://ieeexplore.ieee.org/document/6346680
https://www.ncbi.nlm.nih.gov/pubmed/23366641
Volume 2012
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ1h4tEB5yQMjSRvbseMRKqoKqQghKnWr4heqEElF04Vfjy9JU1QxsMWJE8cPyd-dv_sOoVuReqOLg_Ij8bYJgyAuxQwPpOZKM2NTYkuW7zMfT9nTLJ610F0TC2OtLclnNoTL8izf5HoNrrI-p_67iTfQ90TCq1itxp8C0mwUTIva2ILVVp50ShbwRMw2QV0siio9P9B6qstJfdzpK_cfJw9DYHyRsG4N5IIp9SgfksaXGVh2EGi5E40O0WTTh4qA8hGuCxXq7x15x_928gh1tzF_-KXZzY5Ry2Yn6OCXXGEHvd5neLHV5cihVOQ4y7PA306BCI-X9bxjCJiAvBS4oSj5-sCyf8erT79egRNvV100HT2-DcdBnZMhWFARFYGThikbCc1jExsjiDPCGEql04wobZyTwumYWypToUjiYqIjGnMhFOWaxPQUtf1v2XOErQcP2gOONFKOJXqQqIFHm04yACFMRj3UgdGZLyvZjXk9MD10Vo1-82AzPRd_v3CJ9mE-K7_JFWoXX2t77ZFEoW7KJfQDDE-_Hw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFJ4QPKgXF1Bx7cGjLbSztUclGFQgxkDCjXQ2Q4wtkXLx1zuvLcUQD9467bTTWZL53pvvfQ-hWx5bo4uB8mNgbRMCQVyCKOZGkglJlI4DnbN8R6w_Ic9TOq2huyoWRmudk8-0B5f5Wb5K5QpcZW2G7XdDa6DvUEIILaK1Ko8KiLNhMC5KcwvWW37WGRGXhXy6Dusivl8o-oHaU1kOywNPW7ndGz50gfMVeGV7IBiMscX5kDY-z8GyhUHzvejxAA3XvSgoKB_eKhOe_N4SePxvNw9RcxP157xW-9kRqunkGO3_EixsoLf7xJlvlDlSKGWpk6SJa2_HQIV3FuXMOxAyAZkpnIqkZOsDz_7dWX7aFQuseL1sosljb9ztu2VWBneOuZ-5JlJEaJ9LRhVVigdGcaUwjowkgZDKmIgbSZnGUcxFEBoaSB9TxrnATAYUn6C6_S19hhxt4YO0kCP2hSGh7ISiY_GmiQjAEBL5LdSA0ZktCuGNWTkwLXRajH71YD0953-_cIN2--PhYDZ4Gr1coD2Y28KLconq2ddKX1lckYnrfDn9AEOlwmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society&rft.atitle=An+investigation+into+non-invasive+physical+activity+recognition+using+smartphones&rft.au=Kelly%2C+D.&rft.au=Caulfield%2C+B.&rft.date=2012-01-01&rft.pub=IEEE&rft.isbn=9781424441198&rft.issn=1094-687X&rft.spage=3340&rft.epage=3343&rft_id=info:doi/10.1109%2FEMBC.2012.6346680&rft_id=info%3Apmid%2F23366641&rft.externalDocID=6346680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-687X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-687X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-687X&client=summon