Evolved fuzzy reasoning model for hypoglycaemic detection

Hypoglycaemia is a serious side effect of insulin therapy in patients with diabetes. We measure physiological parameters (heart rate, corrected QT interval of the electrocardiogram (ECG) signal) continuously to provide early detection of hypoglycemic episodes in Type 1 diabetes mellitus (T1DM) patie...

Full description

Saved in:
Bibliographic Details
Published in2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Vol. 2010; pp. 4662 - 4665
Main Authors Ling, S H, Nuryani, Nguyen, H T
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.01.2010
Subjects
Online AccessGet full text
ISBN1424441234
9781424441235
ISSN1094-687X
1557-170X
DOI10.1109/IEMBS.2010.5626450

Cover

Abstract Hypoglycaemia is a serious side effect of insulin therapy in patients with diabetes. We measure physiological parameters (heart rate, corrected QT interval of the electrocardiogram (ECG) signal) continuously to provide early detection of hypoglycemic episodes in Type 1 diabetes mellitus (T1DM) patients. Based on the physiological parameters, an evolved fuzzy reasoning model (FRM) to recognize the presence of hypoglycaemic episodes is developed. To optimize the fuzzy rules and the fuzzy membership functions of FRM, an evolutionary algorithm called hybrid particle swarm optimization with wavelet mutation operation is investigated. All data sets are collected from Department of Health, Government of Western Australia for a clinical study. The results show that the proposed algorithm performs well in terms of the clinical sensitivity and specificity.
AbstractList Hypoglycaemia is a serious side effect of insulin therapy in patients with diabetes. We measure physiological parameters (heart rate, corrected QT interval of the electrocardiogram (ECG) signal) continuously to provide early detection of hypoglycemic episodes in Type 1 diabetes mellitus (T1DM) patients. Based on the physiological parameters, an evolved fuzzy reasoning model (FRM) to recognize the presence of hypoglycaemic episodes is developed. To optimize the fuzzy rules and the fuzzy membership functions of FRM, an evolutionary algorithm called hybrid particle swarm optimization with wavelet mutation operation is investigated. All data sets are collected from Department of Health, Government of Western Australia for a clinical study. The results show that the proposed algorithm performs well in terms of the clinical sensitivity and specificity.
Author Nguyen, H T
Ling, S H
Nuryani
Author_xml – sequence: 1
  givenname: S H
  surname: Ling
  fullname: Ling, S H
  email: Steve.Ling@uts.edu.au
  organization: Centre for Health Technol., Univ. of Technol. Sydney, Ultimo, NSW, Australia
– sequence: 2
  surname: Nuryani
  fullname: Nuryani
  email: Nuryani.Nuryani@eng.uts.edu.au
  organization: Centre for Health Technol., Univ. of Technol. Sydney, Ultimo, NSW, Australia
– sequence: 3
  givenname: H T
  surname: Nguyen
  fullname: Nguyen, H T
  email: Hung.Nguyen@uts.edu.au
  organization: Centre for Health Technol., Univ. of Technol. Sydney, Ultimo, NSW, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21096241$$D View this record in MEDLINE/PubMed
BookMark eNpFkN1Kw0AUhFes2Kb6AgqSF0jdPdmf7KWWqIWKFyp4VzbZszWSZEPSFtKnb6BVr4ZhvnNgJiCj2tdIyA2jM8aovl-kr4_vM6CDFxIkF_SMBIwD55wBh_N_E_MRmQwnPJKJ-hqToOt-KAVKBbskYxgSCZxNiE53vtyhDd12v-_DFk3n66Jeh5W3WIbOt-F33_h12ecGqyIPLW4w3xS-viIXzpQdXp90Sj6f0o_5S7R8e17MH5ZRESu6iaQADUpmCmTOWGYSJ6SNhUlyKk3GtTQamGSaKzGQCaDKkBtnLU0sakfjKbk7_m22WYV21bRFZdp-9dthAG6PQIGIf_Fpn_gA8dBV9w
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1109/IEMBS.2010.5626450
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Explore
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1424441242
9781424441242
EndPage 4665
ExternalDocumentID 21096241
5626450
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 6IE
6IF
6IH
AAJGR
ACGFS
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIO
RNS
29F
29G
6IK
6IM
CGR
CUY
CVF
ECM
EIF
IPLJI
NPM
ID FETCH-LOGICAL-i370t-6529276b726c11ba8f56d35a8c06ab496a92161947552982e7be4afdd08de9f03
IEDL.DBID RIE
ISBN 1424441234
9781424441235
ISSN 1094-687X
1557-170X
IngestDate Thu Jan 02 22:40:31 EST 2025
Wed Aug 27 02:53:04 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i370t-6529276b726c11ba8f56d35a8c06ab496a92161947552982e7be4afdd08de9f03
PMID 21096241
PageCount 4
ParticipantIDs ieee_primary_5626450
pubmed_primary_21096241
PublicationCentury 2000
PublicationDate 2010-01-01
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
PublicationTitleAbbrev IEMBS
PublicationTitleAlternate Conf Proc IEEE Eng Med Biol Soc
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020051
ssj0000452612
ssj0061641
Score 1.6191928
Snippet Hypoglycaemia is a serious side effect of insulin therapy in patients with diabetes. We measure physiological parameters (heart rate, corrected QT interval of...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 4662
SubjectTerms Algorithms
Australia
Computer Simulation
Diabetes
Diabetes Mellitus, Type 1 - complications
Diabetes Mellitus, Type 1 - diagnosis
Diagnosis, Computer-Assisted - methods
Electrocardiography - methods
Fuzzy Logic
Fuzzy reasoning
Heart rate
Humans
Hypoglycemia - diagnosis
Hypoglycemia - etiology
Models, Biological
Models, Statistical
Particle swarm optimization
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity
Sensitivity and Specificity
Sugar
Title Evolved fuzzy reasoning model for hypoglycaemic detection
URI https://ieeexplore.ieee.org/document/5626450
https://www.ncbi.nlm.nih.gov/pubmed/21096241
Volume 2010
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1zT_riZVPnjTz4aLZecn1VNqYwEXSwt5E0qYrSDWmF7debpJfJ8MG3lraUpCXf952ccz4Arkmi05hLjLiN1QjbGIukihnC2oYPQlIdevL45JGOp_hhRmYtcNNoYYwxnnxm-u7Q7-XrRVI4qGxgYzXFrkDfYZyWWq0GT3HW4HRjHeXAEl9s2fIFUc5mtagL26Ua115P1Tmp1TSBGNwPJ7fPJeWrep33C7aZfuS6xvsWLFspqA9Fo30wqQdRMlA--kWu-sl6y9_xv6M8AN2N6A8-NeHsELRMdgT2fvkVdoAY2sXs22iYFuv1Cjo-u0dzoe-nA23-C99Wy8Xr5yqRjnQPtck91Svrgulo-HI3RlXvBfQesyBHlEQiYlSxiCZhqCRPCdUxkTwJqFRYUCmi0CEgjNg7eWSYMlimWgdcG5EG8TFoZ4vMnAJIWEqE5FiY1KY_MuE2ZdLaSYAjoY1RPdBxkzBflvYa82r8PXBSTnJzof4KZ38_cA52y619h49cgHb-VZhLmzHk6sr_Kj_e-LR6
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFJ0QXKgbH6DicxYuLZR2nlsNBJQSEyFhR6adqRpNIaY1ga93ZvrAEBfu2rRNM9Nm7r1nzjkXgFscydhnAjlMx2oH6RjriNCnDpI6fGAcy64ljwdjMpiixxme1cBdpYVRSlnymWqbQ7uXLxdRZqCyjo7VBJkCfQcjhHCu1qoQFWMOTjbmUQYuseWWLmAcwuislHUhvVij0u2pOMelnsblnWEvuH_JSV_FC61jsM71PdM33jZh2UpCbTDqH4CgHEbOQfloZ2nYjtZbDo__HechaG5kf_C5CmhHoKaSY7D_y7GwAXhPL2ffSsI4W69X0DDaLZ4LbUcdqDNg-LZaLl4_V5EwtHsoVWrJXkkTTPu9ycPAKbovOO8-dVOHYI97lITUI1G3GwoWYyJ9LFjkEhEiTgT3ugYDoVjfyTxFQ4VELKXLpOKx65-AerJI1BmAmMaYC4a4inUCJCKmkyYpjQjY41KpsAUaZhLmy9xgY16MvwVO80muLpRf4fzvB27A7mASjOaj4fjpAuzlG_0GLbkE9fQrU1c6f0jDa_vb_ACMuLfH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology&rft.atitle=Evolved+fuzzy+reasoning+model+for+hypoglycaemic+detection&rft.au=Ling%2C+S+H&rft.au=Nuryani&rft.au=Nguyen%2C+H+T&rft.date=2010-01-01&rft.pub=IEEE&rft.isbn=9781424441235&rft.issn=1094-687X&rft.spage=4662&rft.epage=4665&rft_id=info:doi/10.1109%2FIEMBS.2010.5626450&rft_id=info%3Apmid%2F21096241&rft.externalDocID=5626450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-687X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-687X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-687X&client=summon