EEG source extraction by autoregressive source separation reveals abnormal synchronization in Parkinson's disease

Recent research efforts in studying brain connectivity has provided new perspectives to understanding of neurophysiology of brain function. Connectivity measures are typically computed from electroencephalogram (EEG) signals, yet the presence of volume conduction makes interpretation of results diff...

Full description

Saved in:
Bibliographic Details
Published inConference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.) Vol. 2009; pp. 1868 - 1872
Main Authors Chiang, J., Wang, Z.J., McKeown, M.J.
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.01.2009
Subjects
Online AccessGet full text
ISSN1094-687X
1557-170X
DOI10.1109/IEMBS.2009.5332613

Cover

Abstract Recent research efforts in studying brain connectivity has provided new perspectives to understanding of neurophysiology of brain function. Connectivity measures are typically computed from electroencephalogram (EEG) signals, yet the presence of volume conduction makes interpretation of results difficult. One possible alternative is to model the connectivity in the source space. In this study, we proposed a novel source separation technique in which EEG signals are represented as a state-space framework. The framework jointly models the underlying brain sources and the connectivity between them in the form of a generalized autoregressive (AR) process. The proposed technique was applied to real EEG data collected from normal and Parkinson's patients during a motor task. The extracted sources revealed the abnormal beta activity in Parkinson's subjects and showed similar biological networks as previous studies.
AbstractList Recent research efforts in studying brain connectivity has provided new perspectives to understanding of neurophysiology of brain function. Connectivity measures are typically computed from electroencephalogram (EEG) signals, yet the presence of volume conduction makes interpretation of results difficult. One possible alternative is to model the connectivity in the source space. In this study, we proposed a novel source separation technique in which EEG signals are represented as a state-space framework. The framework jointly models the underlying brain sources and the connectivity between them in the form of a generalized autoregressive (AR) process. The proposed technique was applied to real EEG data collected from normal and Parkinson's patients during a motor task. The extracted sources revealed the abnormal beta activity in Parkinson's subjects and showed similar biological networks as previous studies.
Author McKeown, M.J.
Chiang, J.
Wang, Z.J.
Author_xml – sequence: 1
  givenname: J.
  surname: Chiang
  fullname: Chiang, J.
  organization: Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC, Canada
– sequence: 2
  givenname: Z.J.
  surname: Wang
  fullname: Wang, Z.J.
  organization: Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC, Canada
– sequence: 3
  givenname: M.J.
  surname: McKeown
  fullname: McKeown, M.J.
  organization: Pacific Parkinson's Res. Centre, Univ. of British Columbia, Vancouver, BC, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19963527$$D View this record in MEDLINE/PubMed
BookMark eNo90E1LAzEQBuAIFfth_4CC5OZpaz43m6OWtRYqCip4K9nsrEbbbE22xfrrXWzraQbmmYF3-qjjaw8InVEyopToq2l-f_M0YoTokeScpZQfoaFWGRVMCM50qjqo10KRpJl67aJ-jB-EtF7SE9SlWqdcMtVDX3k-wbFeBwsYvptgbONqj4stNuumDvAWIEa3gYOJsDLB_JkAGzCLiE3h67A0Cxy33r6H2rufHXAeP5rw6Xys_WXEpYtgIpyi46pdg-G-DtDLbf48vktmD5Pp-HqWOK5Ik9hUlaU2mWTECspFoTNTqcqAkW1faMokEFVV1FIppAXFFBGKFVayyrbZ-ABd7O6u1sUSyvkquKUJ2_khewvOd8ABwP94_03-C4KWasM
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1109/IEMBS.2009.5332613
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424432967
1424432960
EndPage 1872
ExternalDocumentID 19963527
5332613
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canadian Institutes of Health Research
GroupedDBID 6IE
6IF
6IH
AAJGR
ACGFS
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIO
RNS
29F
29G
6IK
6IM
CGR
CUY
CVF
ECM
EIF
IPLJI
NPM
ID FETCH-LOGICAL-i370t-c67dd9a8520c4134b98af7faea54b9b9125e07ff1c1545ce7270472bc52fc3523
IEDL.DBID RIE
ISSN 1094-687X
1557-170X
IngestDate Thu Jan 02 22:03:58 EST 2025
Wed Aug 27 02:31:26 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i370t-c67dd9a8520c4134b98af7faea54b9b9125e07ff1c1545ce7270472bc52fc3523
PMID 19963527
PageCount 5
ParticipantIDs ieee_primary_5332613
pubmed_primary_19963527
PublicationCentury 2000
PublicationDate 2009-01-01
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Conference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.)
PublicationTitleAbbrev IEMBS
PublicationTitleAlternate Conf Proc IEEE Eng Med Biol Soc
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020051
ssj0061641
Score 1.5037423
Snippet Recent research efforts in studying brain connectivity has provided new perspectives to understanding of neurophysiology of brain function. Connectivity...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 1868
SubjectTerms Algorithms
Brain - physiology
Brain - physiopathology
Brain Mapping - methods
Brain modeling
Clustering algorithms
Electroencephalography
Electroencephalography - methods
Gaussian distribution
Humans
Independent component analysis
Likelihood Functions
Models, Neurological
Parkinson Disease - physiopathology
Parkinson's disease
Reference Values
Regression Analysis
Scalp
Signal Transduction
Software
Source separation
USA Councils
Volume measurement
Title EEG source extraction by autoregressive source separation reveals abnormal synchronization in Parkinson's disease
URI https://ieeexplore.ieee.org/document/5332613
https://www.ncbi.nlm.nih.gov/pubmed/19963527
Volume 2009
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTnrxY1PnFzkIXszWtUmbXpXOKUwEHew20vQFhtLp1h3mX28-2irDg7dAkxKSR97vvZffLwhd-RArSjNKuOCKUFCMiIwGxOcQ-4ozDsJUdMdP4WhCH6ds2kA3NRcGAOzlM-iZpq3lZwu5NqmyvoYmGvAHTdSMeOi4WnVwZazLVjZjSkIeTSuCjBf3H5Lx7YuTpiz_YKVCtekxv3pVZQtVWu8y3EPjal7uUslbb12kPfm1Jdn434nvo84Pjw8_1x7qADUgP0S7vyQI2-gzSe6xy-BjfU4vHc8BpxssjLoB2HBcn4hVnxU4sXDdx4g_aePFIs0N8H3Hq00urdauo3bieY4Nqdryy65XuKwFddBkmLzejUj5DAOZB5FXEBlGWRYLznxPapdH05gLFSkBgul2GmuIBF6k1EAaOCZBIyIjQZlK5iuplzg4Qq18kcMJwkqFUrvNAWWKU5kFMRMUBmnAdFDpRUC7qG0Wb_bhlDZm5bp10bHbnPpDtXunfw84Qzuu6mNSJeeoVSzXcKHBQ5FeWqv5BqJXwuU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIALSwuU1QckLqSkid04V1ChLKmQaKXeKscZSxUohS6H8vV4aQKqOHCzFDuy7JHnzYzfM8BFgLGiNKMeF1x5FBXzREZDL-AYB4ozjsJUdJNOs92jj33WX4GrkguDiPbyGdZN09bys5GcmVTZtYYmGvCHq7DOKKXMsbXK8MrYl61txtRr8qhfUGT8-Pqhldy8OnHKxT-sWKg2PhYU76os4UrrX-62ISlm5q6VvNVn07Quv5ZEG_879R2o_jD5yEvpo3ZhBfM92PolQliBz1brnrgcPtEn9dgxHUg6J8LoG6ANyPWZWPSZoJML132M_JM2XyLS3EDfdzKZ59Kq7TpyJxnmxNCqLcPsckIW1aAq9O5a3du2t3iIwRuGkT_1ZDPKslhwFvhSOz2axlyoSAkUTLfTWIMk9COlGtIAMokaExkRylSyQEm9xOE-rOWjHA-BKNWU2nE2KFOcyiyMmaDYSEOmw0o_QlqDilm8wYfT2hgs1q0GB25zyg_F7h39PeAcNtrd5Hnw_NB5OoZNVwMyiZMTWJuOZ3iqocQ0PbMW9A0C1cYy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+annual+international+conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society&rft.atitle=EEG+source+extraction+by+autoregressive+source+separation+reveals+abnormal+synchronization+in+Parkinson%27s+disease&rft.au=Chiang%2C+J.&rft.au=Wang%2C+Z.J.&rft.au=McKeown%2C+M.J.&rft.date=2009-01-01&rft.pub=IEEE&rft.issn=1094-687X&rft.spage=1868&rft.epage=1872&rft_id=info:doi/10.1109%2FIEMBS.2009.5332613&rft_id=info%3Apmid%2F19963527&rft.externalDocID=5332613
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-687X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-687X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-687X&client=summon