THE CONTEXT-DEPENDENT EFFECT OF MULTIPLE PATERNITY ON EFFECTIVE POPULATION SIZE

Effective population size (N e ) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on N e has been the subject of some debate, at the crux of which is the effects of monandry and multiple-paternity (MP) on male variance in rep...

Full description

Saved in:
Bibliographic Details
Published inEvolution Vol. 65; no. 6; pp. 1693 - 1706
Main Author Lotterhos, Katie E.
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.06.2011
Wiley Subscription Services, Inc
Oxford University Press
Subjects
Online AccessGet full text
ISSN0014-3820
1558-5646
1558-5646
DOI10.1111/j.1558-5646.2011.01249.x

Cover

Abstract Effective population size (N e ) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on N e has been the subject of some debate, at the crux of which is the effects of monandry and multiple-paternity (MP) on male variance in reproductive success. In both mating systems, females mate with several males over their lifetimes, but sire offspring with one male at a time in the former and have several sires per clutch in the latter. First, I theoretically show that whether the annual male variance in reproductive success in an MP population is greater or less than that of a monandrous population depends on the distributions of within-clutch paternity. Then, I simulated different distributions of within-clutch paternity under a range of parameters that characterize natural populations to show that an MP population can have an N e smaller or larger than that of a monandrous population with otherwise equal dynamics. The N e(MP) :N e(Monandry) ratio increased with mating frequency and female variance in reproductive success, was equalized by long generation times, and was affected by the distribution of within-clutch paternities. The results of this model provide a unifying framework for the debate.
AbstractList Effective population size (N(e)) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on N(e) has been the subject of some debate, at the crux of which is the effects of monandry and multiple-paternity (MP) on male variance in reproductive success. In both mating systems, females mate with several males over their lifetimes, but sire offspring with one male at a time in the former and have several sires per clutch in the latter. First, I theoretically show that whether the annual male variance in reproductive success in an MP population is greater or less than that of a monandrous population depends on the distributions of within-clutch paternity. Then, I simulated different distributions of within-clutch paternity under a range of parameters that characterize natural populations to show that an MP population can have an N(e) smaller or larger than that of a monandrous population with otherwise equal dynamics. The N(e(MP)):N(e(Monandry)) ratio increased with mating frequency and female variance in reproductive success, was equalized by long generation times, and was affected by the distribution of within-clutch paternities. The results of this model provide a unifying framework for the debate.Effective population size (N(e)) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on N(e) has been the subject of some debate, at the crux of which is the effects of monandry and multiple-paternity (MP) on male variance in reproductive success. In both mating systems, females mate with several males over their lifetimes, but sire offspring with one male at a time in the former and have several sires per clutch in the latter. First, I theoretically show that whether the annual male variance in reproductive success in an MP population is greater or less than that of a monandrous population depends on the distributions of within-clutch paternity. Then, I simulated different distributions of within-clutch paternity under a range of parameters that characterize natural populations to show that an MP population can have an N(e) smaller or larger than that of a monandrous population with otherwise equal dynamics. The N(e(MP)):N(e(Monandry)) ratio increased with mating frequency and female variance in reproductive success, was equalized by long generation times, and was affected by the distribution of within-clutch paternities. The results of this model provide a unifying framework for the debate.
Effective population size (Ne) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on Ne has been the subject of some debate, at the crux of which is the effects of monandry and multiple-paternity (MP) on male variance in reproductive success. In both mating systems, females mate with several males over their lifetimes, but sire offspring with one male at a time in the former and have several sires per clutch in the latter. First, I theoretically show that whether the annual male variance in reproductive success in an MP population is greater or less than that of a monandrous population depends on the distributions of within-clutch paternity. Then, I simulated different distributions of within-clutch paternity under a range of parameters that characterize natural populations to show that an MP population can have an Ne smaller or larger than that of a monandrous population with otherwise equal dynamics. The Ne(MP):Ne(Monandry) ratio increased with mating frequency and female variance in reproductive success, was equalized by long generation times, and was affected by the distribution of within-clutch paternities. The results of this model provide a unifying framework for the debate. [PUBLICATION ABSTRACT]
Effective population size (Ne) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on Ne has been the subject of some debate, at the crux of which is the effects of monandry and multiple‐paternity (MP) on male variance in reproductive success. In both mating systems, females mate with several males over their lifetimes, but sire offspring with one male at a time in the former and have several sires per clutch in the latter. First, I theoretically show that whether the annual male variance in reproductive success in an MP population is greater or less than that of a monandrous population depends on the distributions of within‐clutch paternity. Then, I simulated different distributions of within‐clutch paternity under a range of parameters that characterize natural populations to show that an MP population can have an Ne smaller or larger than that of a monandrous population with otherwise equal dynamics. The Ne(MP):Ne(Monandry) ratio increased with mating frequency and female variance in reproductive success, was equalized by long generation times, and was affected by the distribution of within‐clutch paternities. The results of this model provide a unifying framework for the debate.
Effective population size (N e ) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on N e has been the subject of some debate, at the crux of which is the effects of monandry and multiple-paternity (MP) on male variance in reproductive success. In both mating systems, females mate with several males over their lifetimes, but sire offspring with one male at a time in the former and have several sires per clutch in the latter. First, I theoretically show that whether the annual male variance in reproductive success in an MP population is greater or less than that of a monandrous population depends on the distributions of within-clutch paternity. Then, I simulated different distributions of within-clutch paternity under a range of parameters that characterize natural populations to show that an MP population can have an N e smaller or larger than that of a monandrous population with otherwise equal dynamics. The N e(MP) :N e(Monandry) ratio increased with mating frequency and female variance in reproductive success, was equalized by long generation times, and was affected by the distribution of within-clutch paternities. The results of this model provide a unifying framework for the debate.
Author Lotterhos, Katie E.
Author_xml – sequence: 1
  givenname: Katie E.
  surname: Lotterhos
  fullname: Lotterhos, Katie E.
  email: klotterhos@bio.fsu.edu
  organization: Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21644957$$D View this record in MEDLINE/PubMed
BookMark eNpdkUFP2zAUgK0JBIXxEzZFu-yU4GfHdnzYoSpuCQpJt7ls42K51JUS2oYlrSj_HoeWHrBk2Xrf96zn987Q0apeOYQCwBH4dVlFwFgSMh7ziGCACAOJZbT9hHoHcIR6GEMc0oTgU3TWthXGWDKQJ-iUAI9jyUQPFfpaBYMi1-qvDq_UWOVXKteBGg7VQAfFMLidZDodZyoY97X6laf6X1Dke57e-XAxnmR9nfrg7_RefUbHc7to3cX-PEeTodKD6zArRumgn4Ul9SWEUiaz2DE2fXAiYQkTllEeSzsFliRyhqfSUUcBMKfYWtvtOcZ2bimVQOWcnqPvu3efmvr_xrVrsyzbB7dY2JWrN61JBHS_59yb3z6YVb1pVr44LxEQghDipa97aTNdupl5asqlbV7Me6O88GMnPJcL93LggE03EFOZru-m67vpBmLeBmK2Rt0V3c3nf9nlV-26bg75sYdYcOZ5uONlu3bbA7fNo-GCCmb-5CNDbvDN6Oc9GEFfAaBIj5Y
ContentType Journal Article
Copyright Copyright © 2011 Society for the Study of Evolution
2011 The Author(s). © 2011 The Society for the Study of Evolution.
2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Copyright Society for the Study of Evolution Jun 2011
Copyright_xml – notice: Copyright © 2011 Society for the Study of Evolution
– notice: 2011 The Author(s). © 2011 The Society for the Study of Evolution.
– notice: 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
– notice: Copyright Society for the Study of Evolution Jun 2011
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
DOI 10.1111/j.1558-5646.2011.01249.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1558-5646
EndPage 1706
ExternalDocumentID 2377115011
21644957
EVO1249
41240765
ark_67375_WNG_2J0JGQZ1_7
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GroupedDBID ---
--Z
-JH
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29G
2AX
31~
33P
3O-
3SF
4.4
41~
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
5WD
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAISJ
AAKGQ
AAMMB
AANHP
AAONW
AAPSS
AAPXW
AARHZ
AASGY
AAUAY
AAVAP
AAWDT
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABDFA
ABDPE
ABEJV
ABEML
ABGNP
ABIME
ABJNI
ABLJU
ABMNT
ABPIB
ABPLY
ABPPZ
ABPTD
ABPVW
ABSQW
ABTLG
ABWJO
ABXSQ
ABXVV
ABXZS
ABZEO
ACAHQ
ACBWZ
ACCZN
ACFBH
ACFRR
ACGFO
ACGFS
ACGOD
ACHIC
ACIPB
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACSTJ
ACUFI
ACUTJ
ACVCV
ACXBN
ACXQS
ACYXJ
ACZBC
ADBBV
ADEOM
ADGKP
ADHSS
ADIPN
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADQBN
ADULT
ADXAS
ADXHL
ADZMN
AEFGJ
AEGXH
AEIMD
AENEX
AEPYG
AEUPB
AFAZZ
AFBPY
AFFDN
AFFIJ
AFGKR
AFGWE
AFKWF
AFNWH
AFRAH
AFYAG
AFZJQ
AGMDO
AGQPQ
AGUYK
AGXDD
AHGBF
AHXOZ
AI.
AIAGR
AIDQK
AIDYY
AILXY
AIURR
AJAOE
AJBYB
AJDVS
AJNCP
AJXKR
AKPMI
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANFBD
APJGH
AQVQM
ASPBG
AS~
ATGXG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
D0L
D0S
DC7
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FAC
FAL
FAS
FD6
FEDTE
FJD
FJW
G-S
G.N
GODZA
GTFYD
H.T
H.X
H13
HF~
HGD
HQ2
HTVGU
HVGLF
HZ~
IAG
IAO
IEA
IEP
IOF
IPSME
ISM
ITC
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
KOP
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NHB
NQS
NU-
O66
O9-
OBOKY
OIG
OJZSN
OK1
OVD
OWPYF
P-O
P2P
P2W
P2X
P4D
PQ0
PQQKQ
Q.N
Q11
Q5J
QB0
R.K
RBO
ROL
ROX
RWL
RX1
RXW
SA0
SJN
SUPJJ
TAE
TCN
TEORI
TN5
UB1
UBC
UHB
UQL
V8K
VH1
VJK
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WNSPC
WOHZO
WQJ
WYISQ
XG1
XSW
YXE
YYP
YZZ
ZCA
ZCG
ZZTAW
~02
~IA
~KM
~WT
ACSIT
AGORE
79B
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
DOOOF
ESX
JSODD
QN7
VQA
WRC
XOL
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-i3519-998d4e55bce785857a53649ab15889d0b9e3e3110630aaa0aaaf00afa339139f3
IEDL.DBID DR2
ISSN 0014-3820
1558-5646
IngestDate Sun Sep 28 02:20:21 EDT 2025
Fri Jul 25 10:46:16 EDT 2025
Thu Apr 03 06:57:06 EDT 2025
Wed Jan 22 16:25:37 EST 2025
Thu Jul 03 21:24:17 EDT 2025
Sun Sep 21 06:19:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i3519-998d4e55bce785857a53649ab15889d0b9e3e3110630aaa0aaaf00afa339139f3
Notes ArticleID:EVO1249
ark:/67375/WNG-2J0JGQZ1-7
istex:24ECBDE07AB22294C44A5C758975E58992DBB9C5
This article was published online on March 8, 2011. An error in the author's name was subsequently identified. This notice is included in the online version to indicate that it has been corrected September 16, 2011.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 21644957
PQID 872177222
PQPubID 42232
PageCount 14
ParticipantIDs proquest_miscellaneous_871001466
proquest_journals_872177222
pubmed_primary_21644957
wiley_primary_10_1111_j_1558_5646_2011_01249_x_EVO1249
jstor_primary_41240765
istex_primary_ark_67375_WNG_2J0JGQZ1_7
PublicationCentury 2000
PublicationDate 2011-06
20110601
June 2011
2011-Jun
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06
PublicationDecade 2010
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: United States
– name: St. Louis
PublicationTitle Evolution
PublicationTitleAlternate Evolution
PublicationYear 2011
Publisher Blackwell Publishing Inc
Wiley Subscription Services, Inc
Oxford University Press
Publisher_xml – name: Blackwell Publishing Inc
– name: Wiley Subscription Services, Inc
– name: Oxford University Press
References Nunney, L. 1993. The influence of mating system and overlapping generations on effective population size. Evolution 47:1329-1341.
Pearse, D. E., F. J. Janzen, and J. C. Avise. 2002. Multiple paternity, sperm storage, and reproductive success of female and male painted turtles (Chrysemys picta) in nature. Behav. Ecol. Sociobiol. 51:164-171.
R Core Development Team. (2009). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna , Austria . ISBN 3-900051-07-0, URL http://www.R-project.org.
Waples, R. S. 2006. Seed banks, salmon, and sleeping genes: effective population size in semelparous, age-structured species with fluctuating abundance. Am. Nat. 167:118-135.
Arnold, S. J. 1994. Is there a unifying concept of sexual selection that applies to both plants and animals? Am. Nat. 144:S1-S12.
Berkeley, S. A., C. Chapman, and S. M. Sogard. 2004. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85:1258-1264.
Flowers, J. M., S. C. Schroeter, and R. S. Burton. 2002. The recruitment sweepstakes has many winners: genetic evidence from the sea urchin Strongylocentrotus purpuratus. Evolution 56:1445-1453.
Weir, L. K., C. Breau, J. Hutchings, and R. Cunjak. 2010. Multiple paternity and variance in male fertilization success within Atlantic salmon Salmo salar redds in a naturally spawning population. J. Fish Biol. 77:479-493.
Balloux, F., and L. Lehmann. 2003. Random mating with a finite number of matings. Genetics 165:2313-2315.
Robbins, L. W., G. D. Hartman, and M. H. Smith. 1987a. Dispersal, reproductive strategies, and the maintenance of genetic-variability in mosquitofish (Gambusia affinis). Copeia 1987:156-164.
Howard, R. D., and A. G. Kluge. 1985. Proximate mechanisms of sexual selection in wood frogs. Evolution 39:260-277.
Wright, S. 1931. Evolution in Mendelian populations. Genetics 16:97-159.
Croshaw, D. A. 2010. Quantifying sexual selection: a comparison of competing indices with mating system data from a terrestrially breeding salamander. Biol. J. Linn. Soc. 99:73-83.
Frasier, T. R., P. K. Hamilton, M. W. Brown, L. A. Conger, A. R. Knowlton, M. K. Marx, C. K. Slay, S. D. Kraus, and B. N. White. 2007. Patterns of male reproductive success in a highly promiscuous whale species: the endangered North Atlantic right whale. Mol. Ecol. 16:5277-5293.
Waples, R. S. 1987. Sperm storage, multiple insemination, and genetic variability in mosquitofish-a reassessment. Copeia 1987:1068-1071.
Arnqvist, G., and T. Nilsson. 2000. The evolution of polyandry: multiple mating and female fitness in insects. Anim. Behav. 60:145-164.
Benedict, L. 2008. Unusually high levels of extrapair paternity in a duetting songbird with long-term pair bonds. Behav. Ecol. Sociobiol. 62:983-988.
Snook, R. R., L. Bruestle, and J. Slate. 2009. A test and review of the role of effective population size on experimental sexual selection patterns. Evolution 63:1923-1933.
Hyde, J. R., C. Kimbrell, L. Robertson, K. Clifford, E. Lynn, and R. Vetter. 2008. Multiple paternity and maintenance of genetic diversity in the live-bearing rockfishes Sebastes spp. Mar. Ecol. Prog. Ser. 357:245-253.
Ophir, A. G., S. M. Phelps, A. B. Sorin, and J. O. Wolff. 2008. Social but not genetic monogamy is associated with greater breeding success in prairie voles. Anim. Behav. 75:1143-1154.
Levitan, D. R. 2005a. The distribution of male and female reproductive success in a broadcast spawning marine invertebrate. Integr. Comp. Biol. 45:848-855.
Martinez, J. L., P. Moran, J. Perez, B. De Gaudemar, E. Beall, and E. Garcia-Vazquez. 2000. Multiple paternity increases effective size of southern Atlantic salmon populations. Mol. Ecol. 9:293-298.
Pearse, D. E., and E. C. Anderson. 2009. Multiple paternity increases effective population size. Mol. Ecol. 18:3124-3127.
Shuster, S. M., and M. J. Wade. 2003. Mating systems and strategies. Princeton Univ. Press, Princeton , NJ .
Hedgecock, D., S. Launey, A. I. Pudovkin, Y. Naciri, S. Lapegue, and F. Bonhomme. 2007. Small effective number of parents (Nb) inferred for a naturally spawned cohort of juvenile European flat oysters Ostrea edulis. Mar. Biol. 150:1173-1182.
Hedrick, P. 2005. Large variance in reproductive success and the Ne/N ratio. Evolution 59:1596-1599.
Nunney, L. 1996. The influence of variation in female fecundity on effective population size. Biol. J. Linn. Soc. 59:411-425.
Selkoe, K. A., S. D. Gaines, J. E. Caselle, and R. R. Warner. 2006. Current shifts and kin aggregation explain genetic patchiness in fish recruits. Ecology 87:3082-3094.
Tatarenkov, A., C. I. M. Healey, G. F. Grether, and J. C. Avise. 2008. Pronounced reproductive skew in a natural population of green swordtails, Xiphophorus helleri. Mol. Ecol. 17:4522-4534.
Hedgecock, D. 1994. Temporal and spatial genetic structure of marine animal populations in the California Current. Calif. Coop. Oceanic Fish. Invest. Rep. 35:73-81.
Karl, S. A. 2008. The effect of multiple paternity on the genetically effective size of a population. Mol. Ecol. 17:3973-3977.
Sefc, K. M., K. Mattersdorfer, C. Sturmbauer, and S. Koblmueller. 2008. High frequency of multiple paternity in broods of a socially monogamous cichlid fish with biparental nest defence. Mol. Ecol. 17:2531-2543.
Waples, R. S. 2002. Evaluating the effect of stage-specific survivorship on the Ne/N ratio. Mol. Ecol. 11:1029-1037.
Jones, A. G., J. R. Arguello, and S. J. Arnold. 2004. Molecular parentage analysis in experimental newt populations: the response of mating system measures to variation in the operational sex ratio. Am. Nat. 164:444-456.
Sugg, D. W., and R. K. Chesser. 1994. Effective population sizes with multiple paternity. Genetics 137:1147-1155.
Snyder, B. F., and P. A. Gowaty. 2007. A reappraisal of Bateman's classic study of intrasexual selection. Evolution 61:2457-2468.
Parker, G. A., L. W. Simmons, and H. Kirk. 1990. Analyzing sperm competition data-simple models for predicting mechanisms. Behav. Ecol. Sociobiol. 27:55-65.
Engen, S., R. Lande, and B. Saether. 2005. Effective size of a fluctuating age-structured population. Genetics 170:941-954.
Robbins, L. W., G. D. Hartman, and M. H. Smith. 1987b. Assessment of Waple's numerical reanalyses of the maintenance of genetic-variability in mosquitofish. Copeia 1987:1071-1072.
Whitlock, M. C., and N. H. Barton. 1997. The effective size of a subdivided population. Genetics 146:427-441.
Jennions, M. D., and M. Petrie. 2000. Why do females mate multiply? A review of the genetic benefits. Biol. Rev. 75:21-64.
Borkowska, A., Z. Borowski, and K. Krysiuk. 2009. Multiple paternity in free-living root voles (Microtus oeconomus). Behav. Proc. 82:211-213.
Thornhill, R. 1983. Cryptic female choice and its implications in the scorpionfly Harpobittacus nigriceps. Am. Nat. 122:765-788.
Cohas, A., and D. Allaine. 2009. Social structure influences extra-pair paternity in socially monogamous mammals. Biol. Lett. 5:313-316.
Crow, J. F., and M. Kimura. 1970. An introduction to population genetics theory. Harper & Row, New York .
Arnqvist, G., and L. Rowe. 2005. Sexual conflict. Princeton Univ. Press, Princeton , NJ .
Araki, H., R. S. Waples, W. R. Ardren, B. Cooper, and M. S. Blouin. 2007. Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms. Mol. Ecol. 16:953-966.
Hill, W. G. 1979. Note on effective population-size with overlapping generations. Genetics 92:317-322.
Jensen, M. P., F. A. Abreu-Grobois, J. Frydenberg, and V. Loeschcke. 2006. Microsatellites provide insight into contrasting mating patterns in arribada vs. non-arribada olive ridley sea turtle rookeries. Mol. Ecol. 15:2567-2575.
Rice, W. R., and B. Holland. 2005. Experimentally enforced monogamy: inadvertent selection, inbreeding, or evidence for sexually antagonistic coevolution? Evolution 59:682-685.
Wigby, S., and T. Chapman. 2004. Female resistance to male harm evolves in response to manipulation of sexual conflict. Evolution 58:1028-1037.
Kimura, M., and J. F. Crow. 1963. Measurement of effective population number. Evolution 17:279-288.
Uller, T., and M. Olsson. 2008. Multiple paternity in reptiles: patterns and processes. Mol. Ecol. 17:2566-2580.
Bateman, A. J. 1948. Intra-sexual selection in Drosophila. Heredity 2:349-368.
Clutton-Brock, T. H. 1988. Reproductive success. Univ. Chicago Press, Chicago .
Crow, J. F., and N. E. Morton. 1955. Measurement of gene frequency drift in small populations. Evolution 9:202-214.
Caballero, A., and W. G. Hill. 1992. Effective size of nonrandom mating populations. Genetics 130:909-916.
Levitan, D. R. 2008. Gamete traits influence the variance in reproductive success, the intensity of sexual selection, and the outcome of sexual conflict among congeneric sea urchins. Evolution 62:1305-1316.
Cushman, J. H., C. L. Boggs, S. B. Weiss, D. D. Murphy, A. W. Harvey, and P. R. Ehrlich. 1994. Estimating female reproductive success of a threatened butterfly-influence of emergence time and hostplant phenology. Oecologia 99:194-200.
Murray, J. 1964. Multiple mating and effective population size in Cepaea nemoralis. Evolution 18:283-291.
Charlesworth, B. 2001. The effect of life-history and mode of inheritance on neutral genetic variability. Genet. Res. 77:153-166.
Saccheri, I., M. Kuussaari, M. Kankare, P. Vikman, W. Fortelius, and I. Hanski. 1998. Inbreeding and extinction in a butterfly metapopulation. Nature 392:491-494.
Crow, J. F., and C. Denniston. 1988. Inbreeding and variance effective population numbers. Evolution 42:482-495.
Levitan, D. R. 2005b. Sex-specific spawning behavior and its consequences in an external fertilizer. Am. Nat. 165:682-694.
Makinen, T., M. Panova, and C. Andre. 2007. High levels of multiple paternity in Littorina saxatilis: hedging the bets? J. Hered. 98:705-711.
Matocq, M. D. 2004. Reproductive success and effective population size in woodrats (Neotoma macrotis). Mol. Ecol. 13:1635-1642.
Yasui, Y. 1998. The "genet
2010; 99
1931; 16
2005; 170
2004; 164
1987; 101
1994; 137
2009; 82
2002; 51
2002; 56
2000; 9
2002; 11
1955; 9
1970
2008; 75
1998; 392
2005a; 45
1997; 146
1994; 144
1948; 2
2000; 60
1994; 35
2007; 61
2008; 357
2005b; 165
1988; 42
2008; 62
1987a; 1987
2006; 167
2003; 165
2009; 18
1988
1998; 13
1993; 47
2010; 77
2004; 85
2009; 63
2010; 328
2006; 15
2008; 17
2009
2005
2003
1987; 1987
2007; 98
1996; 59
1979; 92
2007; 16
1985; 39
1987b; 1987
1983; 122
1992; 130
2007; 150
1964; 18
1990; 27
2006; 87
2004; 58
2000; 75
2004; 13
1994; 99
2009; 5
2001; 77
2005; 59
1963; 17
Evolution. 2011 Oct;65(10):3029
References_xml – reference: Pearse, D. E., F. J. Janzen, and J. C. Avise. 2002. Multiple paternity, sperm storage, and reproductive success of female and male painted turtles (Chrysemys picta) in nature. Behav. Ecol. Sociobiol. 51:164-171.
– reference: Tatarenkov, A., C. I. M. Healey, G. F. Grether, and J. C. Avise. 2008. Pronounced reproductive skew in a natural population of green swordtails, Xiphophorus helleri. Mol. Ecol. 17:4522-4534.
– reference: Thornhill, R. 1983. Cryptic female choice and its implications in the scorpionfly Harpobittacus nigriceps. Am. Nat. 122:765-788.
– reference: Berkeley, S. A., C. Chapman, and S. M. Sogard. 2004. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85:1258-1264.
– reference: Hill, W. G. 1979. Note on effective population-size with overlapping generations. Genetics 92:317-322.
– reference: Whitlock, M. C., and N. H. Barton. 1997. The effective size of a subdivided population. Genetics 146:427-441.
– reference: Crow, J. F., and M. Kimura. 1970. An introduction to population genetics theory. Harper & Row, New York .
– reference: Karl, S. A. 2008. The effect of multiple paternity on the genetically effective size of a population. Mol. Ecol. 17:3973-3977.
– reference: Levitan, D. R. 2005a. The distribution of male and female reproductive success in a broadcast spawning marine invertebrate. Integr. Comp. Biol. 45:848-855.
– reference: Arnqvist, G., and L. Rowe. 2005. Sexual conflict. Princeton Univ. Press, Princeton , NJ .
– reference: Wright, S. 1931. Evolution in Mendelian populations. Genetics 16:97-159.
– reference: R Core Development Team. (2009). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna , Austria . ISBN 3-900051-07-0, URL http://www.R-project.org.
– reference: Waples, R. S. 2002. Evaluating the effect of stage-specific survivorship on the Ne/N ratio. Mol. Ecol. 11:1029-1037.
– reference: Jones, A. G., J. R. Arguello, and S. J. Arnold. 2004. Molecular parentage analysis in experimental newt populations: the response of mating system measures to variation in the operational sex ratio. Am. Nat. 164:444-456.
– reference: Robbins, L. W., G. D. Hartman, and M. H. Smith. 1987a. Dispersal, reproductive strategies, and the maintenance of genetic-variability in mosquitofish (Gambusia affinis). Copeia 1987:156-164.
– reference: Pearse, D. E., and E. C. Anderson. 2009. Multiple paternity increases effective population size. Mol. Ecol. 18:3124-3127.
– reference: Kimura, M., and J. F. Crow. 1963. Measurement of effective population number. Evolution 17:279-288.
– reference: Yasui, Y. 1998. The "genetic benefits" of female multiple mating reconsidered. Trends Ecol. Evol. 13:246-250.
– reference: Howard, R. D., and A. G. Kluge. 1985. Proximate mechanisms of sexual selection in wood frogs. Evolution 39:260-277.
– reference: Martinez, J. L., P. Moran, J. Perez, B. De Gaudemar, E. Beall, and E. Garcia-Vazquez. 2000. Multiple paternity increases effective size of southern Atlantic salmon populations. Mol. Ecol. 9:293-298.
– reference: Selkoe, K. A., S. D. Gaines, J. E. Caselle, and R. R. Warner. 2006. Current shifts and kin aggregation explain genetic patchiness in fish recruits. Ecology 87:3082-3094.
– reference: Ophir, A. G., S. M. Phelps, A. B. Sorin, and J. O. Wolff. 2008. Social but not genetic monogamy is associated with greater breeding success in prairie voles. Anim. Behav. 75:1143-1154.
– reference: Clutton-Brock, T. H. 1988. Reproductive success. Univ. Chicago Press, Chicago .
– reference: Matocq, M. D. 2004. Reproductive success and effective population size in woodrats (Neotoma macrotis). Mol. Ecol. 13:1635-1642.
– reference: Cushman, J. H., C. L. Boggs, S. B. Weiss, D. D. Murphy, A. W. Harvey, and P. R. Ehrlich. 1994. Estimating female reproductive success of a threatened butterfly-influence of emergence time and hostplant phenology. Oecologia 99:194-200.
– reference: Hedgecock, D., S. Launey, A. I. Pudovkin, Y. Naciri, S. Lapegue, and F. Bonhomme. 2007. Small effective number of parents (Nb) inferred for a naturally spawned cohort of juvenile European flat oysters Ostrea edulis. Mar. Biol. 150:1173-1182.
– reference: Engen, S., T. H. Ringsby, B. E. Saether, R. Lande, H. Jensen, M. Lillegard, and H. Ellegren. 2007. Effective size of fluctuating populations with two sexes and overlapping generations. Evolution 61:1873-1885.
– reference: Croshaw, D. A. 2010. Quantifying sexual selection: a comparison of competing indices with mating system data from a terrestrially breeding salamander. Biol. J. Linn. Soc. 99:73-83.
– reference: Parker, G. A., L. W. Simmons, and H. Kirk. 1990. Analyzing sperm competition data-simple models for predicting mechanisms. Behav. Ecol. Sociobiol. 27:55-65.
– reference: Benedict, L. 2008. Unusually high levels of extrapair paternity in a duetting songbird with long-term pair bonds. Behav. Ecol. Sociobiol. 62:983-988.
– reference: Hyde, J. R., C. Kimbrell, L. Robertson, K. Clifford, E. Lynn, and R. Vetter. 2008. Multiple paternity and maintenance of genetic diversity in the live-bearing rockfishes Sebastes spp. Mar. Ecol. Prog. Ser. 357:245-253.
– reference: Murray, J. 1964. Multiple mating and effective population size in Cepaea nemoralis. Evolution 18:283-291.
– reference: Jennions, M. D., and M. Petrie. 2000. Why do females mate multiply? A review of the genetic benefits. Biol. Rev. 75:21-64.
– reference: Cohas, A., and D. Allaine. 2009. Social structure influences extra-pair paternity in socially monogamous mammals. Biol. Lett. 5:313-316.
– reference: Snook, R. R., L. Bruestle, and J. Slate. 2009. A test and review of the role of effective population size on experimental sexual selection patterns. Evolution 63:1923-1933.
– reference: Caballero, A., and W. G. Hill. 1992. Effective size of nonrandom mating populations. Genetics 130:909-916.
– reference: Saccheri, I., M. Kuussaari, M. Kankare, P. Vikman, W. Fortelius, and I. Hanski. 1998. Inbreeding and extinction in a butterfly metapopulation. Nature 392:491-494.
– reference: Jensen, M. P., F. A. Abreu-Grobois, J. Frydenberg, and V. Loeschcke. 2006. Microsatellites provide insight into contrasting mating patterns in arribada vs. non-arribada olive ridley sea turtle rookeries. Mol. Ecol. 15:2567-2575.
– reference: Maes, G. E., J. M. Pujolar, B. Hellemans, and F. A. M. Volckaert. 2006. Evidence for isolation by time in the European eel (Anguilla anguilla L.). Mol. Ecol. 15:2095-2107.
– reference: Engen, S., R. Lande, and B. Saether. 2005. Effective size of a fluctuating age-structured population. Genetics 170:941-954.
– reference: Nunney, L. 1996. The influence of variation in female fecundity on effective population size. Biol. J. Linn. Soc. 59:411-425.
– reference: Hedrick, P. 2005. Large variance in reproductive success and the Ne/N ratio. Evolution 59:1596-1599.
– reference: Arnqvist, G., and T. Nilsson. 2000. The evolution of polyandry: multiple mating and female fitness in insects. Anim. Behav. 60:145-164.
– reference: Makinen, T., M. Panova, and C. Andre. 2007. High levels of multiple paternity in Littorina saxatilis: hedging the bets? J. Hered. 98:705-711.
– reference: Levitan, D. R. 2008. Gamete traits influence the variance in reproductive success, the intensity of sexual selection, and the outcome of sexual conflict among congeneric sea urchins. Evolution 62:1305-1316.
– reference: Robbins, L. W., G. D. Hartman, and M. H. Smith. 1987b. Assessment of Waple's numerical reanalyses of the maintenance of genetic-variability in mosquitofish. Copeia 1987:1071-1072.
– reference: Waples, R. S. 1987. Sperm storage, multiple insemination, and genetic variability in mosquitofish-a reassessment. Copeia 1987:1068-1071.
– reference: Hedgecock, D. 1994. Temporal and spatial genetic structure of marine animal populations in the California Current. Calif. Coop. Oceanic Fish. Invest. Rep. 35:73-81.
– reference: Arnold, S. J. 1994. Is there a unifying concept of sexual selection that applies to both plants and animals? Am. Nat. 144:S1-S12.
– reference: Nunney, L. 1993. The influence of mating system and overlapping generations on effective population size. Evolution 47:1329-1341.
– reference: Sugg, D. W., and R. K. Chesser. 1994. Effective population sizes with multiple paternity. Genetics 137:1147-1155.
– reference: Crow, J. F., and N. E. Morton. 1955. Measurement of gene frequency drift in small populations. Evolution 9:202-214.
– reference: Frasier, T. R., P. K. Hamilton, M. W. Brown, L. A. Conger, A. R. Knowlton, M. K. Marx, C. K. Slay, S. D. Kraus, and B. N. White. 2007. Patterns of male reproductive success in a highly promiscuous whale species: the endangered North Atlantic right whale. Mol. Ecol. 16:5277-5293.
– reference: Sefc, K. M., K. Mattersdorfer, C. Sturmbauer, and S. Koblmueller. 2008. High frequency of multiple paternity in broods of a socially monogamous cichlid fish with biparental nest defence. Mol. Ecol. 17:2531-2543.
– reference: Bateman, A. J. 1948. Intra-sexual selection in Drosophila. Heredity 2:349-368.
– reference: Rice, W. R., and B. Holland. 2005. Experimentally enforced monogamy: inadvertent selection, inbreeding, or evidence for sexually antagonistic coevolution? Evolution 59:682-685.
– reference: Araki, H., R. S. Waples, W. R. Ardren, B. Cooper, and M. S. Blouin. 2007. Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms. Mol. Ecol. 16:953-966.
– reference: Charlesworth, B. 2001. The effect of life-history and mode of inheritance on neutral genetic variability. Genet. Res. 77:153-166.
– reference: Shuster, S. M., and M. J. Wade. 2003. Mating systems and strategies. Princeton Univ. Press, Princeton , NJ .
– reference: Crow, J. F., and C. Denniston. 1988. Inbreeding and variance effective population numbers. Evolution 42:482-495.
– reference: Wigby, S., and T. Chapman. 2004. Female resistance to male harm evolves in response to manipulation of sexual conflict. Evolution 58:1028-1037.
– reference: Waples, R. S. 2006. Seed banks, salmon, and sleeping genes: effective population size in semelparous, age-structured species with fluctuating abundance. Am. Nat. 167:118-135.
– reference: Flowers, J. M., S. C. Schroeter, and R. S. Burton. 2002. The recruitment sweepstakes has many winners: genetic evidence from the sea urchin Strongylocentrotus purpuratus. Evolution 56:1445-1453.
– reference: Uller, T., and M. Olsson. 2008. Multiple paternity in reptiles: patterns and processes. Mol. Ecol. 17:2566-2580.
– reference: Snyder, B. F., and P. A. Gowaty. 2007. A reappraisal of Bateman's classic study of intrasexual selection. Evolution 61:2457-2468.
– reference: Balloux, F., and L. Lehmann. 2003. Random mating with a finite number of matings. Genetics 165:2313-2315.
– reference: Birkhead, T. R., L. Atkin, and A. P. Moller. 1987. Copulation behavior of birds. Behaviour 101:101-138.
– reference: Levitan, D. R. 2005b. Sex-specific spawning behavior and its consequences in an external fertilizer. Am. Nat. 165:682-694.
– reference: Rodríguez-Muñoz, R., A. Bretman, J. Slate, C. A. Walling, and T. Tregenza. 2010. Natural and sexual selection in a wild insect population. Science 328:1269-1272.
– reference: Borkowska, A., Z. Borowski, and K. Krysiuk. 2009. Multiple paternity in free-living root voles (Microtus oeconomus). Behav. Proc. 82:211-213.
– reference: Weir, L. K., C. Breau, J. Hutchings, and R. Cunjak. 2010. Multiple paternity and variance in male fertilization success within Atlantic salmon Salmo salar redds in a naturally spawning population. J. Fish Biol. 77:479-493.
– volume: 1987
  start-page: 1071
  year: 1987b
  end-page: 1072
  article-title: Assessment of Waple's numerical reanalyses of the maintenance of genetic‐variability in mosquitofish
  publication-title: Copeia
– volume: 13
  start-page: 1635
  year: 2004
  end-page: 1642
  article-title: Reproductive success and effective population size in woodrats ( )
  publication-title: Mol. Ecol.
– year: 2009
– year: 2005
– volume: 2
  start-page: 349
  year: 1948
  end-page: 368
  article-title: Intra‐sexual selection in
  publication-title: Heredity
– volume: 62
  start-page: 983
  year: 2008
  end-page: 988
  article-title: Unusually high levels of extrapair paternity in a duetting songbird with long‐term pair bonds
  publication-title: Behav. Ecol. Sociobiol.
– volume: 58
  start-page: 1028
  year: 2004
  end-page: 1037
  article-title: Female resistance to male harm evolves in response to manipulation of sexual conflict
  publication-title: Evolution
– volume: 17
  start-page: 3973
  year: 2008
  end-page: 3977
  article-title: The effect of multiple paternity on the genetically effective size of a population
  publication-title: Mol. Ecol.
– start-page: 305
  year: 1988
  end-page: 320
– volume: 130
  start-page: 909
  year: 1992
  end-page: 916
  article-title: Effective size of nonrandom mating populations
  publication-title: Genetics
– volume: 27
  start-page: 55
  year: 1990
  end-page: 65
  article-title: Analyzing sperm competition data—simple models for predicting mechanisms
  publication-title: Behav. Ecol. Sociobiol.
– volume: 167
  start-page: 118
  year: 2006
  end-page: 135
  article-title: Seed banks, salmon, and sleeping genes: effective population size in semelparous, age‐structured species with fluctuating abundance
  publication-title: Am. Nat.
– volume: 75
  start-page: 1143
  year: 2008
  end-page: 1154
  article-title: Social but not genetic monogamy is associated with greater breeding success in prairie voles
  publication-title: Anim. Behav.
– volume: 11
  start-page: 1029
  year: 2002
  end-page: 1037
  article-title: Evaluating the effect of stage‐specific survivorship on the N /N ratio
  publication-title: Mol. Ecol.
– volume: 9
  start-page: 202
  year: 1955
  end-page: 214
  article-title: Measurement of gene frequency drift in small populations
  publication-title: Evolution
– volume: 59
  start-page: 1596
  year: 2005
  end-page: 1599
  article-title: Large variance in reproductive success and the N /N ratio
  publication-title: Evolution
– volume: 17
  start-page: 2531
  year: 2008
  end-page: 2543
  article-title: High frequency of multiple paternity in broods of a socially monogamous cichlid fish with biparental nest defence
  publication-title: Mol. Ecol.
– volume: 60
  start-page: 145
  year: 2000
  end-page: 164
  article-title: The evolution of polyandry: multiple mating and female fitness in insects
  publication-title: Anim. Behav.
– volume: 77
  start-page: 479
  year: 2010
  end-page: 493
  article-title: Multiple paternity and variance in male fertilization success within Atlantic salmon redds in a naturally spawning population
  publication-title: J. Fish Biol.
– start-page: 44
  year: 1988
  end-page: 59
– volume: 328
  start-page: 1269
  year: 2010
  end-page: 1272
  article-title: Natural and sexual selection in a wild insect population
  publication-title: Science
– volume: 47
  start-page: 1329
  year: 1993
  end-page: 1341
  article-title: The influence of mating system and overlapping generations on effective population size
  publication-title: Evolution
– volume: 165
  start-page: 2313
  year: 2003
  end-page: 2315
  article-title: Random mating with a finite number of matings
  publication-title: Genetics
– start-page: 173
  year: 1988
  end-page: 188
– volume: 16
  start-page: 97
  year: 1931
  end-page: 159
  article-title: Evolution in Mendelian populations
  publication-title: Genetics
– start-page: 99
  year: 1988
  end-page: 118
– volume: 59
  start-page: 411
  year: 1996
  end-page: 425
  article-title: The influence of variation in female fecundity on effective population size
  publication-title: Biol. J. Linn. Soc.
– volume: 39
  start-page: 260
  year: 1985
  end-page: 277
  article-title: Proximate mechanisms of sexual selection in wood frogs
  publication-title: Evolution
– volume: 15
  start-page: 2567
  year: 2006
  end-page: 2575
  article-title: Microsatellites provide insight into contrasting mating patterns in arribada vs. non‐arribada olive ridley sea turtle rookeries
  publication-title: Mol. Ecol.
– volume: 165
  start-page: 682
  year: 2005b
  end-page: 694
  article-title: Sex‐specific spawning behavior and its consequences in an external fertilizer
  publication-title: Am. Nat.
– volume: 16
  start-page: 5277
  year: 2007
  end-page: 5293
  article-title: Patterns of male reproductive success in a highly promiscuous whale species: the endangered North Atlantic right whale
  publication-title: Mol. Ecol.
– volume: 75
  start-page: 21
  year: 2000
  end-page: 64
  article-title: Why do females mate multiply? A review of the genetic benefits
  publication-title: Biol. Rev.
– volume: 42
  start-page: 482
  year: 1988
  end-page: 495
  article-title: Inbreeding and variance effective population numbers
  publication-title: Evolution
– start-page: 24
  year: 1988
  end-page: 47
– volume: 170
  start-page: 941
  year: 2005
  end-page: 954
  article-title: Effective size of a fluctuating age‐structured population
  publication-title: Genetics
– volume: 51
  start-page: 164
  year: 2002
  end-page: 171
  article-title: Multiple paternity, sperm storage, and reproductive success of female and male painted turtles ( ) in nature
  publication-title: Behav. Ecol. Sociobiol.
– volume: 56
  start-page: 1445
  year: 2002
  end-page: 1453
  article-title: The recruitment sweepstakes has many winners: genetic evidence from the sea urchin
  publication-title: Evolution
– volume: 82
  start-page: 211
  year: 2009
  end-page: 213
  article-title: Multiple paternity in free‐living root voles ( )
  publication-title: Behav. Proc.
– volume: 1987
  start-page: 1068
  year: 1987
  end-page: 1071
  article-title: Sperm storage, multiple insemination, and genetic variability in mosquitofish—a reassessment
  publication-title: Copeia
– volume: 13
  start-page: 246
  year: 1998
  end-page: 250
  article-title: The “genetic benefits” of female multiple mating reconsidered
  publication-title: Trends Ecol. Evol.
– volume: 18
  start-page: 3124
  year: 2009
  end-page: 3127
  article-title: Multiple paternity increases effective population size
  publication-title: Mol. Ecol.
– volume: 164
  start-page: 444
  year: 2004
  end-page: 456
  article-title: Molecular parentage analysis in experimental newt populations: the response of mating system measures to variation in the operational sex ratio
  publication-title: Am. Nat.
– year: 2003
– start-page: 220
  year: 1988
  end-page: 236
– volume: 122
  start-page: 765
  year: 1983
  end-page: 788
  article-title: Cryptic female choice and its implications in the scorpionfly
  publication-title: Am. Nat.
– volume: 15
  start-page: 2095
  year: 2006
  end-page: 2107
  article-title: Evidence for isolation by time in the European eel ( L.)
  publication-title: Mol. Ecol.
– volume: 144
  start-page: S1
  year: 1994
  end-page: S12
  article-title: Is there a unifying concept of sexual selection that applies to both plants and animals?
  publication-title: Am. Nat.
– volume: 59
  start-page: 682
  year: 2005
  end-page: 685
  article-title: Experimentally enforced monogamy: inadvertent selection, inbreeding, or evidence for sexually antagonistic coevolution?
  publication-title: Evolution
– volume: 150
  start-page: 1173
  year: 2007
  end-page: 1182
  article-title: Small effective number of parents (N ) inferred for a naturally spawned cohort of juvenile European flat oysters
  publication-title: Mar. Biol.
– volume: 77
  start-page: 153
  year: 2001
  end-page: 166
  article-title: The effect of life‐history and mode of inheritance on neutral genetic variability
  publication-title: Genet. Res.
– volume: 9
  start-page: 293
  year: 2000
  end-page: 298
  article-title: Multiple paternity increases effective size of southern Atlantic salmon populations
  publication-title: Mol. Ecol.
– volume: 18
  start-page: 283
  year: 1964
  end-page: 291
  article-title: Multiple mating and effective population size in
  publication-title: Evolution
– volume: 98
  start-page: 705
  year: 2007
  end-page: 711
  article-title: High levels of multiple paternity in : hedging the bets?
  publication-title: J. Hered.
– volume: 45
  start-page: 848
  year: 2005a
  end-page: 855
  article-title: The distribution of male and female reproductive success in a broadcast spawning marine invertebrate
  publication-title: Integr. Comp. Biol.
– volume: 63
  start-page: 1923
  year: 2009
  end-page: 1933
  article-title: A test and review of the role of effective population size on experimental sexual selection patterns
  publication-title: Evolution
– volume: 101
  start-page: 101
  year: 1987
  end-page: 138
  article-title: Copulation behavior of birds
  publication-title: Behaviour
– start-page: 154
  year: 1988
  end-page: 172
– volume: 85
  start-page: 1258
  year: 2004
  end-page: 1264
  article-title: Maternal age as a determinant of larval growth and survival in a marine fish,
  publication-title: Ecology
– volume: 146
  start-page: 427
  year: 1997
  end-page: 441
  article-title: The effective size of a subdivided population
  publication-title: Genetics
– volume: 1987
  start-page: 156
  year: 1987a
  end-page: 164
  article-title: Dispersal, reproductive strategies, and the maintenance of genetic‐variability in mosquitofish ( )
  publication-title: Copeia
– volume: 62
  start-page: 1305
  year: 2008
  end-page: 1316
  article-title: Gamete traits influence the variance in reproductive success, the intensity of sexual selection, and the outcome of sexual conflict among congeneric sea urchins
  publication-title: Evolution
– volume: 137
  start-page: 1147
  year: 1994
  end-page: 1155
  article-title: Effective population sizes with multiple paternity
  publication-title: Genetics
– volume: 99
  start-page: 194
  year: 1994
  end-page: 200
  article-title: Estimating female reproductive success of a threatened butterfly—influence of emergence time and hostplant phenology
  publication-title: Oecologia
– volume: 92
  start-page: 317
  year: 1979
  end-page: 322
  article-title: Note on effective population‐size with overlapping generations
  publication-title: Genetics
– volume: 35
  start-page: 73
  year: 1994
  end-page: 81
  article-title: Temporal and spatial genetic structure of marine animal populations in the California Current
  publication-title: Calif. Coop. Oceanic Fish. Invest. Rep.
– volume: 17
  start-page: 279
  year: 1963
  end-page: 288
  article-title: Measurement of effective population number
  publication-title: Evolution
– year: 1988
– volume: 5
  start-page: 313
  year: 2009
  end-page: 316
  article-title: Social structure influences extra‐pair paternity in socially monogamous mammals
  publication-title: Biol. Lett.
– volume: 99
  start-page: 73
  year: 2010
  end-page: 83
  article-title: Quantifying sexual selection: a comparison of competing indices with mating system data from a terrestrially breeding salamander
  publication-title: Biol. J. Linn. Soc.
– volume: 357
  start-page: 245
  year: 2008
  end-page: 253
  article-title: Multiple paternity and maintenance of genetic diversity in the live‐bearing rockfishes spp
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 61
  start-page: 2457
  year: 2007
  end-page: 2468
  article-title: A reappraisal of Bateman's classic study of intrasexual selection
  publication-title: Evolution
– volume: 16
  start-page: 953
  year: 2007
  end-page: 966
  article-title: Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life‐history forms
  publication-title: Mol. Ecol.
– volume: 17
  start-page: 2566
  year: 2008
  end-page: 2580
  article-title: Multiple paternity in reptiles: patterns and processes
  publication-title: Mol. Ecol.
– year: 1970
– volume: 17
  start-page: 4522
  year: 2008
  end-page: 4534
  article-title: Pronounced reproductive skew in a natural population of green swordtails,
  publication-title: Mol. Ecol.
– start-page: 136
  year: 1988
  end-page: 153
– volume: 392
  start-page: 491
  year: 1998
  end-page: 494
  article-title: Inbreeding and extinction in a butterfly metapopulation
  publication-title: Nature
– volume: 61
  start-page: 1873
  year: 2007
  end-page: 1885
  article-title: Effective size of fluctuating populations with two sexes and overlapping generations
  publication-title: Evolution
– volume: 87
  start-page: 3082
  year: 2006
  end-page: 3094
  article-title: Current shifts and kin aggregation explain genetic patchiness in fish recruits
  publication-title: Ecology
– reference: - Evolution. 2011 Oct;65(10):3029
SSID ssj0009519
Score 2.1331415
Snippet Effective population size (N e ) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on...
Effective population size (Ne) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on...
Effective population size (N(e)) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on...
SourceID proquest
pubmed
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1693
SubjectTerms Animals
Computer Simulation
Evolution
Evolution & development
Evolutionary genetics
Female
Female animals
Females
Male
Male animals
Mating behavior
Mating Preference, Animal
Mating systems
Models, Biological
Multiple mating
Natural populations
Offspring
Pair Bond
Population
population bottlenecks
Population Density
Population distributions
Population growth
Population number
Population size
Reproduction
Reproductive success
sexual conflict
sexual selection
Simulation
simulations
sweepstakes
Title THE CONTEXT-DEPENDENT EFFECT OF MULTIPLE PATERNITY ON EFFECTIVE POPULATION SIZE
URI https://api.istex.fr/ark:/67375/WNG-2J0JGQZ1-7/fulltext.pdf
https://www.jstor.org/stable/41240765
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1558-5646.2011.01249.x
https://www.ncbi.nlm.nih.gov/pubmed/21644957
https://www.proquest.com/docview/872177222
https://www.proquest.com/docview/871001466
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBajMNjLLt26ed2GHsreFHzRJX4sidIkpHa6OV3WFyE5EpRAOtoEuj3tJ-w37pdMx3ZMU_pU9mAwli1jfzrWd46Ov4PQkRNlmuqEEsudI1RrSvykZwktIxemgnn7gnjHacaHMzqes3mT_wT_wtT6EG3ADSyj-l6DgWtzs2vkjHUJ45Q3SpxQR7kDfDJKOMjo97_Ed_R3o5oJR5QkftbbTep5sCNPV-FN324zFR_ioLuUtpqTBi_Qcvs0dSrKsrNZm075657Q4_953JfoeUNd8XE91l6hJ3a1j57WxSx_vkZnxVDiXp4Vcl78_f2nL6cy68uswJ4Ky16B8wE-nU2K0XQi8fQYhHhHxXecZ0376NwfzqezSRU0w19HF_INmg1k0RuSpmADuYQ6f8S7bgtqGTOlFbDeKDTzSKTaRKzbTRehSS3EXCPQ-dJaw-bCUDudJKBO6pIDtLe6Wtl3CC80Y6X3liyzEYjgp45GxiTCCm6scWGAPlfgqB-1KIfS10vIURNMfctOVDwOxydnF5ESATqo0GtPhHLboeAsQIdbOFVjtzeq6x1i72_EcYBw2-oNDlZR9MpebeAUkK2inAfobT0I2q5j73t6h9Pfk1dQtg13PC0PogIQFYCoKhDVrZLnOey9f-yFh-hZHeyG8NAHtLe-3tiPni2tzafKDv4B_Pz9vQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQEIIX7hthDPyAeHOViy_N49S5a0qadJCOshfLSW0JDXVotNLgiZ_Ab-SXzCdJoxXtCfEQKYodR87nE3_n2PkOQm-tqOJYR5QYbi2hWlPiJj1DaBVYPxbM2RfEOyYZH83oeM7mbTog-Bem0YfoAm5gGfX3GgwcAtLbVs5YnzBOeSvFCYmUe45Q3q2X64AhfQhvKPAGDRcOKIncvLe9refWlhxhhXd9tdmreBsL3Sa19aw0fIS-bvrTbEY5761XZa_6-ZfU43_q8GP0sGWv-LAZbk_QHbN8iu41-Sx_PEMnxUjiQZ4Vcl78-fX7SE5ldiSzAjs2LAcFzod4MkuLZJpKPD0ELd6k-IzzrC1PTt3lfDpL67gZ_picyedoNpTFYETanA3kC6T6I857W1DDWFkZAUuOQrOI01iXAev344VfxgbCrgFIfWmt4bC-r62OIhAotdEu2lleLM0LhBeasco5TIaZAHTwY0uDsoyEEbw0pfU99K5GR31rdDmUvjyHbWqCqU_ZsQrH_vj45CxQwkO7NXxdRci47QvOPLS_wVO1pvtd9Z1P7FyOMPQQ7kqdzcFCil6aizVUAeUqyrmH9ppR0DUdOvfT-ZzumbzGsiu44Ww5EBWAqABEVYOorpQ8zeHs5b_e-AbdHxWTVKVJ9n4fPWhi3xAteoV2Vpdrc-DI06p8XRvFNQ-GAeo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQIhAX3ruE5eED4pYqDz-a46p1tyndJAvpUvZi2aktoUrd1dJKCyd-Ar-RX4InSaMt2hPiECmKHUfOeDLfjCffIPTO8ipJVEx8w6z1iVLEd0bP-KQKbZBw6vQL4h0nGRvPyGRO523-E_wL0_BDdAE30Iz6ew0Kfrmwu0pOad-njLCWiRPqKPccnrxLmLOaAJA-RjcIeMMGCofEj53Z283quXUkh1fhVV9vUxVvA6G7mLY2SqNHaLmdTpOLsuxt1rpX_fiL6fH_zPcxethiV3zULLYn6I5ZPUX3mmqW35-h03Is8CDPSjEvf__8NRSFyIYiK7HDwmJQ4nyET2bTMi2mAhdHwMSbll9wnrXt6Zm7nBezaR01w5_Sc_EczUaiHIz9tmKD_xUK_fnOd1sQQ6muDIcNR65ozEiidEj7_WQR6MRA0DUEoi-lFBw2CJRVcQz0pDbeR3uri5V5gfBCUVo5d8lQEwILfmJJqHXMDWfaaBt46H0tHHnZsHJIdbWEJDVO5efsWEaTYHJ8eh5K7qH9WnpdR6i3HXBGPXS4FadsFfeb7DuP2DkcUeQh3LU6jYNtFLUyFxvoArxVhDEPHTSLoBs6cs6n8zjdM1ktyq7hhqvlhChBiBKEKGshymspznI4e_mvN75F94vhSE7T7MMhetAEviFU9Artra825rVDTmv9plaJP-NGAJk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=THE+CONTEXT%E2%80%90DEPENDENT+EFFECT+OF+MULTIPLE+PATERNITY+ON+EFFECTIVE+POPULATION+SIZE&rft.jtitle=Evolution&rft.au=Lotterhos%2C+Katie+E.&rft.date=2011-06-01&rft.pub=Blackwell+Publishing+Inc&rft.issn=0014-3820&rft.eissn=1558-5646&rft.volume=65&rft.issue=6&rft.spage=1693&rft.epage=1706&rft_id=info:doi/10.1111%2Fj.1558-5646.2011.01249.x&rft.externalDBID=10.1111%252Fj.1558-5646.2011.01249.x&rft.externalDocID=EVO1249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-3820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-3820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-3820&client=summon