Methods for comparing uncertainty quantifications for material property predictions

Data science and informatics tools have been proliferating recently within the computational materials science and catalysis fields. This proliferation has spurned the creation of various frameworks for automated materials screening, discovery, and design. Underpinning these frameworks are surrogate...

Full description

Saved in:
Bibliographic Details
Published inMachine learning: science and technology Vol. 1; no. 2
Main Authors Tran, Kevin, Neiswanger, Willie, Yoon, Junwoong, Zhang, Qingyang, Xing, Eric, Ulissi, Zachary W
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.06.2020
Subjects
Online AccessGet full text
ISSN2632-2153
2632-2153
DOI10.1088/2632-2153/ab7e1a

Cover

Abstract Data science and informatics tools have been proliferating recently within the computational materials science and catalysis fields. This proliferation has spurned the creation of various frameworks for automated materials screening, discovery, and design. Underpinning these frameworks are surrogate models with uncertainty estimates on their predictions. These uncertainty estimates are instrumental for determining which materials to screen next, but the computational catalysis field does not yet have a standard procedure for judging the quality of such uncertainty estimates. Here we present a suite of figures and performance metrics derived from the machine learning community that can be used to judge the quality of such uncertainty estimates. This suite probes the accuracy, calibration, and sharpness of a model quantitatively. We then show a case study where we judge various methods for predicting density-functional-theory-calculated adsorption energies. Of the methods studied here, we find that the best performer is a model where a convolutional neural network is used to supply features to a Gaussian process regressor, which then makes predictions of adsorption energies along with corresponding uncertainty estimates.
AbstractList Data science and informatics tools have been proliferating recently within the computational materials science and catalysis fields. This proliferation has spurned the creation of various frameworks for automated materials screening, discovery, and design. Underpinning these frameworks are surrogate models with uncertainty estimates on their predictions. These uncertainty estimates are instrumental for determining which materials to screen next, but the computational catalysis field does not yet have a standard procedure for judging the quality of such uncertainty estimates. Here we present a suite of figures and performance metrics derived from the machine learning community that can be used to judge the quality of such uncertainty estimates. This suite probes the accuracy, calibration, and sharpness of a model quantitatively. We then show a case study where we judge various methods for predicting density-functional-theory-calculated adsorption energies. Of the methods studied here, we find that the best performer is a model where a convolutional neural network is used to supply features to a Gaussian process regressor, which then makes predictions of adsorption energies along with corresponding uncertainty estimates.
Author Xing, Eric
Neiswanger, Willie
Ulissi, Zachary W
Zhang, Qingyang
Tran, Kevin
Yoon, Junwoong
Author_xml – sequence: 1
  givenname: Kevin
  surname: Tran
  fullname: Tran, Kevin
  organization: These authors contributed equally to this work
– sequence: 2
  givenname: Willie
  surname: Neiswanger
  fullname: Neiswanger, Willie
  organization: These authors contributed equally to this work
– sequence: 3
  givenname: Junwoong
  surname: Yoon
  fullname: Yoon, Junwoong
  organization: Carnegie Mellon University Chemical Engineering Department, Pittsburgh, PA 15217 United States of America
– sequence: 4
  givenname: Qingyang
  surname: Zhang
  fullname: Zhang, Qingyang
  organization: Carnegie Mellon University Chemical Engineering Department, Pittsburgh, PA 15217 United States of America
– sequence: 5
  givenname: Eric
  surname: Xing
  fullname: Xing, Eric
  organization: Carnegie Mellon University Machine Learning Department, Pittsburgh, PA 15217 United States of America
– sequence: 6
  givenname: Zachary W
  orcidid: 0000-0002-9401-4918
  surname: Ulissi
  fullname: Ulissi, Zachary W
  email: zulissi@andrew.cmu.edu
  organization: Author to whom any correspondence should be addressed
BookMark eNp9kM1LxDAQxYOs4Lru3WPBgxfrJk0a26MsfoHiQT2HaZpoljbppinS_96sFfUgnuYx_Obx5h2imXVWIXRM8DnBRbHKOM3SjOR0BdWFIrCH5t-r2S99gJZ9v8EYZzmheYbn6OlBhTdX94l2PpGu7cAb-5oMViofwNgwJtsBbDDaSAjG2YlsIShvoEk677pIjlGo2shP4gjta2h6tfyaC_RyffW8vk3vH2_u1pf3qaEch1QxrSjJSyiJzCnjlALWJWipGKlpJYmuZFWwkhYFzUkBjDPNqqzKgRLGq4IuEJl8B9vB-A5NIzpvWvCjIFjsihG7z8XuczEVE29OppsYfDuoPoiNG7yNMUXsJOMF5TyP1NlEGdf9AP-Ynv6Bt010JyITsW2MuehqTT8Aqo2BoQ
CODEN MLSTCK
ContentType Journal Article
Copyright 2020 The Author(s). Published by IOP Publishing Ltd
Copyright IOP Publishing Jun 2020
Copyright_xml – notice: 2020 The Author(s). Published by IOP Publishing Ltd
– notice: Copyright IOP Publishing Jun 2020
DBID O3W
TSCCA
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.1088/2632-2153/ab7e1a
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Methods for comparing uncertainty quantifications for material property predictions
EISSN 2632-2153
ExternalDocumentID 10.1088/2632-2153/ab7e1a
mlstab7e1a
GrantInformation_xml – fundername: National Energy Research Scientific Computing Center
  grantid: DoE contract no. DE-AC02-05CH11231
GroupedDBID 88I
ABHWH
ABUWG
ACHIP
AFKRA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJUJL
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IOP
K7-
M2P
M~E
N5L
O3W
OK1
PIMPY
TSCCA
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
AEINN
UNPAY
ID FETCH-LOGICAL-i360t-e4fe3159a91c534633a0f9afce41d3bc1fbcb8493883518a464f4b2b5a3146b83
IEDL.DBID UNPAY
ISSN 2632-2153
IngestDate Sun Oct 26 04:12:41 EDT 2025
Fri Jul 25 06:53:16 EDT 2025
Thu Jan 07 14:56:18 EST 2021
Wed Aug 21 03:38:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i360t-e4fe3159a91c534633a0f9afce41d3bc1fbcb8493883518a464f4b2b5a3146b83
Notes MLST-100057.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9401-4918
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/2632-2153/ab7e1a
PQID 2512683665
PQPubID 4916454
PageCount 13
ParticipantIDs proquest_journals_2512683665
iop_journals_10_1088_2632_2153_ab7e1a
unpaywall_primary_10_1088_2632_2153_ab7e1a
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Machine learning: science and technology
PublicationTitleAbbrev MLST
PublicationTitleAlternate Mach. Learn.: Sci. Technol
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
SSID ssj0002513520
Score 2.565965
Snippet Data science and informatics tools have been proliferating recently within the computational materials science and catalysis fields. This proliferation has...
SourceID unpaywall
proquest
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Publisher
SubjectTerms Adsorption
Artificial neural networks
Catalysis
density functional theory
Estimates
Gaussian process
Machine learning
Material properties
Materials science
Model accuracy
neural networks
Performance measurement
Sharpness
Uncertainty
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA2lHvTit1itkoNehNjNJhuzeBJRilA9aLG3kKRZEOp2bbdI_72TzbZaUPC2hwkTJrN5LzPJDEJnVliTcGGJLxVCfONtIpMhIyaVERzkpJNVH7Leo-j2-cMgGTTQ9fItzLiot_5L-AyFgoMJ6wtxsuMrjBNAKtbR5spRIEdrPrvlC-c_sddlgAWAG8hFVKcmfxsIcAI6Vqjl-iwv9PxTj0Y_UOZ-G23W9BDfhMnsoIbLd9HWovUCrv_EPfTcqzo_TzFwThzukQMGYQCpkOIv5_hjpsNFoBCTqySBnlYehwsfg5-AVDHxmZpKYh_17-9ebruk7o9A3piISuJ45hjQEZ1SmzAuGNNRlurMOk6HzFiaGWskT5kEmkWl5oJn3MQm0Qz2RyPZAWrm49wdIkxhbYacwkhHfbkYmfA40pY7DhTNuqSFzsFUqvbvqapS11Iqb1LlTaqCSVsIr8i9j6aloipWnmpFQhXDrIXaC3t_y3mWJSQTAjRdLNdAFaHixp_qjv45rWO0EftzchU9aaNmOZm5EyATpTmtnOYLjM7FJw
  priority: 102
  providerName: IOP Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NSysxEB9qPbx38ev5sH6Rg16E0M0mG9ODiIpFBMvjqeAtJNksCLVd2y3if-8ku-vHQe-zWZhJZn6ZmcwP4MBJZzMhHQ2jQmgg3qYqyzm1A5XgRU55FXnIbkby6l5cP2QPHRi1b2FCW2XrE6Ojzqcu5Mj7IQ5LxaXMTstnGlijQnW1pdAwDbVCfhJHjC3BchomY3Vh-fxy9O__e9YFV0HEkTT1Sjxh_TCvnGLc431jjz3D-LT0OC2_4M1fi0lpXl_MePwp9AzXYKXBjOSsNvI6dPxkA1ZbPgbSHM8_cHsT6aDnBIEoqZvLMTARjFx13b96Jc8LU3cH1Ym6KImYNW5DUobE_Aylylko30SJTbgfXt5dXNGGNIE-cplU1IvCc8QoZsBcxoXk3CTFwBTOC5Zz61hhnVViwBViL6aMkKIQNrWZ4eg0reJ_oTuZTvwWEIYGywXDLz0LM2RUJtLEOOEF4jbnsx4coqp0s-nnOtazldJBpTqoVNcq7QH5Ivc0nlea6VQH_JVIXeZFD3ZbfX_IfZi8B0fvNtBlPYbj299t_7zWDvxOw505ZlJ2oVvNFn4PgUVl95vd8gZhIs01
  priority: 102
  providerName: ProQuest
Title Methods for comparing uncertainty quantifications for material property predictions
URI https://iopscience.iop.org/article/10.1088/2632-2153/ab7e1a
https://www.proquest.com/docview/2512683665
https://doi.org/10.1088/2632-2153/ab7e1a
UnpaywallVersion publishedVersion
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: O3W
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: IOP
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: BENPR
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5BcoALr1IRoJEPcKm0sI69xjnSKikgJUS0EXCybMcrRU3DkmyE4MBv79i7gaYqUrn4NJZXY3vnm4e_ATiwwpqECxt5qpDIN96OZDJgkWnKGB056WToQ9bpirM-v7hJbsp4h38Ls5C_R-fM04lHaJbYsTYnjiISqooEUXcFqv1u7_TW946bi5RZyH9NQ8sxvMsWUOTKbJzpxwc9Gv1hUNrrBbvRNPAQ-jqSn0ez3BzZp79YGv_nWzdgrUSV5LQ4Bpuw5MZbsD7v2EDKC_wBvndCw-gpQahKivJzNF0EbVtRGZA_kvuZLuqHilBekERUGw4qyXzofoJS2cQneILENvTbrR9fz6KyrUI0ZCLOI8dTxxDF6Ca1CeOCMR2nTZ1ax-mAGUtTY43kTSYRnVGpueApNw2TaIa_VSPZR6iM78ZuBwjFLR1wijMd9SwzMuGNWFvuOCI765IaHKLaVXktpipkvKVUXlPKa0oVmqoBWZD7NZrmiqqG8ggtFiobpDXYn-_dq5wHZ0IyIXClzy_7qbKCqOPN5XbfI7wHqw3vY4fIyz5U8snMfUIgkps6LMv2tzpUv7S6vat6cOdxPL_s4dh5buF4ya7r5Un9DfZn3iI
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDCb6OHSXbd0Dy9atOrSXAUIsS9bkQzFsfSB9JBi2FuhNk2QZKJAlbuKgyJ_bbxsl2-16aG-90w9QFPlRpPgB7DjpbCako2FUCA3E21RlBac2VwkmcsqryEM2HMnBhTi5zC5X4G93Fya0VXY-MTrqYurCGXk_xGGpuJTZ1-qaBtaoUF3tKDRMS61Q7MURY-3FjlO_vMEUbr53fIDrvZumR4fn-wPasgzQKy6TmnpReo5B3eTMZVxIzk1S5qZ0XrCCW8dK66wSOVcIVpgyQopS2NRmhqOXsYrje1dhXXCRY_K3_v1w9OPn7SkP_jUinKStj-KO7of56BTjLO8b-8UzjIerV9PqHr7dWEwqs7wx4_F_oe7oJTxvMSr51hjVJqz4ySt40fE_kNYdvIZfw0g_PScIfEnTzI6BkGCkbPoM6iW5XpimG6k5GIySiJGj2ZMqFAJmKFXNQrkoSryBiydR31tYm0wn_h0QhgZSCIZPehZm1qhMpIlxwgvEic5nPdhFVel2k811rJ8rpYNKdVCpblTaA3JP7s94XmumUx3wXiJ1VZQ92Or0fSd3Z2I9-Hy7Brpqxn48-Ln3j79rGzYG58MzfXY8Ov0Az9KQr8dTnC1Yq2cL_xFBTW0_tZZD4PdTG-s_SBYJ_g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxEB21qUS5EKBUBFLwAS6VNlnHXuMcETRKCwmRIFJvru14paohWZKNUPj1jO1NIBVIlXpbWWPZO_6Y5_H4DcAbK6zJuLCJpwpJfOLtRGYTlpiuTPEgJ50MecgGQ9Ef84vL7LLKcxrewsyLautv4WckCo4qrALiZNszjCdoqVhbm3eO6nYxyffhIPCU-Bd8X0ZbJwsabyxNq-vJf1VGk4Lt7MDLw9Ws0Oufejr9y9L06nC16WMMMLlprUrTsr9u0Tfe4ycew6MKhZL3UfwJ7LnZU6hvMjyQasEfwddBSDC9JAhtSQxXR1NH0BbGSIJyTX6sdIw3iq6_IIkoOExsUnhX_wKlioW_EAoSz2DcO_v2oZ9UaRiSaybSMnE8dwxRj-5SmzEuGNNp3tW5dZxOmLE0N9ZI3mUS0RyVmguec9MxmWa4DRvJjqE2m8_ccyAUp8CEU6zpqGelkRnvpNpyxxEJWpc14C0qTFXLaKnCDbmUymtLeW2pqK0GkB2579NlqajqKI_oUqFQmQ1obob0j5wHc0IyIbCl0-0wqyISe_y3uRd37NZreDD62FOfz4efXsLDjj-ZB39NE2rlYuVOEL6U5lWYor8B4pTp5A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA3SHvRi_cRqlRz0ImzdNNmYHotYitAiaKGeQpJmQazbtd1F6q93stmqFQW9v5Blkuy8zEzeIHRquNER4yZwUiGBa7wdiGhMA90WIVzkhBVFH7L-gPeG7GYUjcp4h3sLs5K_h8uZkxMPwC3RC6UvLQEmVOURsO4Kqg4Ht50H1ztuCSmzkD8NA8_xOE1XWOR6nqRq8aomky8OpVvz6kbzQofQ1ZE8NfNMN83bN5XGv3zrFtosWSXu-G2wjdZssoNqy44NuDzAu-iuXzSMnmOgqtiXn4PrwuDbfGVAtsAvufL1Qz6UVyCB1RYbFacudD8DVDpzCZ4CsYeG3ev7q15QtlUIHikPs8Cy2FJgMapNTEQZp1SFcVvFxjIyptqQWBstWJsKYGdEKMZZzHRLR4rCb1ULuo8qyTSxBwgTWNIxIzDSEqcyIyLWCpVhlgGzMzaqozMwuyyPxVwWGW8hpLOUdJaS3lJ1hFdwz5N5JolsScfQQi7TcVxHjeXafeIcOeOCcg4znX-sp0y9UMev0x3-B3yENlrujl1EXhqoks1yewxEJNMn5R58B4mk13k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methods+for+comparing+uncertainty+quantifications+for+material+property+predictions&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Tran%2C+Kevin&rft.au=Neiswanger%2C+Willie&rft.au=Yoon%2C+Junwoong&rft.au=Zhang%2C+Qingyang&rft.date=2020-06-01&rft.pub=IOP+Publishing&rft.eissn=2632-2153&rft.volume=1&rft.issue=2&rft_id=info:doi/10.1088%2F2632-2153%2Fab7e1a&rft.externalDocID=mlstab7e1a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon