THE CONTEXT-DEPENDENT EFFECT OF MULTIPLE PATERNITY ON EFFECTIVE POPULATION SIZE
Effective population size (N e ) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on N e has been the subject of some debate, at the crux of which is the effects of monandry and multiple-paternity (MP) on male variance in rep...
Saved in:
Published in | Evolution Vol. 65; no. 6; pp. 1693 - 1706 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Malden, USA
Blackwell Publishing Inc
01.06.2011
Wiley Subscription Services, Inc Oxford University Press |
Subjects | |
Online Access | Get full text |
ISSN | 0014-3820 1558-5646 1558-5646 |
DOI | 10.1111/j.1558-5646.2011.01249.x |
Cover
Abstract | Effective population size (N e ) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on N e has been the subject of some debate, at the crux of which is the effects of monandry and multiple-paternity (MP) on male variance in reproductive success. In both mating systems, females mate with several males over their lifetimes, but sire offspring with one male at a time in the former and have several sires per clutch in the latter. First, I theoretically show that whether the annual male variance in reproductive success in an MP population is greater or less than that of a monandrous population depends on the distributions of within-clutch paternity. Then, I simulated different distributions of within-clutch paternity under a range of parameters that characterize natural populations to show that an MP population can have an N e smaller or larger than that of a monandrous population with otherwise equal dynamics. The N e(MP) :N e(Monandry) ratio increased with mating frequency and female variance in reproductive success, was equalized by long generation times, and was affected by the distribution of within-clutch paternities. The results of this model provide a unifying framework for the debate. |
---|---|
AbstractList | Effective population size (N(e)) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on N(e) has been the subject of some debate, at the crux of which is the effects of monandry and multiple-paternity (MP) on male variance in reproductive success. In both mating systems, females mate with several males over their lifetimes, but sire offspring with one male at a time in the former and have several sires per clutch in the latter. First, I theoretically show that whether the annual male variance in reproductive success in an MP population is greater or less than that of a monandrous population depends on the distributions of within-clutch paternity. Then, I simulated different distributions of within-clutch paternity under a range of parameters that characterize natural populations to show that an MP population can have an N(e) smaller or larger than that of a monandrous population with otherwise equal dynamics. The N(e(MP)):N(e(Monandry)) ratio increased with mating frequency and female variance in reproductive success, was equalized by long generation times, and was affected by the distribution of within-clutch paternities. The results of this model provide a unifying framework for the debate.Effective population size (N(e)) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on N(e) has been the subject of some debate, at the crux of which is the effects of monandry and multiple-paternity (MP) on male variance in reproductive success. In both mating systems, females mate with several males over their lifetimes, but sire offspring with one male at a time in the former and have several sires per clutch in the latter. First, I theoretically show that whether the annual male variance in reproductive success in an MP population is greater or less than that of a monandrous population depends on the distributions of within-clutch paternity. Then, I simulated different distributions of within-clutch paternity under a range of parameters that characterize natural populations to show that an MP population can have an N(e) smaller or larger than that of a monandrous population with otherwise equal dynamics. The N(e(MP)):N(e(Monandry)) ratio increased with mating frequency and female variance in reproductive success, was equalized by long generation times, and was affected by the distribution of within-clutch paternities. The results of this model provide a unifying framework for the debate. Effective population size (Ne) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on Ne has been the subject of some debate, at the crux of which is the effects of monandry and multiple-paternity (MP) on male variance in reproductive success. In both mating systems, females mate with several males over their lifetimes, but sire offspring with one male at a time in the former and have several sires per clutch in the latter. First, I theoretically show that whether the annual male variance in reproductive success in an MP population is greater or less than that of a monandrous population depends on the distributions of within-clutch paternity. Then, I simulated different distributions of within-clutch paternity under a range of parameters that characterize natural populations to show that an MP population can have an Ne smaller or larger than that of a monandrous population with otherwise equal dynamics. The Ne(MP):Ne(Monandry) ratio increased with mating frequency and female variance in reproductive success, was equalized by long generation times, and was affected by the distribution of within-clutch paternities. The results of this model provide a unifying framework for the debate. [PUBLICATION ABSTRACT] Effective population size (Ne) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on Ne has been the subject of some debate, at the crux of which is the effects of monandry and multiple‐paternity (MP) on male variance in reproductive success. In both mating systems, females mate with several males over their lifetimes, but sire offspring with one male at a time in the former and have several sires per clutch in the latter. First, I theoretically show that whether the annual male variance in reproductive success in an MP population is greater or less than that of a monandrous population depends on the distributions of within‐clutch paternity. Then, I simulated different distributions of within‐clutch paternity under a range of parameters that characterize natural populations to show that an MP population can have an Ne smaller or larger than that of a monandrous population with otherwise equal dynamics. The Ne(MP):Ne(Monandry) ratio increased with mating frequency and female variance in reproductive success, was equalized by long generation times, and was affected by the distribution of within‐clutch paternities. The results of this model provide a unifying framework for the debate. Effective population size (N e ) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on N e has been the subject of some debate, at the crux of which is the effects of monandry and multiple-paternity (MP) on male variance in reproductive success. In both mating systems, females mate with several males over their lifetimes, but sire offspring with one male at a time in the former and have several sires per clutch in the latter. First, I theoretically show that whether the annual male variance in reproductive success in an MP population is greater or less than that of a monandrous population depends on the distributions of within-clutch paternity. Then, I simulated different distributions of within-clutch paternity under a range of parameters that characterize natural populations to show that an MP population can have an N e smaller or larger than that of a monandrous population with otherwise equal dynamics. The N e(MP) :N e(Monandry) ratio increased with mating frequency and female variance in reproductive success, was equalized by long generation times, and was affected by the distribution of within-clutch paternities. The results of this model provide a unifying framework for the debate. |
Author | Lotterhos, Katie E. |
Author_xml | – sequence: 1 givenname: Katie E. surname: Lotterhos fullname: Lotterhos, Katie E. email: klotterhos@bio.fsu.edu organization: Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21644957$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUFP2zAUgK0JBIXxEzZFu-yU4GfHdnzYoSpuCQpJt7ls42K51JUS2oYlrSj_HoeWHrBk2Xrf96zn987Q0apeOYQCwBH4dVlFwFgSMh7ziGCACAOJZbT9hHoHcIR6GEMc0oTgU3TWthXGWDKQJ-iUAI9jyUQPFfpaBYMi1-qvDq_UWOVXKteBGg7VQAfFMLidZDodZyoY97X6laf6X1Dke57e-XAxnmR9nfrg7_RefUbHc7to3cX-PEeTodKD6zArRumgn4Ul9SWEUiaz2DE2fXAiYQkTllEeSzsFliRyhqfSUUcBMKfYWtvtOcZ2bimVQOWcnqPvu3efmvr_xrVrsyzbB7dY2JWrN61JBHS_59yb3z6YVb1pVr44LxEQghDipa97aTNdupl5asqlbV7Me6O88GMnPJcL93LggE03EFOZru-m67vpBmLeBmK2Rt0V3c3nf9nlV-26bg75sYdYcOZ5uONlu3bbA7fNo-GCCmb-5CNDbvDN6Oc9GEFfAaBIj5Y |
ContentType | Journal Article |
Copyright | Copyright © 2011 Society for the Study of Evolution 2011 The Author(s). © 2011 The Society for the Study of Evolution. 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution. Copyright Society for the Study of Evolution Jun 2011 |
Copyright_xml | – notice: Copyright © 2011 Society for the Study of Evolution – notice: 2011 The Author(s). © 2011 The Society for the Study of Evolution. – notice: 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution. – notice: Copyright Society for the Study of Evolution Jun 2011 |
DBID | BSCLL CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.1111/j.1558-5646.2011.01249.x |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1558-5646 |
EndPage | 1706 |
ExternalDocumentID | 2377115011 21644957 EVO1249 41240765 ark_67375_WNG_2J0JGQZ1_7 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Feature |
GroupedDBID | --- --Z -JH -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29G 2AX 31~ 33P 3O- 3SF 4.4 41~ 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 5WD 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAISJ AAKGQ AAMMB AANHP AAONW AAPSS AAPXW AARHZ AASGY AAUAY AAVAP AAWDT AAXRX AAZKR ABBHK ABCQN ABCUV ABDFA ABDPE ABEJV ABEML ABGNP ABIME ABJNI ABLJU ABMNT ABPIB ABPLY ABPPZ ABPTD ABPVW ABSQW ABTLG ABWJO ABXSQ ABXVV ABXZS ABZEO ACAHQ ACBWZ ACCZN ACFBH ACFRR ACGFO ACGFS ACGOD ACHIC ACIPB ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACSCC ACSTJ ACUFI ACUTJ ACVCV ACXBN ACXQS ACYXJ ACZBC ADBBV ADEOM ADGKP ADHSS ADIPN ADIZJ ADKYN ADMGS ADNMO ADOZA ADQBN ADULT ADXAS ADXHL ADZMN AEFGJ AEGXH AEIMD AENEX AEPYG AEUPB AFAZZ AFBPY AFFDN AFFIJ AFGKR AFGWE AFKWF AFNWH AFRAH AFYAG AFZJQ AGMDO AGQPQ AGUYK AGXDD AHGBF AHXOZ AI. AIAGR AIDQK AIDYY AILXY AIURR AJAOE AJBYB AJDVS AJNCP AJXKR AKPMI ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANFBD APJGH AQVQM ASPBG AS~ ATGXG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BCRHZ BDRZF BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CBGCD COF CS3 CUYZI D-E D-F D0L D0S DC7 DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FAC FAL FAS FD6 FEDTE FJD FJW G-S G.N GODZA GTFYD H.T H.X H13 HF~ HGD HQ2 HTVGU HVGLF HZ~ IAG IAO IEA IEP IOF IPSME ISM ITC IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 KOP LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NHB NQS NU- O66 O9- OBOKY OIG OJZSN OK1 OVD OWPYF P-O P2P P2W P2X P4D PQ0 PQQKQ Q.N Q11 Q5J QB0 R.K RBO ROL ROX RWL RX1 RXW SA0 SJN SUPJJ TAE TCN TEORI TN5 UB1 UBC UHB UQL V8K VH1 VJK W8V W99 WBKPD WH7 WHG WIH WIK WNSPC WOHZO WQJ WYISQ XG1 XSW YXE YYP YZZ ZCA ZCG ZZTAW ~02 ~IA ~KM ~WT ACSIT AGORE 79B AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE DOOOF ESX JSODD QN7 VQA WRC XOL CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-i3519-998d4e55bce785857a53649ab15889d0b9e3e3110630aaa0aaaf00afa339139f3 |
IEDL.DBID | DR2 |
ISSN | 0014-3820 1558-5646 |
IngestDate | Sun Sep 28 02:20:21 EDT 2025 Fri Jul 25 10:46:16 EDT 2025 Thu Apr 03 06:57:06 EDT 2025 Wed Jan 22 16:25:37 EST 2025 Thu Jul 03 21:24:17 EDT 2025 Sun Sep 21 06:19:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i3519-998d4e55bce785857a53649ab15889d0b9e3e3110630aaa0aaaf00afa339139f3 |
Notes | ArticleID:EVO1249 ark:/67375/WNG-2J0JGQZ1-7 istex:24ECBDE07AB22294C44A5C758975E58992DBB9C5 This article was published online on March 8, 2011. An error in the author's name was subsequently identified. This notice is included in the online version to indicate that it has been corrected September 16, 2011. SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 21644957 |
PQID | 872177222 |
PQPubID | 42232 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_871001466 proquest_journals_872177222 pubmed_primary_21644957 wiley_primary_10_1111_j_1558_5646_2011_01249_x_EVO1249 jstor_primary_41240765 istex_primary_ark_67375_WNG_2J0JGQZ1_7 |
PublicationCentury | 2000 |
PublicationDate | 2011-06 20110601 June 2011 2011-Jun |
PublicationDateYYYYMMDD | 2011-06-01 |
PublicationDate_xml | – month: 06 year: 2011 text: 2011-06 |
PublicationDecade | 2010 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: United States – name: St. Louis |
PublicationTitle | Evolution |
PublicationTitleAlternate | Evolution |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Inc Wiley Subscription Services, Inc Oxford University Press |
Publisher_xml | – name: Blackwell Publishing Inc – name: Wiley Subscription Services, Inc – name: Oxford University Press |
References | Nunney, L. 1993. The influence of mating system and overlapping generations on effective population size. Evolution 47:1329-1341. Pearse, D. E., F. J. Janzen, and J. C. Avise. 2002. Multiple paternity, sperm storage, and reproductive success of female and male painted turtles (Chrysemys picta) in nature. Behav. Ecol. Sociobiol. 51:164-171. R Core Development Team. (2009). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna , Austria . ISBN 3-900051-07-0, URL http://www.R-project.org. Waples, R. S. 2006. Seed banks, salmon, and sleeping genes: effective population size in semelparous, age-structured species with fluctuating abundance. Am. Nat. 167:118-135. Arnold, S. J. 1994. Is there a unifying concept of sexual selection that applies to both plants and animals? Am. Nat. 144:S1-S12. Berkeley, S. A., C. Chapman, and S. M. Sogard. 2004. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85:1258-1264. Flowers, J. M., S. C. Schroeter, and R. S. Burton. 2002. The recruitment sweepstakes has many winners: genetic evidence from the sea urchin Strongylocentrotus purpuratus. Evolution 56:1445-1453. Weir, L. K., C. Breau, J. Hutchings, and R. Cunjak. 2010. Multiple paternity and variance in male fertilization success within Atlantic salmon Salmo salar redds in a naturally spawning population. J. Fish Biol. 77:479-493. Balloux, F., and L. Lehmann. 2003. Random mating with a finite number of matings. Genetics 165:2313-2315. Robbins, L. W., G. D. Hartman, and M. H. Smith. 1987a. Dispersal, reproductive strategies, and the maintenance of genetic-variability in mosquitofish (Gambusia affinis). Copeia 1987:156-164. Howard, R. D., and A. G. Kluge. 1985. Proximate mechanisms of sexual selection in wood frogs. Evolution 39:260-277. Wright, S. 1931. Evolution in Mendelian populations. Genetics 16:97-159. Croshaw, D. A. 2010. Quantifying sexual selection: a comparison of competing indices with mating system data from a terrestrially breeding salamander. Biol. J. Linn. Soc. 99:73-83. Frasier, T. R., P. K. Hamilton, M. W. Brown, L. A. Conger, A. R. Knowlton, M. K. Marx, C. K. Slay, S. D. Kraus, and B. N. White. 2007. Patterns of male reproductive success in a highly promiscuous whale species: the endangered North Atlantic right whale. Mol. Ecol. 16:5277-5293. Waples, R. S. 1987. Sperm storage, multiple insemination, and genetic variability in mosquitofish-a reassessment. Copeia 1987:1068-1071. Arnqvist, G., and T. Nilsson. 2000. The evolution of polyandry: multiple mating and female fitness in insects. Anim. Behav. 60:145-164. Benedict, L. 2008. Unusually high levels of extrapair paternity in a duetting songbird with long-term pair bonds. Behav. Ecol. Sociobiol. 62:983-988. Snook, R. R., L. Bruestle, and J. Slate. 2009. A test and review of the role of effective population size on experimental sexual selection patterns. Evolution 63:1923-1933. Hyde, J. R., C. Kimbrell, L. Robertson, K. Clifford, E. Lynn, and R. Vetter. 2008. Multiple paternity and maintenance of genetic diversity in the live-bearing rockfishes Sebastes spp. Mar. Ecol. Prog. Ser. 357:245-253. Ophir, A. G., S. M. Phelps, A. B. Sorin, and J. O. Wolff. 2008. Social but not genetic monogamy is associated with greater breeding success in prairie voles. Anim. Behav. 75:1143-1154. Levitan, D. R. 2005a. The distribution of male and female reproductive success in a broadcast spawning marine invertebrate. Integr. Comp. Biol. 45:848-855. Martinez, J. L., P. Moran, J. Perez, B. De Gaudemar, E. Beall, and E. Garcia-Vazquez. 2000. Multiple paternity increases effective size of southern Atlantic salmon populations. Mol. Ecol. 9:293-298. Pearse, D. E., and E. C. Anderson. 2009. Multiple paternity increases effective population size. Mol. Ecol. 18:3124-3127. Shuster, S. M., and M. J. Wade. 2003. Mating systems and strategies. Princeton Univ. Press, Princeton , NJ . Hedgecock, D., S. Launey, A. I. Pudovkin, Y. Naciri, S. Lapegue, and F. Bonhomme. 2007. Small effective number of parents (Nb) inferred for a naturally spawned cohort of juvenile European flat oysters Ostrea edulis. Mar. Biol. 150:1173-1182. Hedrick, P. 2005. Large variance in reproductive success and the Ne/N ratio. Evolution 59:1596-1599. Nunney, L. 1996. The influence of variation in female fecundity on effective population size. Biol. J. Linn. Soc. 59:411-425. Selkoe, K. A., S. D. Gaines, J. E. Caselle, and R. R. Warner. 2006. Current shifts and kin aggregation explain genetic patchiness in fish recruits. Ecology 87:3082-3094. Tatarenkov, A., C. I. M. Healey, G. F. Grether, and J. C. Avise. 2008. Pronounced reproductive skew in a natural population of green swordtails, Xiphophorus helleri. Mol. Ecol. 17:4522-4534. Hedgecock, D. 1994. Temporal and spatial genetic structure of marine animal populations in the California Current. Calif. Coop. Oceanic Fish. Invest. Rep. 35:73-81. Karl, S. A. 2008. The effect of multiple paternity on the genetically effective size of a population. Mol. Ecol. 17:3973-3977. Sefc, K. M., K. Mattersdorfer, C. Sturmbauer, and S. Koblmueller. 2008. High frequency of multiple paternity in broods of a socially monogamous cichlid fish with biparental nest defence. Mol. Ecol. 17:2531-2543. Waples, R. S. 2002. Evaluating the effect of stage-specific survivorship on the Ne/N ratio. Mol. Ecol. 11:1029-1037. Jones, A. G., J. R. Arguello, and S. J. Arnold. 2004. Molecular parentage analysis in experimental newt populations: the response of mating system measures to variation in the operational sex ratio. Am. Nat. 164:444-456. Sugg, D. W., and R. K. Chesser. 1994. Effective population sizes with multiple paternity. Genetics 137:1147-1155. Snyder, B. F., and P. A. Gowaty. 2007. A reappraisal of Bateman's classic study of intrasexual selection. Evolution 61:2457-2468. Parker, G. A., L. W. Simmons, and H. Kirk. 1990. Analyzing sperm competition data-simple models for predicting mechanisms. Behav. Ecol. Sociobiol. 27:55-65. Engen, S., R. Lande, and B. Saether. 2005. Effective size of a fluctuating age-structured population. Genetics 170:941-954. Robbins, L. W., G. D. Hartman, and M. H. Smith. 1987b. Assessment of Waple's numerical reanalyses of the maintenance of genetic-variability in mosquitofish. Copeia 1987:1071-1072. Whitlock, M. C., and N. H. Barton. 1997. The effective size of a subdivided population. Genetics 146:427-441. Jennions, M. D., and M. Petrie. 2000. Why do females mate multiply? A review of the genetic benefits. Biol. Rev. 75:21-64. Borkowska, A., Z. Borowski, and K. Krysiuk. 2009. Multiple paternity in free-living root voles (Microtus oeconomus). Behav. Proc. 82:211-213. Thornhill, R. 1983. Cryptic female choice and its implications in the scorpionfly Harpobittacus nigriceps. Am. Nat. 122:765-788. Cohas, A., and D. Allaine. 2009. Social structure influences extra-pair paternity in socially monogamous mammals. Biol. Lett. 5:313-316. Crow, J. F., and M. Kimura. 1970. An introduction to population genetics theory. Harper & Row, New York . Arnqvist, G., and L. Rowe. 2005. Sexual conflict. Princeton Univ. Press, Princeton , NJ . Araki, H., R. S. Waples, W. R. Ardren, B. Cooper, and M. S. Blouin. 2007. Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms. Mol. Ecol. 16:953-966. Hill, W. G. 1979. Note on effective population-size with overlapping generations. Genetics 92:317-322. Jensen, M. P., F. A. Abreu-Grobois, J. Frydenberg, and V. Loeschcke. 2006. Microsatellites provide insight into contrasting mating patterns in arribada vs. non-arribada olive ridley sea turtle rookeries. Mol. Ecol. 15:2567-2575. Rice, W. R., and B. Holland. 2005. Experimentally enforced monogamy: inadvertent selection, inbreeding, or evidence for sexually antagonistic coevolution? Evolution 59:682-685. Wigby, S., and T. Chapman. 2004. Female resistance to male harm evolves in response to manipulation of sexual conflict. Evolution 58:1028-1037. Kimura, M., and J. F. Crow. 1963. Measurement of effective population number. Evolution 17:279-288. Uller, T., and M. Olsson. 2008. Multiple paternity in reptiles: patterns and processes. Mol. Ecol. 17:2566-2580. Bateman, A. J. 1948. Intra-sexual selection in Drosophila. Heredity 2:349-368. Clutton-Brock, T. H. 1988. Reproductive success. Univ. Chicago Press, Chicago . Crow, J. F., and N. E. Morton. 1955. Measurement of gene frequency drift in small populations. Evolution 9:202-214. Caballero, A., and W. G. Hill. 1992. Effective size of nonrandom mating populations. Genetics 130:909-916. Levitan, D. R. 2008. Gamete traits influence the variance in reproductive success, the intensity of sexual selection, and the outcome of sexual conflict among congeneric sea urchins. Evolution 62:1305-1316. Cushman, J. H., C. L. Boggs, S. B. Weiss, D. D. Murphy, A. W. Harvey, and P. R. Ehrlich. 1994. Estimating female reproductive success of a threatened butterfly-influence of emergence time and hostplant phenology. Oecologia 99:194-200. Murray, J. 1964. Multiple mating and effective population size in Cepaea nemoralis. Evolution 18:283-291. Charlesworth, B. 2001. The effect of life-history and mode of inheritance on neutral genetic variability. Genet. Res. 77:153-166. Saccheri, I., M. Kuussaari, M. Kankare, P. Vikman, W. Fortelius, and I. Hanski. 1998. Inbreeding and extinction in a butterfly metapopulation. Nature 392:491-494. Crow, J. F., and C. Denniston. 1988. Inbreeding and variance effective population numbers. Evolution 42:482-495. Levitan, D. R. 2005b. Sex-specific spawning behavior and its consequences in an external fertilizer. Am. Nat. 165:682-694. Makinen, T., M. Panova, and C. Andre. 2007. High levels of multiple paternity in Littorina saxatilis: hedging the bets? J. Hered. 98:705-711. Matocq, M. D. 2004. Reproductive success and effective population size in woodrats (Neotoma macrotis). Mol. Ecol. 13:1635-1642. Yasui, Y. 1998. The "genet 2010; 99 1931; 16 2005; 170 2004; 164 1987; 101 1994; 137 2009; 82 2002; 51 2002; 56 2000; 9 2002; 11 1955; 9 1970 2008; 75 1998; 392 2005a; 45 1997; 146 1994; 144 1948; 2 2000; 60 1994; 35 2007; 61 2008; 357 2005b; 165 1988; 42 2008; 62 1987a; 1987 2006; 167 2003; 165 2009; 18 1988 1998; 13 1993; 47 2010; 77 2004; 85 2009; 63 2010; 328 2006; 15 2008; 17 2009 2005 2003 1987; 1987 2007; 98 1996; 59 1979; 92 2007; 16 1985; 39 1987b; 1987 1983; 122 1992; 130 2007; 150 1964; 18 1990; 27 2006; 87 2004; 58 2000; 75 2004; 13 1994; 99 2009; 5 2001; 77 2005; 59 1963; 17 Evolution. 2011 Oct;65(10):3029 |
References_xml | – reference: Pearse, D. E., F. J. Janzen, and J. C. Avise. 2002. Multiple paternity, sperm storage, and reproductive success of female and male painted turtles (Chrysemys picta) in nature. Behav. Ecol. Sociobiol. 51:164-171. – reference: Tatarenkov, A., C. I. M. Healey, G. F. Grether, and J. C. Avise. 2008. Pronounced reproductive skew in a natural population of green swordtails, Xiphophorus helleri. Mol. Ecol. 17:4522-4534. – reference: Thornhill, R. 1983. Cryptic female choice and its implications in the scorpionfly Harpobittacus nigriceps. Am. Nat. 122:765-788. – reference: Berkeley, S. A., C. Chapman, and S. M. Sogard. 2004. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85:1258-1264. – reference: Hill, W. G. 1979. Note on effective population-size with overlapping generations. Genetics 92:317-322. – reference: Whitlock, M. C., and N. H. Barton. 1997. The effective size of a subdivided population. Genetics 146:427-441. – reference: Crow, J. F., and M. Kimura. 1970. An introduction to population genetics theory. Harper & Row, New York . – reference: Karl, S. A. 2008. The effect of multiple paternity on the genetically effective size of a population. Mol. Ecol. 17:3973-3977. – reference: Levitan, D. R. 2005a. The distribution of male and female reproductive success in a broadcast spawning marine invertebrate. Integr. Comp. Biol. 45:848-855. – reference: Arnqvist, G., and L. Rowe. 2005. Sexual conflict. Princeton Univ. Press, Princeton , NJ . – reference: Wright, S. 1931. Evolution in Mendelian populations. Genetics 16:97-159. – reference: R Core Development Team. (2009). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna , Austria . ISBN 3-900051-07-0, URL http://www.R-project.org. – reference: Waples, R. S. 2002. Evaluating the effect of stage-specific survivorship on the Ne/N ratio. Mol. Ecol. 11:1029-1037. – reference: Jones, A. G., J. R. Arguello, and S. J. Arnold. 2004. Molecular parentage analysis in experimental newt populations: the response of mating system measures to variation in the operational sex ratio. Am. Nat. 164:444-456. – reference: Robbins, L. W., G. D. Hartman, and M. H. Smith. 1987a. Dispersal, reproductive strategies, and the maintenance of genetic-variability in mosquitofish (Gambusia affinis). Copeia 1987:156-164. – reference: Pearse, D. E., and E. C. Anderson. 2009. Multiple paternity increases effective population size. Mol. Ecol. 18:3124-3127. – reference: Kimura, M., and J. F. Crow. 1963. Measurement of effective population number. Evolution 17:279-288. – reference: Yasui, Y. 1998. The "genetic benefits" of female multiple mating reconsidered. Trends Ecol. Evol. 13:246-250. – reference: Howard, R. D., and A. G. Kluge. 1985. Proximate mechanisms of sexual selection in wood frogs. Evolution 39:260-277. – reference: Martinez, J. L., P. Moran, J. Perez, B. De Gaudemar, E. Beall, and E. Garcia-Vazquez. 2000. Multiple paternity increases effective size of southern Atlantic salmon populations. Mol. Ecol. 9:293-298. – reference: Selkoe, K. A., S. D. Gaines, J. E. Caselle, and R. R. Warner. 2006. Current shifts and kin aggregation explain genetic patchiness in fish recruits. Ecology 87:3082-3094. – reference: Ophir, A. G., S. M. Phelps, A. B. Sorin, and J. O. Wolff. 2008. Social but not genetic monogamy is associated with greater breeding success in prairie voles. Anim. Behav. 75:1143-1154. – reference: Clutton-Brock, T. H. 1988. Reproductive success. Univ. Chicago Press, Chicago . – reference: Matocq, M. D. 2004. Reproductive success and effective population size in woodrats (Neotoma macrotis). Mol. Ecol. 13:1635-1642. – reference: Cushman, J. H., C. L. Boggs, S. B. Weiss, D. D. Murphy, A. W. Harvey, and P. R. Ehrlich. 1994. Estimating female reproductive success of a threatened butterfly-influence of emergence time and hostplant phenology. Oecologia 99:194-200. – reference: Hedgecock, D., S. Launey, A. I. Pudovkin, Y. Naciri, S. Lapegue, and F. Bonhomme. 2007. Small effective number of parents (Nb) inferred for a naturally spawned cohort of juvenile European flat oysters Ostrea edulis. Mar. Biol. 150:1173-1182. – reference: Engen, S., T. H. Ringsby, B. E. Saether, R. Lande, H. Jensen, M. Lillegard, and H. Ellegren. 2007. Effective size of fluctuating populations with two sexes and overlapping generations. Evolution 61:1873-1885. – reference: Croshaw, D. A. 2010. Quantifying sexual selection: a comparison of competing indices with mating system data from a terrestrially breeding salamander. Biol. J. Linn. Soc. 99:73-83. – reference: Parker, G. A., L. W. Simmons, and H. Kirk. 1990. Analyzing sperm competition data-simple models for predicting mechanisms. Behav. Ecol. Sociobiol. 27:55-65. – reference: Benedict, L. 2008. Unusually high levels of extrapair paternity in a duetting songbird with long-term pair bonds. Behav. Ecol. Sociobiol. 62:983-988. – reference: Hyde, J. R., C. Kimbrell, L. Robertson, K. Clifford, E. Lynn, and R. Vetter. 2008. Multiple paternity and maintenance of genetic diversity in the live-bearing rockfishes Sebastes spp. Mar. Ecol. Prog. Ser. 357:245-253. – reference: Murray, J. 1964. Multiple mating and effective population size in Cepaea nemoralis. Evolution 18:283-291. – reference: Jennions, M. D., and M. Petrie. 2000. Why do females mate multiply? A review of the genetic benefits. Biol. Rev. 75:21-64. – reference: Cohas, A., and D. Allaine. 2009. Social structure influences extra-pair paternity in socially monogamous mammals. Biol. Lett. 5:313-316. – reference: Snook, R. R., L. Bruestle, and J. Slate. 2009. A test and review of the role of effective population size on experimental sexual selection patterns. Evolution 63:1923-1933. – reference: Caballero, A., and W. G. Hill. 1992. Effective size of nonrandom mating populations. Genetics 130:909-916. – reference: Saccheri, I., M. Kuussaari, M. Kankare, P. Vikman, W. Fortelius, and I. Hanski. 1998. Inbreeding and extinction in a butterfly metapopulation. Nature 392:491-494. – reference: Jensen, M. P., F. A. Abreu-Grobois, J. Frydenberg, and V. Loeschcke. 2006. Microsatellites provide insight into contrasting mating patterns in arribada vs. non-arribada olive ridley sea turtle rookeries. Mol. Ecol. 15:2567-2575. – reference: Maes, G. E., J. M. Pujolar, B. Hellemans, and F. A. M. Volckaert. 2006. Evidence for isolation by time in the European eel (Anguilla anguilla L.). Mol. Ecol. 15:2095-2107. – reference: Engen, S., R. Lande, and B. Saether. 2005. Effective size of a fluctuating age-structured population. Genetics 170:941-954. – reference: Nunney, L. 1996. The influence of variation in female fecundity on effective population size. Biol. J. Linn. Soc. 59:411-425. – reference: Hedrick, P. 2005. Large variance in reproductive success and the Ne/N ratio. Evolution 59:1596-1599. – reference: Arnqvist, G., and T. Nilsson. 2000. The evolution of polyandry: multiple mating and female fitness in insects. Anim. Behav. 60:145-164. – reference: Makinen, T., M. Panova, and C. Andre. 2007. High levels of multiple paternity in Littorina saxatilis: hedging the bets? J. Hered. 98:705-711. – reference: Levitan, D. R. 2008. Gamete traits influence the variance in reproductive success, the intensity of sexual selection, and the outcome of sexual conflict among congeneric sea urchins. Evolution 62:1305-1316. – reference: Robbins, L. W., G. D. Hartman, and M. H. Smith. 1987b. Assessment of Waple's numerical reanalyses of the maintenance of genetic-variability in mosquitofish. Copeia 1987:1071-1072. – reference: Waples, R. S. 1987. Sperm storage, multiple insemination, and genetic variability in mosquitofish-a reassessment. Copeia 1987:1068-1071. – reference: Hedgecock, D. 1994. Temporal and spatial genetic structure of marine animal populations in the California Current. Calif. Coop. Oceanic Fish. Invest. Rep. 35:73-81. – reference: Arnold, S. J. 1994. Is there a unifying concept of sexual selection that applies to both plants and animals? Am. Nat. 144:S1-S12. – reference: Nunney, L. 1993. The influence of mating system and overlapping generations on effective population size. Evolution 47:1329-1341. – reference: Sugg, D. W., and R. K. Chesser. 1994. Effective population sizes with multiple paternity. Genetics 137:1147-1155. – reference: Crow, J. F., and N. E. Morton. 1955. Measurement of gene frequency drift in small populations. Evolution 9:202-214. – reference: Frasier, T. R., P. K. Hamilton, M. W. Brown, L. A. Conger, A. R. Knowlton, M. K. Marx, C. K. Slay, S. D. Kraus, and B. N. White. 2007. Patterns of male reproductive success in a highly promiscuous whale species: the endangered North Atlantic right whale. Mol. Ecol. 16:5277-5293. – reference: Sefc, K. M., K. Mattersdorfer, C. Sturmbauer, and S. Koblmueller. 2008. High frequency of multiple paternity in broods of a socially monogamous cichlid fish with biparental nest defence. Mol. Ecol. 17:2531-2543. – reference: Bateman, A. J. 1948. Intra-sexual selection in Drosophila. Heredity 2:349-368. – reference: Rice, W. R., and B. Holland. 2005. Experimentally enforced monogamy: inadvertent selection, inbreeding, or evidence for sexually antagonistic coevolution? Evolution 59:682-685. – reference: Araki, H., R. S. Waples, W. R. Ardren, B. Cooper, and M. S. Blouin. 2007. Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms. Mol. Ecol. 16:953-966. – reference: Charlesworth, B. 2001. The effect of life-history and mode of inheritance on neutral genetic variability. Genet. Res. 77:153-166. – reference: Shuster, S. M., and M. J. Wade. 2003. Mating systems and strategies. Princeton Univ. Press, Princeton , NJ . – reference: Crow, J. F., and C. Denniston. 1988. Inbreeding and variance effective population numbers. Evolution 42:482-495. – reference: Wigby, S., and T. Chapman. 2004. Female resistance to male harm evolves in response to manipulation of sexual conflict. Evolution 58:1028-1037. – reference: Waples, R. S. 2006. Seed banks, salmon, and sleeping genes: effective population size in semelparous, age-structured species with fluctuating abundance. Am. Nat. 167:118-135. – reference: Flowers, J. M., S. C. Schroeter, and R. S. Burton. 2002. The recruitment sweepstakes has many winners: genetic evidence from the sea urchin Strongylocentrotus purpuratus. Evolution 56:1445-1453. – reference: Uller, T., and M. Olsson. 2008. Multiple paternity in reptiles: patterns and processes. Mol. Ecol. 17:2566-2580. – reference: Snyder, B. F., and P. A. Gowaty. 2007. A reappraisal of Bateman's classic study of intrasexual selection. Evolution 61:2457-2468. – reference: Balloux, F., and L. Lehmann. 2003. Random mating with a finite number of matings. Genetics 165:2313-2315. – reference: Birkhead, T. R., L. Atkin, and A. P. Moller. 1987. Copulation behavior of birds. Behaviour 101:101-138. – reference: Levitan, D. R. 2005b. Sex-specific spawning behavior and its consequences in an external fertilizer. Am. Nat. 165:682-694. – reference: Rodríguez-Muñoz, R., A. Bretman, J. Slate, C. A. Walling, and T. Tregenza. 2010. Natural and sexual selection in a wild insect population. Science 328:1269-1272. – reference: Borkowska, A., Z. Borowski, and K. Krysiuk. 2009. Multiple paternity in free-living root voles (Microtus oeconomus). Behav. Proc. 82:211-213. – reference: Weir, L. K., C. Breau, J. Hutchings, and R. Cunjak. 2010. Multiple paternity and variance in male fertilization success within Atlantic salmon Salmo salar redds in a naturally spawning population. J. Fish Biol. 77:479-493. – volume: 1987 start-page: 1071 year: 1987b end-page: 1072 article-title: Assessment of Waple's numerical reanalyses of the maintenance of genetic‐variability in mosquitofish publication-title: Copeia – volume: 13 start-page: 1635 year: 2004 end-page: 1642 article-title: Reproductive success and effective population size in woodrats ( ) publication-title: Mol. Ecol. – year: 2009 – year: 2005 – volume: 2 start-page: 349 year: 1948 end-page: 368 article-title: Intra‐sexual selection in publication-title: Heredity – volume: 62 start-page: 983 year: 2008 end-page: 988 article-title: Unusually high levels of extrapair paternity in a duetting songbird with long‐term pair bonds publication-title: Behav. Ecol. Sociobiol. – volume: 58 start-page: 1028 year: 2004 end-page: 1037 article-title: Female resistance to male harm evolves in response to manipulation of sexual conflict publication-title: Evolution – volume: 17 start-page: 3973 year: 2008 end-page: 3977 article-title: The effect of multiple paternity on the genetically effective size of a population publication-title: Mol. Ecol. – start-page: 305 year: 1988 end-page: 320 – volume: 130 start-page: 909 year: 1992 end-page: 916 article-title: Effective size of nonrandom mating populations publication-title: Genetics – volume: 27 start-page: 55 year: 1990 end-page: 65 article-title: Analyzing sperm competition data—simple models for predicting mechanisms publication-title: Behav. Ecol. Sociobiol. – volume: 167 start-page: 118 year: 2006 end-page: 135 article-title: Seed banks, salmon, and sleeping genes: effective population size in semelparous, age‐structured species with fluctuating abundance publication-title: Am. Nat. – volume: 75 start-page: 1143 year: 2008 end-page: 1154 article-title: Social but not genetic monogamy is associated with greater breeding success in prairie voles publication-title: Anim. Behav. – volume: 11 start-page: 1029 year: 2002 end-page: 1037 article-title: Evaluating the effect of stage‐specific survivorship on the N /N ratio publication-title: Mol. Ecol. – volume: 9 start-page: 202 year: 1955 end-page: 214 article-title: Measurement of gene frequency drift in small populations publication-title: Evolution – volume: 59 start-page: 1596 year: 2005 end-page: 1599 article-title: Large variance in reproductive success and the N /N ratio publication-title: Evolution – volume: 17 start-page: 2531 year: 2008 end-page: 2543 article-title: High frequency of multiple paternity in broods of a socially monogamous cichlid fish with biparental nest defence publication-title: Mol. Ecol. – volume: 60 start-page: 145 year: 2000 end-page: 164 article-title: The evolution of polyandry: multiple mating and female fitness in insects publication-title: Anim. Behav. – volume: 77 start-page: 479 year: 2010 end-page: 493 article-title: Multiple paternity and variance in male fertilization success within Atlantic salmon redds in a naturally spawning population publication-title: J. Fish Biol. – start-page: 44 year: 1988 end-page: 59 – volume: 328 start-page: 1269 year: 2010 end-page: 1272 article-title: Natural and sexual selection in a wild insect population publication-title: Science – volume: 47 start-page: 1329 year: 1993 end-page: 1341 article-title: The influence of mating system and overlapping generations on effective population size publication-title: Evolution – volume: 165 start-page: 2313 year: 2003 end-page: 2315 article-title: Random mating with a finite number of matings publication-title: Genetics – start-page: 173 year: 1988 end-page: 188 – volume: 16 start-page: 97 year: 1931 end-page: 159 article-title: Evolution in Mendelian populations publication-title: Genetics – start-page: 99 year: 1988 end-page: 118 – volume: 59 start-page: 411 year: 1996 end-page: 425 article-title: The influence of variation in female fecundity on effective population size publication-title: Biol. J. Linn. Soc. – volume: 39 start-page: 260 year: 1985 end-page: 277 article-title: Proximate mechanisms of sexual selection in wood frogs publication-title: Evolution – volume: 15 start-page: 2567 year: 2006 end-page: 2575 article-title: Microsatellites provide insight into contrasting mating patterns in arribada vs. non‐arribada olive ridley sea turtle rookeries publication-title: Mol. Ecol. – volume: 165 start-page: 682 year: 2005b end-page: 694 article-title: Sex‐specific spawning behavior and its consequences in an external fertilizer publication-title: Am. Nat. – volume: 16 start-page: 5277 year: 2007 end-page: 5293 article-title: Patterns of male reproductive success in a highly promiscuous whale species: the endangered North Atlantic right whale publication-title: Mol. Ecol. – volume: 75 start-page: 21 year: 2000 end-page: 64 article-title: Why do females mate multiply? A review of the genetic benefits publication-title: Biol. Rev. – volume: 42 start-page: 482 year: 1988 end-page: 495 article-title: Inbreeding and variance effective population numbers publication-title: Evolution – start-page: 24 year: 1988 end-page: 47 – volume: 170 start-page: 941 year: 2005 end-page: 954 article-title: Effective size of a fluctuating age‐structured population publication-title: Genetics – volume: 51 start-page: 164 year: 2002 end-page: 171 article-title: Multiple paternity, sperm storage, and reproductive success of female and male painted turtles ( ) in nature publication-title: Behav. Ecol. Sociobiol. – volume: 56 start-page: 1445 year: 2002 end-page: 1453 article-title: The recruitment sweepstakes has many winners: genetic evidence from the sea urchin publication-title: Evolution – volume: 82 start-page: 211 year: 2009 end-page: 213 article-title: Multiple paternity in free‐living root voles ( ) publication-title: Behav. Proc. – volume: 1987 start-page: 1068 year: 1987 end-page: 1071 article-title: Sperm storage, multiple insemination, and genetic variability in mosquitofish—a reassessment publication-title: Copeia – volume: 13 start-page: 246 year: 1998 end-page: 250 article-title: The “genetic benefits” of female multiple mating reconsidered publication-title: Trends Ecol. Evol. – volume: 18 start-page: 3124 year: 2009 end-page: 3127 article-title: Multiple paternity increases effective population size publication-title: Mol. Ecol. – volume: 164 start-page: 444 year: 2004 end-page: 456 article-title: Molecular parentage analysis in experimental newt populations: the response of mating system measures to variation in the operational sex ratio publication-title: Am. Nat. – year: 2003 – start-page: 220 year: 1988 end-page: 236 – volume: 122 start-page: 765 year: 1983 end-page: 788 article-title: Cryptic female choice and its implications in the scorpionfly publication-title: Am. Nat. – volume: 15 start-page: 2095 year: 2006 end-page: 2107 article-title: Evidence for isolation by time in the European eel ( L.) publication-title: Mol. Ecol. – volume: 144 start-page: S1 year: 1994 end-page: S12 article-title: Is there a unifying concept of sexual selection that applies to both plants and animals? publication-title: Am. Nat. – volume: 59 start-page: 682 year: 2005 end-page: 685 article-title: Experimentally enforced monogamy: inadvertent selection, inbreeding, or evidence for sexually antagonistic coevolution? publication-title: Evolution – volume: 150 start-page: 1173 year: 2007 end-page: 1182 article-title: Small effective number of parents (N ) inferred for a naturally spawned cohort of juvenile European flat oysters publication-title: Mar. Biol. – volume: 77 start-page: 153 year: 2001 end-page: 166 article-title: The effect of life‐history and mode of inheritance on neutral genetic variability publication-title: Genet. Res. – volume: 9 start-page: 293 year: 2000 end-page: 298 article-title: Multiple paternity increases effective size of southern Atlantic salmon populations publication-title: Mol. Ecol. – volume: 18 start-page: 283 year: 1964 end-page: 291 article-title: Multiple mating and effective population size in publication-title: Evolution – volume: 98 start-page: 705 year: 2007 end-page: 711 article-title: High levels of multiple paternity in : hedging the bets? publication-title: J. Hered. – volume: 45 start-page: 848 year: 2005a end-page: 855 article-title: The distribution of male and female reproductive success in a broadcast spawning marine invertebrate publication-title: Integr. Comp. Biol. – volume: 63 start-page: 1923 year: 2009 end-page: 1933 article-title: A test and review of the role of effective population size on experimental sexual selection patterns publication-title: Evolution – volume: 101 start-page: 101 year: 1987 end-page: 138 article-title: Copulation behavior of birds publication-title: Behaviour – start-page: 154 year: 1988 end-page: 172 – volume: 85 start-page: 1258 year: 2004 end-page: 1264 article-title: Maternal age as a determinant of larval growth and survival in a marine fish, publication-title: Ecology – volume: 146 start-page: 427 year: 1997 end-page: 441 article-title: The effective size of a subdivided population publication-title: Genetics – volume: 1987 start-page: 156 year: 1987a end-page: 164 article-title: Dispersal, reproductive strategies, and the maintenance of genetic‐variability in mosquitofish ( ) publication-title: Copeia – volume: 62 start-page: 1305 year: 2008 end-page: 1316 article-title: Gamete traits influence the variance in reproductive success, the intensity of sexual selection, and the outcome of sexual conflict among congeneric sea urchins publication-title: Evolution – volume: 137 start-page: 1147 year: 1994 end-page: 1155 article-title: Effective population sizes with multiple paternity publication-title: Genetics – volume: 99 start-page: 194 year: 1994 end-page: 200 article-title: Estimating female reproductive success of a threatened butterfly—influence of emergence time and hostplant phenology publication-title: Oecologia – volume: 92 start-page: 317 year: 1979 end-page: 322 article-title: Note on effective population‐size with overlapping generations publication-title: Genetics – volume: 35 start-page: 73 year: 1994 end-page: 81 article-title: Temporal and spatial genetic structure of marine animal populations in the California Current publication-title: Calif. Coop. Oceanic Fish. Invest. Rep. – volume: 17 start-page: 279 year: 1963 end-page: 288 article-title: Measurement of effective population number publication-title: Evolution – year: 1988 – volume: 5 start-page: 313 year: 2009 end-page: 316 article-title: Social structure influences extra‐pair paternity in socially monogamous mammals publication-title: Biol. Lett. – volume: 99 start-page: 73 year: 2010 end-page: 83 article-title: Quantifying sexual selection: a comparison of competing indices with mating system data from a terrestrially breeding salamander publication-title: Biol. J. Linn. Soc. – volume: 357 start-page: 245 year: 2008 end-page: 253 article-title: Multiple paternity and maintenance of genetic diversity in the live‐bearing rockfishes spp publication-title: Mar. Ecol. Prog. Ser. – volume: 61 start-page: 2457 year: 2007 end-page: 2468 article-title: A reappraisal of Bateman's classic study of intrasexual selection publication-title: Evolution – volume: 16 start-page: 953 year: 2007 end-page: 966 article-title: Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life‐history forms publication-title: Mol. Ecol. – volume: 17 start-page: 2566 year: 2008 end-page: 2580 article-title: Multiple paternity in reptiles: patterns and processes publication-title: Mol. Ecol. – year: 1970 – volume: 17 start-page: 4522 year: 2008 end-page: 4534 article-title: Pronounced reproductive skew in a natural population of green swordtails, publication-title: Mol. Ecol. – start-page: 136 year: 1988 end-page: 153 – volume: 392 start-page: 491 year: 1998 end-page: 494 article-title: Inbreeding and extinction in a butterfly metapopulation publication-title: Nature – volume: 61 start-page: 1873 year: 2007 end-page: 1885 article-title: Effective size of fluctuating populations with two sexes and overlapping generations publication-title: Evolution – volume: 87 start-page: 3082 year: 2006 end-page: 3094 article-title: Current shifts and kin aggregation explain genetic patchiness in fish recruits publication-title: Ecology – reference: - Evolution. 2011 Oct;65(10):3029 |
SSID | ssj0009519 |
Score | 2.1331415 |
Snippet | Effective population size (N e ) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on... Effective population size (Ne) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on... Effective population size (N(e)) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on... |
SourceID | proquest pubmed wiley jstor istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1693 |
SubjectTerms | Animals Computer Simulation Evolution Evolution & development Evolutionary genetics Female Female animals Females Male Male animals Mating behavior Mating Preference, Animal Mating systems Models, Biological Multiple mating Natural populations Offspring Pair Bond Population population bottlenecks Population Density Population distributions Population growth Population number Population size Reproduction Reproductive success sexual conflict sexual selection Simulation simulations sweepstakes |
Title | THE CONTEXT-DEPENDENT EFFECT OF MULTIPLE PATERNITY ON EFFECTIVE POPULATION SIZE |
URI | https://api.istex.fr/ark:/67375/WNG-2J0JGQZ1-7/fulltext.pdf https://www.jstor.org/stable/41240765 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1558-5646.2011.01249.x https://www.ncbi.nlm.nih.gov/pubmed/21644957 https://www.proquest.com/docview/872177222 https://www.proquest.com/docview/871001466 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBajMNjLLt26ed2GHsreFHzRJX4sidIkpHa6OV3WFyE5EpRAOtoEuj3tJ-w37pdMx3ZMU_pU9mAwli1jfzrWd46Ov4PQkRNlmuqEEsudI1RrSvykZwktIxemgnn7gnjHacaHMzqes3mT_wT_wtT6EG3ADSyj-l6DgWtzs2vkjHUJ45Q3SpxQR7kDfDJKOMjo97_Ed_R3o5oJR5QkftbbTep5sCNPV-FN324zFR_ioLuUtpqTBi_Qcvs0dSrKsrNZm075657Q4_953JfoeUNd8XE91l6hJ3a1j57WxSx_vkZnxVDiXp4Vcl78_f2nL6cy68uswJ4Ky16B8wE-nU2K0XQi8fQYhHhHxXecZ0376NwfzqezSRU0w19HF_INmg1k0RuSpmADuYQ6f8S7bgtqGTOlFbDeKDTzSKTaRKzbTRehSS3EXCPQ-dJaw-bCUDudJKBO6pIDtLe6Wtl3CC80Y6X3liyzEYjgp45GxiTCCm6scWGAPlfgqB-1KIfS10vIURNMfctOVDwOxydnF5ESATqo0GtPhHLboeAsQIdbOFVjtzeq6x1i72_EcYBw2-oNDlZR9MpebeAUkK2inAfobT0I2q5j73t6h9Pfk1dQtg13PC0PogIQFYCoKhDVrZLnOey9f-yFh-hZHeyG8NAHtLe-3tiPni2tzafKDv4B_Pz9vQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQEIIX7hthDPyAeHOViy_N49S5a0qadJCOshfLSW0JDXVotNLgiZ_Ab-SXzCdJoxXtCfEQKYodR87nE3_n2PkOQm-tqOJYR5QYbi2hWlPiJj1DaBVYPxbM2RfEOyYZH83oeM7mbTog-Bem0YfoAm5gGfX3GgwcAtLbVs5YnzBOeSvFCYmUe45Q3q2X64AhfQhvKPAGDRcOKIncvLe9refWlhxhhXd9tdmreBsL3Sa19aw0fIS-bvrTbEY5761XZa_6-ZfU43_q8GP0sGWv-LAZbk_QHbN8iu41-Sx_PEMnxUjiQZ4Vcl78-fX7SE5ldiSzAjs2LAcFzod4MkuLZJpKPD0ELd6k-IzzrC1PTt3lfDpL67gZ_picyedoNpTFYETanA3kC6T6I857W1DDWFkZAUuOQrOI01iXAev344VfxgbCrgFIfWmt4bC-r62OIhAotdEu2lleLM0LhBeasco5TIaZAHTwY0uDsoyEEbw0pfU99K5GR31rdDmUvjyHbWqCqU_ZsQrH_vj45CxQwkO7NXxdRci47QvOPLS_wVO1pvtd9Z1P7FyOMPQQ7kqdzcFCil6aizVUAeUqyrmH9ppR0DUdOvfT-ZzumbzGsiu44Ww5EBWAqABEVYOorpQ8zeHs5b_e-AbdHxWTVKVJ9n4fPWhi3xAteoV2Vpdrc-DI06p8XRvFNQ-GAeo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQIhAX3ruE5eED4pYqDz-a46p1tyndJAvpUvZi2aktoUrd1dJKCyd-Ar-RX4InSaMt2hPiECmKHUfOeDLfjCffIPTO8ipJVEx8w6z1iVLEd0bP-KQKbZBw6vQL4h0nGRvPyGRO523-E_wL0_BDdAE30Iz6ew0Kfrmwu0pOad-njLCWiRPqKPccnrxLmLOaAJA-RjcIeMMGCofEj53Z283quXUkh1fhVV9vUxVvA6G7mLY2SqNHaLmdTpOLsuxt1rpX_fiL6fH_zPcxethiV3zULLYn6I5ZPUX3mmqW35-h03Is8CDPSjEvf__8NRSFyIYiK7HDwmJQ4nyET2bTMi2mAhdHwMSbll9wnrXt6Zm7nBezaR01w5_Sc_EczUaiHIz9tmKD_xUK_fnOd1sQQ6muDIcNR65ozEiidEj7_WQR6MRA0DUEoi-lFBw2CJRVcQz0pDbeR3uri5V5gfBCUVo5d8lQEwILfmJJqHXMDWfaaBt46H0tHHnZsHJIdbWEJDVO5efsWEaTYHJ8eh5K7qH9WnpdR6i3HXBGPXS4FadsFfeb7DuP2DkcUeQh3LU6jYNtFLUyFxvoArxVhDEPHTSLoBs6cs6n8zjdM1ktyq7hhqvlhChBiBKEKGshymspznI4e_mvN75F94vhSE7T7MMhetAEviFU9Artra825rVDTmv9plaJP-NGAJk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=THE+CONTEXT%E2%80%90DEPENDENT+EFFECT+OF+MULTIPLE+PATERNITY+ON+EFFECTIVE+POPULATION+SIZE&rft.jtitle=Evolution&rft.au=Lotterhos%2C+Katie+E.&rft.date=2011-06-01&rft.pub=Blackwell+Publishing+Inc&rft.issn=0014-3820&rft.eissn=1558-5646&rft.volume=65&rft.issue=6&rft.spage=1693&rft.epage=1706&rft_id=info:doi/10.1111%2Fj.1558-5646.2011.01249.x&rft.externalDBID=10.1111%252Fj.1558-5646.2011.01249.x&rft.externalDocID=EVO1249 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-3820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-3820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-3820&client=summon |