Self-Supervised Learning to Improve Topology-Optimized Axon Segmentation and Centerline Detection
Large-scale brain mapping requires preserving the topology of axonal structures to understand how neurons connect throughout the brain and intersect different brain regions. The ability to leverage unannotated data for algorithm development would mitigate laborious annotations by subject matter expe...
Saved in:
| Published in | 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI) Vol. 2023; pp. 1 - 4 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Conference Proceeding Journal Article |
| Language | English |
| Published |
United States
IEEE
01.04.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1945-7928 1945-8452 |
| DOI | 10.1109/ISBI53787.2023.10230780 |
Cover
| Abstract | Large-scale brain mapping requires preserving the topology of axonal structures to understand how neurons connect throughout the brain and intersect different brain regions. The ability to leverage unannotated data for algorithm development would mitigate laborious annotations by subject matter experts. In this work, we applied self-supervised training to a Residual 3D U-Net with an auxiliary classifier to predict the correct order of sliced and shuffled voxels samples of mouse brain data. Pretrained encoder weights from the auxiliary classifier were subsequently used to train a Residual 3D U-Net for axon segmentation and centerline detection with a topology-preserving loss function, soft centerline-Dice. We report improved feature space representation of axonal structures as well as improved evaluation metrics over prior methods. We observed that both the α and k hyperparameters of the topologically-aware loss function show sensitivity to the target task of axon segmentation and centerline detection. |
|---|---|
| AbstractList | Large-scale brain mapping requires preserving the topology of axonal structures to understand how neurons connect throughout the brain and intersect different brain regions. The ability to leverage unannotated data for algorithm development would mitigate laborious annotations by subject matter experts. In this work, we applied self-supervised training to a Residual 3D U-Net with an auxiliary classifier to predict the correct order of sliced and shuffled voxels samples of mouse brain data. Pretrained encoder weights from the auxiliary classifier were subsequently used to train a Residual 3D U-Net for axon segmentation and centerline detection with a topology-preserving loss function, soft centerline-Dice. We report improved feature space representation of axonal structures as well as improved evaluation metrics over prior methods. We observed that both the α and k hyperparameters of the topologically-aware loss function show sensitivity to the target task of axon segmentation and centerline detection. Large-scale brain mapping requires preserving the topology of axonal structures to understand how neurons connect throughout the brain and intersect different brain regions. The ability to leverage unannotated data for algorithm development would mitigate laborious annotations by subject matter experts. In this work, we applied self-supervised training to a Residual 3D U-Net with an auxiliary classifier to predict the correct order of sliced and shuffled voxels samples of mouse brain data. Pretrained encoder weights from the auxiliary classifier were subsequently used to train a Residual 3D U-Net for axon segmentation and centerline detection with a topology-preserving loss function, soft centerline-Dice. We report improved feature space representation of axonal structures as well as improved evaluation metrics over prior methods. We observed that both the α and k hyperparameters of the topologically-aware loss function show sensitivity to the target task of axon segmentation and centerline detection.Large-scale brain mapping requires preserving the topology of axonal structures to understand how neurons connect throughout the brain and intersect different brain regions. The ability to leverage unannotated data for algorithm development would mitigate laborious annotations by subject matter experts. In this work, we applied self-supervised training to a Residual 3D U-Net with an auxiliary classifier to predict the correct order of sliced and shuffled voxels samples of mouse brain data. Pretrained encoder weights from the auxiliary classifier were subsequently used to train a Residual 3D U-Net for axon segmentation and centerline detection with a topology-preserving loss function, soft centerline-Dice. We report improved feature space representation of axonal structures as well as improved evaluation metrics over prior methods. We observed that both the α and k hyperparameters of the topologically-aware loss function show sensitivity to the target task of axon segmentation and centerline detection. Large-scale brain mapping requires preserving the topology of axonal structures to understand how neurons connect throughout the brain and intersect different brain regions. The ability to leverage unannotated data for algorithm development would mitigate laborious annotations by subject matter experts. In this work, we applied self-supervised training to a Residual 3D U-Net with an auxiliary classifier to predict the correct order of sliced and shuffled voxels samples of mouse brain data. Pretrained encoder weights from the auxiliary classifier were subsequently used to train a Residual 3D U-Net for axon segmentation and centerline detection with a topology-preserving loss function, soft centerline-Dice. We report improved feature space representation of axonal structures as well as improved evaluation metrics over prior methods. We observed that both the and hyperparameters of the topologically-aware loss function show sensitivity to the target task of axon segmentation and centerline detection. |
| Author | Fay, Matthew G. Chavez, David Gerfen, Charles R. Shamsi, Nina I. Glaser, Jack R. Gjesteby, Lars A. Snyder, Michael O'Connor, Nathan J. Brattain, Laura J. Eastwood, Brian S. |
| AuthorAffiliation | 2 MBF Bioscience, Williston, VT 05495, USA 1 MIT Lincoln Laboratory, Lexington, MA 02421, USA 3 National Institute of Mental Health, Bethesda, MD 20892, USA |
| AuthorAffiliation_xml | – name: 2 MBF Bioscience, Williston, VT 05495, USA – name: 1 MIT Lincoln Laboratory, Lexington, MA 02421, USA – name: 3 National Institute of Mental Health, Bethesda, MD 20892, USA |
| Author_xml | – sequence: 1 givenname: Nina I. surname: Shamsi fullname: Shamsi, Nina I. organization: MIT Lincoln Laboratory,Lexington,MA,USA,02421 – sequence: 2 givenname: Lars A. surname: Gjesteby fullname: Gjesteby, Lars A. organization: MIT Lincoln Laboratory,Lexington,MA,USA,02421 – sequence: 3 givenname: David surname: Chavez fullname: Chavez, David organization: MIT Lincoln Laboratory,Lexington,MA,USA,02421 – sequence: 4 givenname: Michael surname: Snyder fullname: Snyder, Michael organization: MIT Lincoln Laboratory,Lexington,MA,USA,02421 – sequence: 5 givenname: Brian S. surname: Eastwood fullname: Eastwood, Brian S. organization: MBF Bioscience,Williston,USA,VT 05495 – sequence: 6 givenname: Matthew G. surname: Fay fullname: Fay, Matthew G. organization: MBF Bioscience,Williston,USA,VT 05495 – sequence: 7 givenname: Nathan J. surname: O'Connor fullname: O'Connor, Nathan J. organization: MBF Bioscience,Williston,USA,VT 05495 – sequence: 8 givenname: Jack R. surname: Glaser fullname: Glaser, Jack R. organization: MBF Bioscience,Williston,USA,VT 05495 – sequence: 9 givenname: Charles R. surname: Gerfen fullname: Gerfen, Charles R. organization: National Institute of Mental Health,Bethesda,USA,MD 20892 – sequence: 10 givenname: Laura J. surname: Brattain fullname: Brattain, Laura J. email: brattainl@ll.mit.edu organization: MIT Lincoln Laboratory,Lexington,MA,USA,02421 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40503110$$D View this record in MEDLINE/PubMed |
| BookMark | eNpVUU1PGzEQNYiqUJp_UMEeuWzw59o-VTQUGikSh8DZ8u7OBqNde7sfadNfX4eELx_sGc17bzxvvqAjHzwgdE7wlBCsL-fLH3PBpJJTiimbknhhqfABmmipSJYJLplQ7BCdEM1FqrigR_tYaqqO0aTvn3A8knOG-Wd0zLHALGqfILuEukqXYwvd2vVQJguwnXd-lQwhmTdtF9aQ3Ic21GG1Se_awTXuX4Rd_Q0-WcKqAT_YwcXE-jKZxQy62nlIrmGAYlv4ij5Vtu5hsn9P0cPNz_vZr3RxdzufXS1SxzIxpDmraFEBJlqXFApGldAgbaYrRgXBMsstKFZKUFqUWoDMlM0Jt7iwOQdRslOkdrqjb-3mj61r03ausd3GEGy2RhrX5-7ZSLM10rwYGanfd9R2zBsoizhFZ9_owTrzseLdo1mFtSGUCBaVo8LFXqELv0foB9O4voC6th7C2BtGiSIii7uK0LP3zV67vOwkAr7tAA4A3s2w_-x_y86eOQ |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IL CBEJK RIE RIL NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1109/ISBI53787.2023.10230780 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781665473583 1665473584 |
| EISSN | 1945-8452 |
| EndPage | 4 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:12153109 PMC12153109 40503110 10230780 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R43 MH128076 – fundername: NIMH NIH HHS grantid: R44 MH128076 |
| GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-i365t-b3f2cfe0199d2ec32859e7a69f3251076bae83d7e895d95e768ab14a0cab4e5d3 |
| IEDL.DBID | RIE |
| ISSN | 1945-7928 |
| IngestDate | Sun Oct 26 02:55:43 EDT 2025 Tue Sep 30 17:02:57 EDT 2025 Thu Jun 12 18:01:20 EDT 2025 Mon Jun 16 02:27:39 EDT 2025 Wed Aug 27 02:51:31 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Keywords | Axonal Topology Neuron Segmentation Axon Tracing Self-Supervised Learning U-Net |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i365t-b3f2cfe0199d2ec32859e7a69f3251076bae83d7e895d95e768ab14a0cab4e5d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/12153109 |
| PMID | 40503110 |
| PQID | 3218156665 |
| PQPubID | 23479 |
| PageCount | 4 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12153109 ieee_primary_10230780 unpaywall_primary_10_1109_isbi53787_2023_10230780 pubmed_primary_40503110 proquest_miscellaneous_3218156665 |
| PublicationCentury | 2000 |
| PublicationDate | 20230401 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 4 year: 2023 text: 20230401 day: 1 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI) |
| PublicationTitleAbbrev | ISBI |
| PublicationTitleAlternate | Proc IEEE Int Symp Biomed Imaging |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000744304 |
| Score | 2.2962973 |
| Snippet | Large-scale brain mapping requires preserving the topology of axonal structures to understand how neurons connect throughout the brain and intersect different... |
| SourceID | unpaywall pubmedcentral proquest pubmed ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Annotations Axon Tracing Axonal Topology Axons Brain mapping Neuron Segmentation Self-supervised learning Sensitivity Three-dimensional displays Training U-Net |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QFOgFggvGQkrs4mcV4-VkBVIVEqbVcqp8h2nBKx612xiaD99czkRQtcQDlFtiNH88mesb_5BuBNpDMlpIp5rk3K4ywXXMvA8JDkqyqbKlnSOeTH0_RkFX-4SC4OIBpzYTrSvtG179Yb39VfOm7lbmMWI09sQXIIJGd5Bw7TBP3vGRyuTs-OPg_kLWxZYHhUJwKh6FNx8E6dAHfCYCig8jdf8k9K5N3W7dTVd7Ve39hvju_3OYD7TqaQaCZf_bbRvrn-TcTx337lAcx_5fexs2nneggH1j0CtbTrii_bHa0ee1uyQXr1kjVb1p89WHbe11S44p9wqdnU19jt6MfWsaW93AxZTI4pVzI6Ne6UtCx7Z5uO7-XmsDp-f_72hA8FGHgt0qThWlSRqSx6gbKMrBEkdmczlcpKoFsUZKlWNhdlZnOZlDKxGLooHcYqMErHNinFY5i5rbNPgVXS5JkpMbiKwlhXGX4pMBi7SnpiE3owJ9sUu15joxht5sHr0VgFAp9uM5Sz23ZfCHJO0BlNEw-e9MabRsekcoNQ8CC_ZdapA4lq325BA3Xi2qNNPAgnBNyYVUEAKyaAFQSwabLP_mPMc7hH7z0Z6AXMmm-tfYl-TqNfDcD-CVG2_mg priority: 102 providerName: Unpaywall |
| Title | Self-Supervised Learning to Improve Topology-Optimized Axon Segmentation and Centerline Detection |
| URI | https://ieeexplore.ieee.org/document/10230780 https://www.ncbi.nlm.nih.gov/pubmed/40503110 https://www.proquest.com/docview/3218156665 https://pubmed.ncbi.nlm.nih.gov/PMC12153109 https://www.ncbi.nlm.nih.gov/pmc/articles/12153109 |
| UnpaywallVersion | submittedVersion |
| Volume | 2023 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELagPAAvXAuEozISr0mTtXP4sRxVi8RSabtSeYp8TMqKrbOiiaD99cwk2bDlkFBeIsWOfHzJHJ75hrHXU5NrobQMC2OzUOaFCI2KbZgQfVUFmVaO_JAfZ9nhQn44TU-HZPUuFwYAuuAziOi2O8t3tW3JVbZHNAMo0tBCv5kXWZ-sNTpUUBZKtM2HGK4kVntH8zdHqUBERlQjPNr0Huqo_E2l_DMy8nbr1_ryu16ttsTOwT022wy4jzb5GrWNiezVb1yO_z2j-2zyK8OPH4-y6wG7Af4hu7tFTviI6TmsqnDerulvcgGOD1SsZ7ypee-LAH7S11i4DD_hr-d8eYXN9n_Uns_h7HzIavJce8fJi9wxawF_B00X_-UnbHHw_uTtYTgUZAiXIkub0IhqaitArVC5KVhB5HeQ60xVAtWkOM-MhkK4HAqVOpUCmjLaJFLHVhsJqROP2Y6vPTxlvFK2yK1DY2uaSFPl-KbYoi2r6JI2CdiEVqtc95wb5WahAvZqs2slfgh0uqE91O1FKUhZQeU0SwP2pN_Fsbck1hvERMCKa_s7NiCS7etP_PJLR7ZN7BvEnhqwZITC1qhKQlqJ9viyQ1pJSBsH--wfk3jO7lC7PgDoBdtpvrXwEnWbxux2mN5ltxaz4_3PPwHSi_ob |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLZQORQubAOkbEbi6jQZO4uPbNUMtAPSTKXeIi8v7YipM6KJSvvr8UsyYcoioVwixY68fMlb_N73CHkz1pniUgmWa5MykeWcaRkZFiN9VQmpkhb9kEezdHIsPp0kJ32yepsLAwBt8BmEeNue5dvKNOgq20eaAS_SvIV-OxFCJF261uBS8dJQeOu8j-KKI7k_nb-bJtxjMsQq4eGmf19J5W9K5Z-xkbuNW6urS7VabQmeg3tkthlyF2_yLWxqHZrr39gc_3tO98noV44f_TpIrwfkFriH5O4WPeEjouawKtm8WeP_5AIs7clYT2ld0c4bAXTRVVm4Yl_8z-d8ee2bvf1ROTqH0_M-r8lR5SxFP3LLrQX0A9RtBJgbkeODj4v3E9aXZGBLniY107wcmxK8XijtGAxH-jvIVCpL7hWlKEu1gpzbDHKZWJmAN2aUjoWKjNICEssfkx1XOXhKaClNnhnrza1xLHSZ-TdFxluzEi9h4oCMcLWKdce6UWwWKiCvN7tW-E8BzzeUg6q5KDiqK149TZOAPOl2cegtkPfGYyIg-Y39HRogzfbNJ2551tJtI_8G8qcGJB6gsDWqApFWeIt82SKtQKQNg937xyRekd3J4uiwOJzOPj8jd7BPFw70nOzU3xt44TWdWr9s8f0TKHr7uA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QFOgFggvGQkrs4mcV4-VkBVIVEqbVcqp8h2nBKx612xiaD99czkRQtcQDlFtiNH88mesb_5BuBNpDMlpIp5rk3K4ywXXMvA8JDkqyqbKlnSOeTH0_RkFX-4SC4OIBpzYTrSvtG179Yb39VfOm7lbmMWI09sQXIIJGd5Bw7TBP3vGRyuTs-OPg_kLWxZYHhUJwKh6FNx8E6dAHfCYCig8jdf8k9K5N3W7dTVd7Ve39hvju_3OYD7TqaQaCZf_bbRvrn-TcTx337lAcx_5fexs2nneggH1j0CtbTrii_bHa0ee1uyQXr1kjVb1p89WHbe11S44p9wqdnU19jt6MfWsaW93AxZTI4pVzI6Ne6UtCx7Z5uO7-XmsDp-f_72hA8FGHgt0qThWlSRqSx6gbKMrBEkdmczlcpKoFsUZKlWNhdlZnOZlDKxGLooHcYqMErHNinFY5i5rbNPgVXS5JkpMbiKwlhXGX4pMBi7SnpiE3owJ9sUu15joxht5sHr0VgFAp9uM5Sz23ZfCHJO0BlNEw-e9MabRsekcoNQ8CC_ZdapA4lq325BA3Xi2qNNPAgnBNyYVUEAKyaAFQSwabLP_mPMc7hH7z0Z6AXMmm-tfYl-TqNfDcD-CVG2_mg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Self-Supervised+Learning+to+Improve+Topology-Optimized+Axon+Segmentation+and+Centerline+Detection&rft.au=Shamsi%2C+Nina+I.&rft.au=Gjesteby%2C+Lars+A.&rft.au=Chavez%2C+David&rft.au=Snyder%2C+Michael&rft.date=2023-04-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FISBI53787.2023.10230780&rft.externalDocID=10230780 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1945-7928&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1945-7928&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1945-7928&client=summon |