Self-Supervised Learning to Improve Topology-Optimized Axon Segmentation and Centerline Detection

Large-scale brain mapping requires preserving the topology of axonal structures to understand how neurons connect throughout the brain and intersect different brain regions. The ability to leverage unannotated data for algorithm development would mitigate laborious annotations by subject matter expe...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI) Vol. 2023; pp. 1 - 4
Main Authors Shamsi, Nina I., Gjesteby, Lars A., Chavez, David, Snyder, Michael, Eastwood, Brian S., Fay, Matthew G., O'Connor, Nathan J., Glaser, Jack R., Gerfen, Charles R., Brattain, Laura J.
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.04.2023
Subjects
Online AccessGet full text
ISSN1945-7928
1945-8452
DOI10.1109/ISBI53787.2023.10230780

Cover

Abstract Large-scale brain mapping requires preserving the topology of axonal structures to understand how neurons connect throughout the brain and intersect different brain regions. The ability to leverage unannotated data for algorithm development would mitigate laborious annotations by subject matter experts. In this work, we applied self-supervised training to a Residual 3D U-Net with an auxiliary classifier to predict the correct order of sliced and shuffled voxels samples of mouse brain data. Pretrained encoder weights from the auxiliary classifier were subsequently used to train a Residual 3D U-Net for axon segmentation and centerline detection with a topology-preserving loss function, soft centerline-Dice. We report improved feature space representation of axonal structures as well as improved evaluation metrics over prior methods. We observed that both the α and k hyperparameters of the topologically-aware loss function show sensitivity to the target task of axon segmentation and centerline detection.
AbstractList Large-scale brain mapping requires preserving the topology of axonal structures to understand how neurons connect throughout the brain and intersect different brain regions. The ability to leverage unannotated data for algorithm development would mitigate laborious annotations by subject matter experts. In this work, we applied self-supervised training to a Residual 3D U-Net with an auxiliary classifier to predict the correct order of sliced and shuffled voxels samples of mouse brain data. Pretrained encoder weights from the auxiliary classifier were subsequently used to train a Residual 3D U-Net for axon segmentation and centerline detection with a topology-preserving loss function, soft centerline-Dice. We report improved feature space representation of axonal structures as well as improved evaluation metrics over prior methods. We observed that both the α and k hyperparameters of the topologically-aware loss function show sensitivity to the target task of axon segmentation and centerline detection.
Large-scale brain mapping requires preserving the topology of axonal structures to understand how neurons connect throughout the brain and intersect different brain regions. The ability to leverage unannotated data for algorithm development would mitigate laborious annotations by subject matter experts. In this work, we applied self-supervised training to a Residual 3D U-Net with an auxiliary classifier to predict the correct order of sliced and shuffled voxels samples of mouse brain data. Pretrained encoder weights from the auxiliary classifier were subsequently used to train a Residual 3D U-Net for axon segmentation and centerline detection with a topology-preserving loss function, soft centerline-Dice. We report improved feature space representation of axonal structures as well as improved evaluation metrics over prior methods. We observed that both the α and k hyperparameters of the topologically-aware loss function show sensitivity to the target task of axon segmentation and centerline detection.Large-scale brain mapping requires preserving the topology of axonal structures to understand how neurons connect throughout the brain and intersect different brain regions. The ability to leverage unannotated data for algorithm development would mitigate laborious annotations by subject matter experts. In this work, we applied self-supervised training to a Residual 3D U-Net with an auxiliary classifier to predict the correct order of sliced and shuffled voxels samples of mouse brain data. Pretrained encoder weights from the auxiliary classifier were subsequently used to train a Residual 3D U-Net for axon segmentation and centerline detection with a topology-preserving loss function, soft centerline-Dice. We report improved feature space representation of axonal structures as well as improved evaluation metrics over prior methods. We observed that both the α and k hyperparameters of the topologically-aware loss function show sensitivity to the target task of axon segmentation and centerline detection.
Large-scale brain mapping requires preserving the topology of axonal structures to understand how neurons connect throughout the brain and intersect different brain regions. The ability to leverage unannotated data for algorithm development would mitigate laborious annotations by subject matter experts. In this work, we applied self-supervised training to a Residual 3D U-Net with an auxiliary classifier to predict the correct order of sliced and shuffled voxels samples of mouse brain data. Pretrained encoder weights from the auxiliary classifier were subsequently used to train a Residual 3D U-Net for axon segmentation and centerline detection with a topology-preserving loss function, soft centerline-Dice. We report improved feature space representation of axonal structures as well as improved evaluation metrics over prior methods. We observed that both the and hyperparameters of the topologically-aware loss function show sensitivity to the target task of axon segmentation and centerline detection.
Author Fay, Matthew G.
Chavez, David
Gerfen, Charles R.
Shamsi, Nina I.
Glaser, Jack R.
Gjesteby, Lars A.
Snyder, Michael
O'Connor, Nathan J.
Brattain, Laura J.
Eastwood, Brian S.
AuthorAffiliation 2 MBF Bioscience, Williston, VT 05495, USA
1 MIT Lincoln Laboratory, Lexington, MA 02421, USA
3 National Institute of Mental Health, Bethesda, MD 20892, USA
AuthorAffiliation_xml – name: 2 MBF Bioscience, Williston, VT 05495, USA
– name: 1 MIT Lincoln Laboratory, Lexington, MA 02421, USA
– name: 3 National Institute of Mental Health, Bethesda, MD 20892, USA
Author_xml – sequence: 1
  givenname: Nina I.
  surname: Shamsi
  fullname: Shamsi, Nina I.
  organization: MIT Lincoln Laboratory,Lexington,MA,USA,02421
– sequence: 2
  givenname: Lars A.
  surname: Gjesteby
  fullname: Gjesteby, Lars A.
  organization: MIT Lincoln Laboratory,Lexington,MA,USA,02421
– sequence: 3
  givenname: David
  surname: Chavez
  fullname: Chavez, David
  organization: MIT Lincoln Laboratory,Lexington,MA,USA,02421
– sequence: 4
  givenname: Michael
  surname: Snyder
  fullname: Snyder, Michael
  organization: MIT Lincoln Laboratory,Lexington,MA,USA,02421
– sequence: 5
  givenname: Brian S.
  surname: Eastwood
  fullname: Eastwood, Brian S.
  organization: MBF Bioscience,Williston,USA,VT 05495
– sequence: 6
  givenname: Matthew G.
  surname: Fay
  fullname: Fay, Matthew G.
  organization: MBF Bioscience,Williston,USA,VT 05495
– sequence: 7
  givenname: Nathan J.
  surname: O'Connor
  fullname: O'Connor, Nathan J.
  organization: MBF Bioscience,Williston,USA,VT 05495
– sequence: 8
  givenname: Jack R.
  surname: Glaser
  fullname: Glaser, Jack R.
  organization: MBF Bioscience,Williston,USA,VT 05495
– sequence: 9
  givenname: Charles R.
  surname: Gerfen
  fullname: Gerfen, Charles R.
  organization: National Institute of Mental Health,Bethesda,USA,MD 20892
– sequence: 10
  givenname: Laura J.
  surname: Brattain
  fullname: Brattain, Laura J.
  email: brattainl@ll.mit.edu
  organization: MIT Lincoln Laboratory,Lexington,MA,USA,02421
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40503110$$D View this record in MEDLINE/PubMed
BookMark eNpVUU1PGzEQNYiqUJp_UMEeuWzw59o-VTQUGikSh8DZ8u7OBqNde7sfadNfX4eELx_sGc17bzxvvqAjHzwgdE7wlBCsL-fLH3PBpJJTiimbknhhqfABmmipSJYJLplQ7BCdEM1FqrigR_tYaqqO0aTvn3A8knOG-Wd0zLHALGqfILuEukqXYwvd2vVQJguwnXd-lQwhmTdtF9aQ3Ic21GG1Se_awTXuX4Rd_Q0-WcKqAT_YwcXE-jKZxQy62nlIrmGAYlv4ij5Vtu5hsn9P0cPNz_vZr3RxdzufXS1SxzIxpDmraFEBJlqXFApGldAgbaYrRgXBMsstKFZKUFqUWoDMlM0Jt7iwOQdRslOkdrqjb-3mj61r03ausd3GEGy2RhrX5-7ZSLM10rwYGanfd9R2zBsoizhFZ9_owTrzseLdo1mFtSGUCBaVo8LFXqELv0foB9O4voC6th7C2BtGiSIii7uK0LP3zV67vOwkAr7tAA4A3s2w_-x_y86eOQ
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1109/ISBI53787.2023.10230780
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665473583
1665473584
EISSN 1945-8452
EndPage 4
ExternalDocumentID oai:pubmedcentral.nih.gov:12153109
PMC12153109
40503110
10230780
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R43 MH128076
– fundername: NIMH NIH HHS
  grantid: R44 MH128076
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-i365t-b3f2cfe0199d2ec32859e7a69f3251076bae83d7e895d95e768ab14a0cab4e5d3
IEDL.DBID RIE
ISSN 1945-7928
IngestDate Sun Oct 26 02:55:43 EDT 2025
Tue Sep 30 17:02:57 EDT 2025
Thu Jun 12 18:01:20 EDT 2025
Mon Jun 16 02:27:39 EDT 2025
Wed Aug 27 02:51:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords Axonal Topology
Neuron Segmentation
Axon Tracing
Self-Supervised Learning
U-Net
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i365t-b3f2cfe0199d2ec32859e7a69f3251076bae83d7e895d95e768ab14a0cab4e5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/12153109
PMID 40503110
PQID 3218156665
PQPubID 23479
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12153109
ieee_primary_10230780
unpaywall_primary_10_1109_isbi53787_2023_10230780
pubmed_primary_40503110
proquest_miscellaneous_3218156665
PublicationCentury 2000
PublicationDate 20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 4
  year: 2023
  text: 20230401
  day: 1
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)
PublicationTitleAbbrev ISBI
PublicationTitleAlternate Proc IEEE Int Symp Biomed Imaging
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.2962973
Snippet Large-scale brain mapping requires preserving the topology of axonal structures to understand how neurons connect throughout the brain and intersect different...
SourceID unpaywall
pubmedcentral
proquest
pubmed
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Annotations
Axon Tracing
Axonal Topology
Axons
Brain mapping
Neuron Segmentation
Self-supervised learning
Sensitivity
Three-dimensional displays
Training
U-Net
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QFOgFggvGQkrs4mcV4-VkBVIVEqbVcqp8h2nBKx612xiaD99czkRQtcQDlFtiNH88mesb_5BuBNpDMlpIp5rk3K4ywXXMvA8JDkqyqbKlnSOeTH0_RkFX-4SC4OIBpzYTrSvtG179Yb39VfOm7lbmMWI09sQXIIJGd5Bw7TBP3vGRyuTs-OPg_kLWxZYHhUJwKh6FNx8E6dAHfCYCig8jdf8k9K5N3W7dTVd7Ve39hvju_3OYD7TqaQaCZf_bbRvrn-TcTx337lAcx_5fexs2nneggH1j0CtbTrii_bHa0ee1uyQXr1kjVb1p89WHbe11S44p9wqdnU19jt6MfWsaW93AxZTI4pVzI6Ne6UtCx7Z5uO7-XmsDp-f_72hA8FGHgt0qThWlSRqSx6gbKMrBEkdmczlcpKoFsUZKlWNhdlZnOZlDKxGLooHcYqMErHNinFY5i5rbNPgVXS5JkpMbiKwlhXGX4pMBi7SnpiE3owJ9sUu15joxht5sHr0VgFAp9uM5Sz23ZfCHJO0BlNEw-e9MabRsekcoNQ8CC_ZdapA4lq325BA3Xi2qNNPAgnBNyYVUEAKyaAFQSwabLP_mPMc7hH7z0Z6AXMmm-tfYl-TqNfDcD-CVG2_mg
  priority: 102
  providerName: Unpaywall
Title Self-Supervised Learning to Improve Topology-Optimized Axon Segmentation and Centerline Detection
URI https://ieeexplore.ieee.org/document/10230780
https://www.ncbi.nlm.nih.gov/pubmed/40503110
https://www.proquest.com/docview/3218156665
https://pubmed.ncbi.nlm.nih.gov/PMC12153109
https://www.ncbi.nlm.nih.gov/pmc/articles/12153109
UnpaywallVersion submittedVersion
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELagPAAvXAuEozISr0mTtXP4sRxVi8RSabtSeYp8TMqKrbOiiaD99cwk2bDlkFBeIsWOfHzJHJ75hrHXU5NrobQMC2OzUOaFCI2KbZgQfVUFmVaO_JAfZ9nhQn44TU-HZPUuFwYAuuAziOi2O8t3tW3JVbZHNAMo0tBCv5kXWZ-sNTpUUBZKtM2HGK4kVntH8zdHqUBERlQjPNr0Huqo_E2l_DMy8nbr1_ryu16ttsTOwT022wy4jzb5GrWNiezVb1yO_z2j-2zyK8OPH4-y6wG7Af4hu7tFTviI6TmsqnDerulvcgGOD1SsZ7ypee-LAH7S11i4DD_hr-d8eYXN9n_Uns_h7HzIavJce8fJi9wxawF_B00X_-UnbHHw_uTtYTgUZAiXIkub0IhqaitArVC5KVhB5HeQ60xVAtWkOM-MhkK4HAqVOpUCmjLaJFLHVhsJqROP2Y6vPTxlvFK2yK1DY2uaSFPl-KbYoi2r6JI2CdiEVqtc95wb5WahAvZqs2slfgh0uqE91O1FKUhZQeU0SwP2pN_Fsbck1hvERMCKa_s7NiCS7etP_PJLR7ZN7BvEnhqwZITC1qhKQlqJ9viyQ1pJSBsH--wfk3jO7lC7PgDoBdtpvrXwEnWbxux2mN5ltxaz4_3PPwHSi_ob
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLZQORQubAOkbEbi6jQZO4uPbNUMtAPSTKXeIi8v7YipM6KJSvvr8UsyYcoioVwixY68fMlb_N73CHkz1pniUgmWa5MykeWcaRkZFiN9VQmpkhb9kEezdHIsPp0kJ32yepsLAwBt8BmEeNue5dvKNOgq20eaAS_SvIV-OxFCJF261uBS8dJQeOu8j-KKI7k_nb-bJtxjMsQq4eGmf19J5W9K5Z-xkbuNW6urS7VabQmeg3tkthlyF2_yLWxqHZrr39gc_3tO98noV44f_TpIrwfkFriH5O4WPeEjouawKtm8WeP_5AIs7clYT2ld0c4bAXTRVVm4Yl_8z-d8ee2bvf1ROTqH0_M-r8lR5SxFP3LLrQX0A9RtBJgbkeODj4v3E9aXZGBLniY107wcmxK8XijtGAxH-jvIVCpL7hWlKEu1gpzbDHKZWJmAN2aUjoWKjNICEssfkx1XOXhKaClNnhnrza1xLHSZ-TdFxluzEi9h4oCMcLWKdce6UWwWKiCvN7tW-E8BzzeUg6q5KDiqK149TZOAPOl2cegtkPfGYyIg-Y39HRogzfbNJ2551tJtI_8G8qcGJB6gsDWqApFWeIt82SKtQKQNg937xyRekd3J4uiwOJzOPj8jd7BPFw70nOzU3xt44TWdWr9s8f0TKHr7uA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QFOgFggvGQkrs4mcV4-VkBVIVEqbVcqp8h2nBKx612xiaD99czkRQtcQDlFtiNH88mesb_5BuBNpDMlpIp5rk3K4ywXXMvA8JDkqyqbKlnSOeTH0_RkFX-4SC4OIBpzYTrSvtG179Yb39VfOm7lbmMWI09sQXIIJGd5Bw7TBP3vGRyuTs-OPg_kLWxZYHhUJwKh6FNx8E6dAHfCYCig8jdf8k9K5N3W7dTVd7Ve39hvju_3OYD7TqaQaCZf_bbRvrn-TcTx337lAcx_5fexs2nneggH1j0CtbTrii_bHa0ee1uyQXr1kjVb1p89WHbe11S44p9wqdnU19jt6MfWsaW93AxZTI4pVzI6Ne6UtCx7Z5uO7-XmsDp-f_72hA8FGHgt0qThWlSRqSx6gbKMrBEkdmczlcpKoFsUZKlWNhdlZnOZlDKxGLooHcYqMErHNinFY5i5rbNPgVXS5JkpMbiKwlhXGX4pMBi7SnpiE3owJ9sUu15joxht5sHr0VgFAp9uM5Sz23ZfCHJO0BlNEw-e9MabRsekcoNQ8CC_ZdapA4lq325BA3Xi2qNNPAgnBNyYVUEAKyaAFQSwabLP_mPMc7hH7z0Z6AXMmm-tfYl-TqNfDcD-CVG2_mg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Self-Supervised+Learning+to+Improve+Topology-Optimized+Axon+Segmentation+and+Centerline+Detection&rft.au=Shamsi%2C+Nina+I.&rft.au=Gjesteby%2C+Lars+A.&rft.au=Chavez%2C+David&rft.au=Snyder%2C+Michael&rft.date=2023-04-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FISBI53787.2023.10230780&rft.externalDocID=10230780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1945-7928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1945-7928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1945-7928&client=summon