Methods for comparing uncertainty quantifications for material property predictions
Data science and informatics tools have been proliferating recently within the computational materials science and catalysis fields. This proliferation has spurned the creation of various frameworks for automated materials screening, discovery, and design. Underpinning these frameworks are surrogate...
Saved in:
| Published in | Machine learning: science and technology Vol. 1; no. 2 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Bristol
IOP Publishing
01.06.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2632-2153 2632-2153 |
| DOI | 10.1088/2632-2153/ab7e1a |
Cover
| Abstract | Data science and informatics tools have been proliferating recently within the computational materials science and catalysis fields. This proliferation has spurned the creation of various frameworks for automated materials screening, discovery, and design. Underpinning these frameworks are surrogate models with uncertainty estimates on their predictions. These uncertainty estimates are instrumental for determining which materials to screen next, but the computational catalysis field does not yet have a standard procedure for judging the quality of such uncertainty estimates. Here we present a suite of figures and performance metrics derived from the machine learning community that can be used to judge the quality of such uncertainty estimates. This suite probes the accuracy, calibration, and sharpness of a model quantitatively. We then show a case study where we judge various methods for predicting density-functional-theory-calculated adsorption energies. Of the methods studied here, we find that the best performer is a model where a convolutional neural network is used to supply features to a Gaussian process regressor, which then makes predictions of adsorption energies along with corresponding uncertainty estimates. |
|---|---|
| AbstractList | Data science and informatics tools have been proliferating recently within the computational materials science and catalysis fields. This proliferation has spurned the creation of various frameworks for automated materials screening, discovery, and design. Underpinning these frameworks are surrogate models with uncertainty estimates on their predictions. These uncertainty estimates are instrumental for determining which materials to screen next, but the computational catalysis field does not yet have a standard procedure for judging the quality of such uncertainty estimates. Here we present a suite of figures and performance metrics derived from the machine learning community that can be used to judge the quality of such uncertainty estimates. This suite probes the accuracy, calibration, and sharpness of a model quantitatively. We then show a case study where we judge various methods for predicting density-functional-theory-calculated adsorption energies. Of the methods studied here, we find that the best performer is a model where a convolutional neural network is used to supply features to a Gaussian process regressor, which then makes predictions of adsorption energies along with corresponding uncertainty estimates. |
| Author | Xing, Eric Neiswanger, Willie Ulissi, Zachary W Zhang, Qingyang Tran, Kevin Yoon, Junwoong |
| Author_xml | – sequence: 1 givenname: Kevin surname: Tran fullname: Tran, Kevin organization: These authors contributed equally to this work – sequence: 2 givenname: Willie surname: Neiswanger fullname: Neiswanger, Willie organization: These authors contributed equally to this work – sequence: 3 givenname: Junwoong surname: Yoon fullname: Yoon, Junwoong organization: Carnegie Mellon University Chemical Engineering Department, Pittsburgh, PA 15217 United States of America – sequence: 4 givenname: Qingyang surname: Zhang fullname: Zhang, Qingyang organization: Carnegie Mellon University Chemical Engineering Department, Pittsburgh, PA 15217 United States of America – sequence: 5 givenname: Eric surname: Xing fullname: Xing, Eric organization: Carnegie Mellon University Machine Learning Department, Pittsburgh, PA 15217 United States of America – sequence: 6 givenname: Zachary W orcidid: 0000-0002-9401-4918 surname: Ulissi fullname: Ulissi, Zachary W email: zulissi@andrew.cmu.edu organization: Author to whom any correspondence should be addressed |
| BookMark | eNp9kM1LxDAQxYOs4Lru3WPBgxfrJk0a26MsfoHiQT2HaZpoljbppinS_96sFfUgnuYx_Obx5h2imXVWIXRM8DnBRbHKOM3SjOR0BdWFIrCH5t-r2S99gJZ9v8EYZzmheYbn6OlBhTdX94l2PpGu7cAb-5oMViofwNgwJtsBbDDaSAjG2YlsIShvoEk677pIjlGo2shP4gjta2h6tfyaC_RyffW8vk3vH2_u1pf3qaEch1QxrSjJSyiJzCnjlALWJWipGKlpJYmuZFWwkhYFzUkBjDPNqqzKgRLGq4IuEJl8B9vB-A5NIzpvWvCjIFjsihG7z8XuczEVE29OppsYfDuoPoiNG7yNMUXsJOMF5TyP1NlEGdf9AP-Ynv6Bt010JyITsW2MuehqTT8Aqo2BoQ |
| CODEN | MLSTCK |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s). Published by IOP Publishing Ltd Copyright IOP Publishing Jun 2020 |
| Copyright_xml | – notice: 2020 The Author(s). Published by IOP Publishing Ltd – notice: Copyright IOP Publishing Jun 2020 |
| DBID | O3W TSCCA 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| DOI | 10.1088/2632-2153/ab7e1a |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| DocumentTitleAlternate | Methods for comparing uncertainty quantifications for material property predictions |
| EISSN | 2632-2153 |
| ExternalDocumentID | 10.1088/2632-2153/ab7e1a mlstab7e1a |
| GrantInformation_xml | – fundername: National Energy Research Scientific Computing Center grantid: DoE contract no. DE-AC02-05CH11231 |
| GroupedDBID | 88I ABHWH ABUWG ACHIP AFKRA AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CJUJL DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ IOP K7- M2P M~E N5L O3W OK1 PIMPY TSCCA 3V. 7XB 8FE 8FG 8FK JQ2 P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC AEINN UNPAY |
| ID | FETCH-LOGICAL-i360t-e4fe3159a91c534633a0f9afce41d3bc1fbcb8493883518a464f4b2b5a3146b83 |
| IEDL.DBID | UNPAY |
| ISSN | 2632-2153 |
| IngestDate | Sun Oct 26 04:12:41 EDT 2025 Fri Jul 25 06:53:16 EDT 2025 Thu Jan 07 14:56:18 EST 2021 Wed Aug 21 03:38:34 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i360t-e4fe3159a91c534633a0f9afce41d3bc1fbcb8493883518a464f4b2b5a3146b83 |
| Notes | MLST-100057.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9401-4918 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/2632-2153/ab7e1a |
| PQID | 2512683665 |
| PQPubID | 4916454 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2512683665 iop_journals_10_1088_2632_2153_ab7e1a unpaywall_primary_10_1088_2632_2153_ab7e1a |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-01 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Machine learning: science and technology |
| PublicationTitleAbbrev | MLST |
| PublicationTitleAlternate | Mach. Learn.: Sci. Technol |
| PublicationYear | 2020 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| SSID | ssj0002513520 |
| Score | 2.565965 |
| Snippet | Data science and informatics tools have been proliferating recently within the computational materials science and catalysis fields. This proliferation has... |
| SourceID | unpaywall proquest iop |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Publisher |
| SubjectTerms | Adsorption Artificial neural networks Catalysis density functional theory Estimates Gaussian process Machine learning Material properties Materials science Model accuracy neural networks Performance measurement Sharpness Uncertainty |
| SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA2lHvTit1itkoNehNjNJhuzeBJRilA9aLG3kKRZEOp2bbdI_72TzbZaUPC2hwkTJrN5LzPJDEJnVliTcGGJLxVCfONtIpMhIyaVERzkpJNVH7Leo-j2-cMgGTTQ9fItzLiot_5L-AyFgoMJ6wtxsuMrjBNAKtbR5spRIEdrPrvlC-c_sddlgAWAG8hFVKcmfxsIcAI6Vqjl-iwv9PxTj0Y_UOZ-G23W9BDfhMnsoIbLd9HWovUCrv_EPfTcqzo_TzFwThzukQMGYQCpkOIv5_hjpsNFoBCTqySBnlYehwsfg5-AVDHxmZpKYh_17-9ebruk7o9A3piISuJ45hjQEZ1SmzAuGNNRlurMOk6HzFiaGWskT5kEmkWl5oJn3MQm0Qz2RyPZAWrm49wdIkxhbYacwkhHfbkYmfA40pY7DhTNuqSFzsFUqvbvqapS11Iqb1LlTaqCSVsIr8i9j6aloipWnmpFQhXDrIXaC3t_y3mWJSQTAjRdLNdAFaHixp_qjv45rWO0EftzchU9aaNmOZm5EyATpTmtnOYLjM7FJw priority: 102 providerName: IOP Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NSysxEB9qPbx38ev5sH6Rg16E0M0mG9ODiIpFBMvjqeAtJNksCLVd2y3if-8ku-vHQe-zWZhJZn6ZmcwP4MBJZzMhHQ2jQmgg3qYqyzm1A5XgRU55FXnIbkby6l5cP2QPHRi1b2FCW2XrE6Ojzqcu5Mj7IQ5LxaXMTstnGlijQnW1pdAwDbVCfhJHjC3BchomY3Vh-fxy9O__e9YFV0HEkTT1Sjxh_TCvnGLc431jjz3D-LT0OC2_4M1fi0lpXl_MePwp9AzXYKXBjOSsNvI6dPxkA1ZbPgbSHM8_cHsT6aDnBIEoqZvLMTARjFx13b96Jc8LU3cH1Ym6KImYNW5DUobE_Aylylko30SJTbgfXt5dXNGGNIE-cplU1IvCc8QoZsBcxoXk3CTFwBTOC5Zz61hhnVViwBViL6aMkKIQNrWZ4eg0reJ_oTuZTvwWEIYGywXDLz0LM2RUJtLEOOEF4jbnsx4coqp0s-nnOtazldJBpTqoVNcq7QH5Ivc0nlea6VQH_JVIXeZFD3ZbfX_IfZi8B0fvNtBlPYbj299t_7zWDvxOw505ZlJ2oVvNFn4PgUVl95vd8gZhIs01 priority: 102 providerName: ProQuest |
| Title | Methods for comparing uncertainty quantifications for material property predictions |
| URI | https://iopscience.iop.org/article/10.1088/2632-2153/ab7e1a https://www.proquest.com/docview/2512683665 https://doi.org/10.1088/2632-2153/ab7e1a |
| UnpaywallVersion | publishedVersion |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: O3W dateStart: 20200301 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: IOP dateStart: 20200301 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2632-2153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: BENPR dateStart: 20200301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5BcoALr1IRoJEPcKm0sI69xjnSKikgJUS0EXCybMcrRU3DkmyE4MBv79i7gaYqUrn4NJZXY3vnm4e_ATiwwpqECxt5qpDIN96OZDJgkWnKGB056WToQ9bpirM-v7hJbsp4h38Ls5C_R-fM04lHaJbYsTYnjiISqooEUXcFqv1u7_TW946bi5RZyH9NQ8sxvMsWUOTKbJzpxwc9Gv1hUNrrBbvRNPAQ-jqSn0ez3BzZp79YGv_nWzdgrUSV5LQ4Bpuw5MZbsD7v2EDKC_wBvndCw-gpQahKivJzNF0EbVtRGZA_kvuZLuqHilBekERUGw4qyXzofoJS2cQneILENvTbrR9fz6KyrUI0ZCLOI8dTxxDF6Ca1CeOCMR2nTZ1ax-mAGUtTY43kTSYRnVGpueApNw2TaIa_VSPZR6iM78ZuBwjFLR1wijMd9SwzMuGNWFvuOCI765IaHKLaVXktpipkvKVUXlPKa0oVmqoBWZD7NZrmiqqG8ggtFiobpDXYn-_dq5wHZ0IyIXClzy_7qbKCqOPN5XbfI7wHqw3vY4fIyz5U8snMfUIgkps6LMv2tzpUv7S6vat6cOdxPL_s4dh5buF4ya7r5Un9DfZn3iI |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDCb6OHSXbd0Dy9atOrSXAUIsS9bkQzFsfSB9JBi2FuhNk2QZKJAlbuKgyJ_bbxsl2-16aG-90w9QFPlRpPgB7DjpbCako2FUCA3E21RlBac2VwkmcsqryEM2HMnBhTi5zC5X4G93Fya0VXY-MTrqYurCGXk_xGGpuJTZ1-qaBtaoUF3tKDRMS61Q7MURY-3FjlO_vMEUbr53fIDrvZumR4fn-wPasgzQKy6TmnpReo5B3eTMZVxIzk1S5qZ0XrCCW8dK66wSOVcIVpgyQopS2NRmhqOXsYrje1dhXXCRY_K3_v1w9OPn7SkP_jUinKStj-KO7of56BTjLO8b-8UzjIerV9PqHr7dWEwqs7wx4_F_oe7oJTxvMSr51hjVJqz4ySt40fE_kNYdvIZfw0g_PScIfEnTzI6BkGCkbPoM6iW5XpimG6k5GIySiJGj2ZMqFAJmKFXNQrkoSryBiydR31tYm0wn_h0QhgZSCIZPehZm1qhMpIlxwgvEic5nPdhFVel2k811rJ8rpYNKdVCpblTaA3JP7s94XmumUx3wXiJ1VZQ92Or0fSd3Z2I9-Hy7Brpqxn48-Ln3j79rGzYG58MzfXY8Ov0Az9KQr8dTnC1Yq2cL_xFBTW0_tZZD4PdTG-s_SBYJ_g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxEB21qUS5EKBUBFLwAS6VNlnHXuMcETRKCwmRIFJvru14paohWZKNUPj1jO1NIBVIlXpbWWPZO_6Y5_H4DcAbK6zJuLCJpwpJfOLtRGYTlpiuTPEgJ50MecgGQ9Ef84vL7LLKcxrewsyLautv4WckCo4qrALiZNszjCdoqVhbm3eO6nYxyffhIPCU-Bd8X0ZbJwsabyxNq-vJf1VGk4Lt7MDLw9Ws0Oufejr9y9L06nC16WMMMLlprUrTsr9u0Tfe4ycew6MKhZL3UfwJ7LnZU6hvMjyQasEfwddBSDC9JAhtSQxXR1NH0BbGSIJyTX6sdIw3iq6_IIkoOExsUnhX_wKlioW_EAoSz2DcO_v2oZ9UaRiSaybSMnE8dwxRj-5SmzEuGNNp3tW5dZxOmLE0N9ZI3mUS0RyVmguec9MxmWa4DRvJjqE2m8_ccyAUp8CEU6zpqGelkRnvpNpyxxEJWpc14C0qTFXLaKnCDbmUymtLeW2pqK0GkB2579NlqajqKI_oUqFQmQ1obob0j5wHc0IyIbCl0-0wqyISe_y3uRd37NZreDD62FOfz4efXsLDjj-ZB39NE2rlYuVOEL6U5lWYor8B4pTp5A |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA3SHvRi_cRqlRz0ImzdNNmYHotYitAiaKGeQpJmQazbtd1F6q93stmqFQW9v5Blkuy8zEzeIHRquNER4yZwUiGBa7wdiGhMA90WIVzkhBVFH7L-gPeG7GYUjcp4h3sLs5K_h8uZkxMPwC3RC6UvLQEmVOURsO4Kqg4Ht50H1ztuCSmzkD8NA8_xOE1XWOR6nqRq8aomky8OpVvz6kbzQofQ1ZE8NfNMN83bN5XGv3zrFtosWSXu-G2wjdZssoNqy44NuDzAu-iuXzSMnmOgqtiXn4PrwuDbfGVAtsAvufL1Qz6UVyCB1RYbFacudD8DVDpzCZ4CsYeG3ev7q15QtlUIHikPs8Cy2FJgMapNTEQZp1SFcVvFxjIyptqQWBstWJsKYGdEKMZZzHRLR4rCb1ULuo8qyTSxBwgTWNIxIzDSEqcyIyLWCpVhlgGzMzaqozMwuyyPxVwWGW8hpLOUdJaS3lJ1hFdwz5N5JolsScfQQi7TcVxHjeXafeIcOeOCcg4znX-sp0y9UMev0x3-B3yENlrujl1EXhqoks1yewxEJNMn5R58B4mk13k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methods+for+comparing+uncertainty+quantifications+for+material+property+predictions&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Tran%2C+Kevin&rft.au=Neiswanger%2C+Willie&rft.au=Yoon%2C+Junwoong&rft.au=Zhang%2C+Qingyang&rft.date=2020-06-01&rft.pub=IOP+Publishing&rft.eissn=2632-2153&rft.volume=1&rft.issue=2&rft_id=info:doi/10.1088%2F2632-2153%2Fab7e1a&rft.externalDocID=mlstab7e1a |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon |