Adaptive Color Attributes for Real-Time Visual Tracking
Visual tracking is a challenging problem in computer vision. Most state-of-the-art visual trackers either rely on luminance information or use simple color representations for image description. Contrary to visual tracking, for object recognition and detection, sophisticated color features when comb...
Saved in:
Published in | 2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 1090 - 1097 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2014.143 |
Cover
Abstract | Visual tracking is a challenging problem in computer vision. Most state-of-the-art visual trackers either rely on luminance information or use simple color representations for image description. Contrary to visual tracking, for object recognition and detection, sophisticated color features when combined with luminance have shown to provide excellent performance. Due to the complexity of the tracking problem, the desired color feature should be computationally efficient, and possess a certain amount of photometric invariance while maintaining high discriminative power. This paper investigates the contribution of color in a tracking-by-detection framework. Our results suggest that color attributes provides superior performance for visual tracking. We further propose an adaptive low-dimensional variant of color attributes. Both quantitative and attribute-based evaluations are performed on 41 challenging benchmark color sequences. The proposed approach improves the baseline intensity-based tracker by 24 % in median distance precision. Furthermore, we show that our approach outperforms state-of-the-art tracking methods while running at more than 100 frames per second. |
---|---|
AbstractList | Visual tracking is a challenging problem in computer vision. Most state-of-the-art visual trackers either rely on luminance information or use simple color representations for image description. Contrary to visual tracking, for object recognition and detection, sophisticated color features when combined with luminance have shown to provide excellent performance. Due to the complexity of the tracking problem, the desired color feature should be computationally efficient, and possess a certain amount of photometric invariance while maintaining high discriminative power. This paper investigates the contribution of color in a tracking-by-detection framework. Our results suggest that color attributes provides superior performance for visual tracking. We further propose an adaptive low-dimensional variant of color attributes. Both quantitative and attribute-based evaluations are performed on 41 challenging benchmark color sequences. The proposed approach improves the baseline intensity-based tracker by 24 % in median distance precision. Furthermore, we show that our approach outperforms state-of-the-art tracking methods while running at more than 100 frames per second. |
Author | Felsberg, Michael Danelljan, Martin Van De Weijer, Joost Khan, Fahad Shahbaz |
Author_xml | – sequence: 1 givenname: Martin surname: Danelljan fullname: Danelljan, Martin email: martin.danelljan@liu.se organization: Comput. Vision Lab., Linkoping Univ., Linkoping, Sweden – sequence: 2 givenname: Fahad Shahbaz surname: Khan fullname: Khan, Fahad Shahbaz email: fahad.khan@liu.se organization: Comput. Vision Lab., Linkoping Univ., Linkoping, Sweden – sequence: 3 givenname: Michael surname: Felsberg fullname: Felsberg, Michael email: michael.felsberg@liu.se organization: Comput. Vision Lab., Linkoping Univ., Linkoping, Sweden – sequence: 4 givenname: Joost surname: Van De Weijer fullname: Van De Weijer, Joost email: joost@cvc.uab.es organization: CS Dept., Univ. Autonoma de Barcelona, Barcelona, Spain |
BookMark | eNpNTU1Lw0AQXaWCtfboyUuOXlJnsl-ZYwlWhYJSaq9hk0xlMU1qNhH890bqwdP75L0rMWnahoW4QVggAt1nu9fNIgFUC1TyTMzJpqgskUZM9bmYIhgZG0Ka_OOXYh6CLyAx1igtzVTYZeWOvf_iKGvrtouWfd_5Yug5RPtRbtjV8dYfONr5MLg62nau_PDN-7W42Ls68PwPZ-Jt9bDNnuL1y-NztlzHXmrs48IqcAmhpQpIls4BV6qUlSGHBKSthtRVRgGb0TQpQgKqdIUqreUxkzNxd9o9du3nwKHPDz6UXNeu4XYIORprCbRWMFZvT1XPzPmx8wfXfefm90aS_AHSIVZc |
CODEN | IEEPAD |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/CVPR.2014.143 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781479951185 1479951188 |
EISSN | 1063-6919 |
EndPage | 1097 |
ExternalDocumentID | 6909539 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-i351t-b740a29179d093caa0ed4c3d69a190957508ad640e63d66810204cab4c77e5083 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Thu Sep 04 19:49:41 EDT 2025 Wed Aug 27 02:34:06 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i351t-b740a29179d093caa0ed4c3d69a190957508ad640e63d66810204cab4c77e5083 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-105857 |
PQID | 1677905540 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | ieee_primary_6909539 proquest_miscellaneous_1677905540 |
PublicationCentury | 2000 |
PublicationDate | 20140601 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 20140601 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2014 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib026764536 ssj0023720 ssj0003211698 |
Score | 2.5278096 |
Snippet | Visual tracking is a challenging problem in computer vision. Most state-of-the-art visual trackers either rely on luminance information or use simple color... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1090 |
SubjectTerms | Adaptive Dimensionality Reduction Appearance Model Color Color Features Computational modeling Computer vision Covariance matrices Image color analysis Kernel Luminance Object recognition Pattern recognition Photometry State of the art Target tracking Tracking Visual Visual Tracking Visualization |
Title | Adaptive Color Attributes for Real-Time Visual Tracking |
URI | https://ieeexplore.ieee.org/document/6909539 https://www.proquest.com/docview/1677905540 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEF7UU0-21VL7Ygs9NjGbbHbNUaQiBYtIFW9hs5mAtEQxyaW_vrN5KLQ99BYGEiaTycw3Oy9CnhwBkGjGTIZRWnzEwIqYSiwMxFwlvMQdKdONPH8TsxV_3fibFnk-9sIAQFl8Bra5LHP58U4X5qhsiA8IfC9ok7aUQdWr1eiOK6TgfrW7u7TCHkY2IjhmFFyzjaXMfAoPGWHBad7mcLJeLE2RF7fL5p1yy8ov01z6m2mXzBtOqzKTD7vII1t__Rji-N9XOSf9U2cfXRx91gVpQXpJujUUpfWPniGp2fbQ0HpEjmO1N8aRTtBgHug4r5ZlQUYR-NIlIk7LNJTQ9TYr1CdFL6jNOXyfrKYv75OZVa9dsLaez3IrktxRLoZxQewEnlbKgZhrLxaBYoZrxBgjFQvugECimWfmOlyriGspwUyXvyKddJfCNaF-BD7nCaIKrnnCATEyonmmuZIc3EgPSM-IJtxXkzXCWioD8tgIP0RtNykMlcKuyEImzHxEhEDOzd-33pIz8yWrYq470skPBdwjbMijh1JfvgGL8bvo |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6qHvTkG-tzBY-mZpPNbnOUolRti5Qq3sJmM4GitMUkF3-9s3m0oB68hYEsk93JzDc7L4ArVyKmhnMbYVSO6HJ0Yq5ThxwxT0s_9braViMPR7L_Ih7fgrcWXC9rYRCxTD7Djn0sY_nJ3BT2quyGFggDP1yDjYC8ClVVazXS40klRVBN7y71sE--jQyXMQXPzmMpY5_SJ1Z4uOq4edN7fR7bNC_RKct3yjkrv5RzaXHut2HY8Folmrx3ijzumK8fbRz_-zE7cLCq7WPPS6u1Cy2c7cF2DUZZ_atnRGrmPTS0fVC3iV5Y9ch6pDI_2W1ejcvCjBH0ZWPCnI4tKWGv06zQH4zsoLE38Qfwcn836fWdevCCM_UDnjuxEq72yJELEzf0jdYuJsL4iQw1t1wTyujqRAoXJRFtRzPPFUbHwiiFtr_8IazP5jM8AhbESGeVEq4QRqQCCSUTnudGaCXQi00b9u3WRIuqt0ZU70obLpvNj0jebRBDz3BeZBGXtkMigSD3-O9XL2CzPxkOosHD6OkEtuypVqldp7CefxZ4RiAij89L2fkGnq-_OQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Adaptive+Color+Attributes+for+Real-Time+Visual+Tracking&rft.au=Danelljan%2C+Martin&rft.au=Khan%2C+Fahad+Shahbaz&rft.au=Felsberg%2C+Michael&rft.au=Van+De+Weijer%2C+Joost&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1090&rft.epage=1097&rft_id=info:doi/10.1109%2FCVPR.2014.143&rft.externalDocID=6909539 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |