Adaptive Color Attributes for Real-Time Visual Tracking

Visual tracking is a challenging problem in computer vision. Most state-of-the-art visual trackers either rely on luminance information or use simple color representations for image description. Contrary to visual tracking, for object recognition and detection, sophisticated color features when comb...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 1090 - 1097
Main Authors Danelljan, Martin, Khan, Fahad Shahbaz, Felsberg, Michael, Van De Weijer, Joost
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2014.143

Cover

Abstract Visual tracking is a challenging problem in computer vision. Most state-of-the-art visual trackers either rely on luminance information or use simple color representations for image description. Contrary to visual tracking, for object recognition and detection, sophisticated color features when combined with luminance have shown to provide excellent performance. Due to the complexity of the tracking problem, the desired color feature should be computationally efficient, and possess a certain amount of photometric invariance while maintaining high discriminative power. This paper investigates the contribution of color in a tracking-by-detection framework. Our results suggest that color attributes provides superior performance for visual tracking. We further propose an adaptive low-dimensional variant of color attributes. Both quantitative and attribute-based evaluations are performed on 41 challenging benchmark color sequences. The proposed approach improves the baseline intensity-based tracker by 24 % in median distance precision. Furthermore, we show that our approach outperforms state-of-the-art tracking methods while running at more than 100 frames per second.
AbstractList Visual tracking is a challenging problem in computer vision. Most state-of-the-art visual trackers either rely on luminance information or use simple color representations for image description. Contrary to visual tracking, for object recognition and detection, sophisticated color features when combined with luminance have shown to provide excellent performance. Due to the complexity of the tracking problem, the desired color feature should be computationally efficient, and possess a certain amount of photometric invariance while maintaining high discriminative power. This paper investigates the contribution of color in a tracking-by-detection framework. Our results suggest that color attributes provides superior performance for visual tracking. We further propose an adaptive low-dimensional variant of color attributes. Both quantitative and attribute-based evaluations are performed on 41 challenging benchmark color sequences. The proposed approach improves the baseline intensity-based tracker by 24 % in median distance precision. Furthermore, we show that our approach outperforms state-of-the-art tracking methods while running at more than 100 frames per second.
Author Felsberg, Michael
Danelljan, Martin
Van De Weijer, Joost
Khan, Fahad Shahbaz
Author_xml – sequence: 1
  givenname: Martin
  surname: Danelljan
  fullname: Danelljan, Martin
  email: martin.danelljan@liu.se
  organization: Comput. Vision Lab., Linkoping Univ., Linkoping, Sweden
– sequence: 2
  givenname: Fahad Shahbaz
  surname: Khan
  fullname: Khan, Fahad Shahbaz
  email: fahad.khan@liu.se
  organization: Comput. Vision Lab., Linkoping Univ., Linkoping, Sweden
– sequence: 3
  givenname: Michael
  surname: Felsberg
  fullname: Felsberg, Michael
  email: michael.felsberg@liu.se
  organization: Comput. Vision Lab., Linkoping Univ., Linkoping, Sweden
– sequence: 4
  givenname: Joost
  surname: Van De Weijer
  fullname: Van De Weijer, Joost
  email: joost@cvc.uab.es
  organization: CS Dept., Univ. Autonoma de Barcelona, Barcelona, Spain
BookMark eNpNTU1Lw0AQXaWCtfboyUuOXlJnsl-ZYwlWhYJSaq9hk0xlMU1qNhH890bqwdP75L0rMWnahoW4QVggAt1nu9fNIgFUC1TyTMzJpqgskUZM9bmYIhgZG0Ka_OOXYh6CLyAx1igtzVTYZeWOvf_iKGvrtouWfd_5Yug5RPtRbtjV8dYfONr5MLg62nau_PDN-7W42Ls68PwPZ-Jt9bDNnuL1y-NztlzHXmrs48IqcAmhpQpIls4BV6qUlSGHBKSthtRVRgGb0TQpQgKqdIUqreUxkzNxd9o9du3nwKHPDz6UXNeu4XYIORprCbRWMFZvT1XPzPmx8wfXfefm90aS_AHSIVZc
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2014.143
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781479951185
1479951188
EISSN 1063-6919
EndPage 1097
ExternalDocumentID 6909539
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i351t-b740a29179d093caa0ed4c3d69a190957508ad640e63d66810204cab4c77e5083
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Thu Sep 04 19:49:41 EDT 2025
Wed Aug 27 02:34:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i351t-b740a29179d093caa0ed4c3d69a190957508ad640e63d66810204cab4c77e5083
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-105857
PQID 1677905540
PQPubID 23500
PageCount 8
ParticipantIDs ieee_primary_6909539
proquest_miscellaneous_1677905540
PublicationCentury 2000
PublicationDate 20140601
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 20140601
  day: 01
PublicationDecade 2010
PublicationTitle 2014 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764536
ssj0023720
ssj0003211698
Score 2.5278096
Snippet Visual tracking is a challenging problem in computer vision. Most state-of-the-art visual trackers either rely on luminance information or use simple color...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1090
SubjectTerms Adaptive Dimensionality Reduction
Appearance Model
Color
Color Features
Computational modeling
Computer vision
Covariance matrices
Image color analysis
Kernel
Luminance
Object recognition
Pattern recognition
Photometry
State of the art
Target tracking
Tracking
Visual
Visual Tracking
Visualization
Title Adaptive Color Attributes for Real-Time Visual Tracking
URI https://ieeexplore.ieee.org/document/6909539
https://www.proquest.com/docview/1677905540
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEF7UU0-21VL7Ygs9NjGbbHbNUaQiBYtIFW9hs5mAtEQxyaW_vrN5KLQ99BYGEiaTycw3Oy9CnhwBkGjGTIZRWnzEwIqYSiwMxFwlvMQdKdONPH8TsxV_3fibFnk-9sIAQFl8Bra5LHP58U4X5qhsiA8IfC9ok7aUQdWr1eiOK6TgfrW7u7TCHkY2IjhmFFyzjaXMfAoPGWHBad7mcLJeLE2RF7fL5p1yy8ov01z6m2mXzBtOqzKTD7vII1t__Rji-N9XOSf9U2cfXRx91gVpQXpJujUUpfWPniGp2fbQ0HpEjmO1N8aRTtBgHug4r5ZlQUYR-NIlIk7LNJTQ9TYr1CdFL6jNOXyfrKYv75OZVa9dsLaez3IrktxRLoZxQewEnlbKgZhrLxaBYoZrxBgjFQvugECimWfmOlyriGspwUyXvyKddJfCNaF-BD7nCaIKrnnCATEyonmmuZIc3EgPSM-IJtxXkzXCWioD8tgIP0RtNykMlcKuyEImzHxEhEDOzd-33pIz8yWrYq470skPBdwjbMijh1JfvgGL8bvo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6qHvTkG-tzBY-mZpPNbnOUolRti5Qq3sJmM4GitMUkF3-9s3m0oB68hYEsk93JzDc7L4ArVyKmhnMbYVSO6HJ0Yq5ThxwxT0s_9braViMPR7L_Ih7fgrcWXC9rYRCxTD7Djn0sY_nJ3BT2quyGFggDP1yDjYC8ClVVazXS40klRVBN7y71sE--jQyXMQXPzmMpY5_SJ1Z4uOq4edN7fR7bNC_RKct3yjkrv5RzaXHut2HY8Folmrx3ijzumK8fbRz_-zE7cLCq7WPPS6u1Cy2c7cF2DUZZ_atnRGrmPTS0fVC3iV5Y9ch6pDI_2W1ejcvCjBH0ZWPCnI4tKWGv06zQH4zsoLE38Qfwcn836fWdevCCM_UDnjuxEq72yJELEzf0jdYuJsL4iQw1t1wTyujqRAoXJRFtRzPPFUbHwiiFtr_8IazP5jM8AhbESGeVEq4QRqQCCSUTnudGaCXQi00b9u3WRIuqt0ZU70obLpvNj0jebRBDz3BeZBGXtkMigSD3-O9XL2CzPxkOosHD6OkEtuypVqldp7CefxZ4RiAij89L2fkGnq-_OQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Adaptive+Color+Attributes+for+Real-Time+Visual+Tracking&rft.au=Danelljan%2C+Martin&rft.au=Khan%2C+Fahad+Shahbaz&rft.au=Felsberg%2C+Michael&rft.au=Van+De+Weijer%2C+Joost&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1090&rft.epage=1097&rft_id=info:doi/10.1109%2FCVPR.2014.143&rft.externalDocID=6909539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon