Evolved fuzzy reasoning model for hypoglycaemic detection
Hypoglycaemia is a serious side effect of insulin therapy in patients with diabetes. We measure physiological parameters (heart rate, corrected QT interval of the electrocardiogram (ECG) signal) continuously to provide early detection of hypoglycemic episodes in Type 1 diabetes mellitus (T1DM) patie...
Saved in:
| Published in | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Vol. 2010; pp. 4662 - 4665 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding Journal Article |
| Language | English |
| Published |
United States
IEEE
01.01.2010
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 1424441234 9781424441235 |
| ISSN | 1094-687X 1557-170X |
| DOI | 10.1109/IEMBS.2010.5626450 |
Cover
| Abstract | Hypoglycaemia is a serious side effect of insulin therapy in patients with diabetes. We measure physiological parameters (heart rate, corrected QT interval of the electrocardiogram (ECG) signal) continuously to provide early detection of hypoglycemic episodes in Type 1 diabetes mellitus (T1DM) patients. Based on the physiological parameters, an evolved fuzzy reasoning model (FRM) to recognize the presence of hypoglycaemic episodes is developed. To optimize the fuzzy rules and the fuzzy membership functions of FRM, an evolutionary algorithm called hybrid particle swarm optimization with wavelet mutation operation is investigated. All data sets are collected from Department of Health, Government of Western Australia for a clinical study. The results show that the proposed algorithm performs well in terms of the clinical sensitivity and specificity. |
|---|---|
| AbstractList | Hypoglycaemia is a serious side effect of insulin therapy in patients with diabetes. We measure physiological parameters (heart rate, corrected QT interval of the electrocardiogram (ECG) signal) continuously to provide early detection of hypoglycemic episodes in Type 1 diabetes mellitus (T1DM) patients. Based on the physiological parameters, an evolved fuzzy reasoning model (FRM) to recognize the presence of hypoglycaemic episodes is developed. To optimize the fuzzy rules and the fuzzy membership functions of FRM, an evolutionary algorithm called hybrid particle swarm optimization with wavelet mutation operation is investigated. All data sets are collected from Department of Health, Government of Western Australia for a clinical study. The results show that the proposed algorithm performs well in terms of the clinical sensitivity and specificity. |
| Author | Nguyen, H T Ling, S H Nuryani |
| Author_xml | – sequence: 1 givenname: S H surname: Ling fullname: Ling, S H email: Steve.Ling@uts.edu.au organization: Centre for Health Technol., Univ. of Technol. Sydney, Ultimo, NSW, Australia – sequence: 2 surname: Nuryani fullname: Nuryani email: Nuryani.Nuryani@eng.uts.edu.au organization: Centre for Health Technol., Univ. of Technol. Sydney, Ultimo, NSW, Australia – sequence: 3 givenname: H T surname: Nguyen fullname: Nguyen, H T email: Hung.Nguyen@uts.edu.au organization: Centre for Health Technol., Univ. of Technol. Sydney, Ultimo, NSW, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21096241$$D View this record in MEDLINE/PubMed |
| BookMark | eNpFkN1Kw0AUhFes2Kb6AgqSF0jdPdmf7KWWqIWKFyp4VzbZszWSZEPSFtKnb6BVr4ZhvnNgJiCj2tdIyA2jM8aovl-kr4_vM6CDFxIkF_SMBIwD55wBh_N_E_MRmQwnPJKJ-hqToOt-KAVKBbskYxgSCZxNiE53vtyhDd12v-_DFk3n66Jeh5W3WIbOt-F33_h12ecGqyIPLW4w3xS-viIXzpQdXp90Sj6f0o_5S7R8e17MH5ZRESu6iaQADUpmCmTOWGYSJ6SNhUlyKk3GtTQamGSaKzGQCaDKkBtnLU0sakfjKbk7_m22WYV21bRFZdp-9dthAG6PQIGIf_Fpn_gA8dBV9w |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO CGR CUY CVF ECM EIF NPM |
| DOI | 10.1109/IEMBS.2010.5626450 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Explore IEEE Proceedings Order Plans (POP) 1998-present Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
| DatabaseTitleList | MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1424441242 9781424441242 |
| EndPage | 4665 |
| ExternalDocumentID | 21096241 5626450 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | 6IE 6IF 6IH AAJGR ACGFS AFFNX ALMA_UNASSIGNED_HOLDINGS CBEJK M43 RIE RIO RNS 29F 29G 6IK 6IM CGR CUY CVF ECM EIF IPLJI NPM |
| ID | FETCH-LOGICAL-i370t-6529276b726c11ba8f56d35a8c06ab496a92161947552982e7be4afdd08de9f03 |
| IEDL.DBID | RIE |
| ISBN | 1424441234 9781424441235 |
| ISSN | 1094-687X 1557-170X |
| IngestDate | Thu Jan 02 22:40:31 EST 2025 Wed Aug 27 02:53:04 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i370t-6529276b726c11ba8f56d35a8c06ab496a92161947552982e7be4afdd08de9f03 |
| PMID | 21096241 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_5626450 pubmed_primary_21096241 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-01-01 |
| PublicationDateYYYYMMDD | 2010-01-01 |
| PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology |
| PublicationTitleAbbrev | IEMBS |
| PublicationTitleAlternate | Conf Proc IEEE Eng Med Biol Soc |
| PublicationYear | 2010 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020051 ssj0000452612 ssj0061641 |
| Score | 1.6191928 |
| Snippet | Hypoglycaemia is a serious side effect of insulin therapy in patients with diabetes. We measure physiological parameters (heart rate, corrected QT interval of... |
| SourceID | pubmed ieee |
| SourceType | Index Database Publisher |
| StartPage | 4662 |
| SubjectTerms | Algorithms Australia Computer Simulation Diabetes Diabetes Mellitus, Type 1 - complications Diabetes Mellitus, Type 1 - diagnosis Diagnosis, Computer-Assisted - methods Electrocardiography - methods Fuzzy Logic Fuzzy reasoning Heart rate Humans Hypoglycemia - diagnosis Hypoglycemia - etiology Models, Biological Models, Statistical Particle swarm optimization Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity Sensitivity and Specificity Sugar |
| Title | Evolved fuzzy reasoning model for hypoglycaemic detection |
| URI | https://ieeexplore.ieee.org/document/5626450 https://www.ncbi.nlm.nih.gov/pubmed/21096241 |
| Volume | 2010 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1zT_riZVPnjTz4aLZecn1VNqYwEXSwt5E0qYrSDWmF7debpJfJ8MG3lraUpCXf952ccz4Arkmi05hLjLiN1QjbGIukihnC2oYPQlIdevL45JGOp_hhRmYtcNNoYYwxnnxm-u7Q7-XrRVI4qGxgYzXFrkDfYZyWWq0GT3HW4HRjHeXAEl9s2fIFUc5mtagL26Ua115P1Tmp1TSBGNwPJ7fPJeWrep33C7aZfuS6xvsWLFspqA9Fo30wqQdRMlA--kWu-sl6y9_xv6M8AN2N6A8-NeHsELRMdgT2fvkVdoAY2sXs22iYFuv1Cjo-u0dzoe-nA23-C99Wy8Xr5yqRjnQPtck91Svrgulo-HI3RlXvBfQesyBHlEQiYlSxiCZhqCRPCdUxkTwJqFRYUCmi0CEgjNg7eWSYMlimWgdcG5EG8TFoZ4vMnAJIWEqE5FiY1KY_MuE2ZdLaSYAjoY1RPdBxkzBflvYa82r8PXBSTnJzof4KZ38_cA52y619h49cgHb-VZhLmzHk6sr_Kj_e-LR6 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFJ0QXKgbH6DicxYuLZR2nlsNBJQSEyFhR6adqRpNIaY1ga93ZvrAEBfu2rRNM9Nm7r1nzjkXgFscydhnAjlMx2oH6RjriNCnDpI6fGAcy64ljwdjMpiixxme1cBdpYVRSlnymWqbQ7uXLxdRZqCyjo7VBJkCfQcjhHCu1qoQFWMOTjbmUQYuseWWLmAcwuislHUhvVij0u2pOMelnsblnWEvuH_JSV_FC61jsM71PdM33jZh2UpCbTDqH4CgHEbOQfloZ2nYjtZbDo__HechaG5kf_C5CmhHoKaSY7D_y7GwAXhPL2ffSsI4W69X0DDaLZ4LbUcdqDNg-LZaLl4_V5EwtHsoVWrJXkkTTPu9ycPAKbovOO8-dVOHYI97lITUI1G3GwoWYyJ9LFjkEhEiTgT3ugYDoVjfyTxFQ4VELKXLpOKx65-AerJI1BmAmMaYC4a4inUCJCKmkyYpjQjY41KpsAUaZhLmy9xgY16MvwVO80muLpRf4fzvB27A7mASjOaj4fjpAuzlG_0GLbkE9fQrU1c6f0jDa_vb_ACMuLfH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology&rft.atitle=Evolved+fuzzy+reasoning+model+for+hypoglycaemic+detection&rft.au=Ling%2C+S+H&rft.au=Nuryani&rft.au=Nguyen%2C+H+T&rft.date=2010-01-01&rft.pub=IEEE&rft.isbn=9781424441235&rft.issn=1094-687X&rft.spage=4662&rft.epage=4665&rft_id=info:doi/10.1109%2FIEMBS.2010.5626450&rft_id=info%3Apmid%2F21096241&rft.externalDocID=5626450 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-687X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-687X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-687X&client=summon |