Characterization of O2-CeO2 Interactions Using In Situ Raman Spectroscopy and First-Principle Calculations

Interactions between O2 and CeO2 are examined experimentally using in situ Raman spectroscopy and theoretically using density‐functional slab‐model calculations. Two distinct oxygen bands appear at 825 and 1131 cm−1, corresponding to peroxo‐ and superoxo‐like species, respectively, when partially re...

Full description

Saved in:
Bibliographic Details
Published inChemphyschem Vol. 7; no. 9; pp. 1957 - 1963
Main Authors Choi, Y. M., Abernathy, Harry, Chen, Hsin-Tsung, Lin , M. C., Liu, Meilin
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 11.09.2006
WILEY‐VCH Verlag
Wiley
Subjects
Online AccessGet full text
ISSN1439-4235
1439-7641
DOI10.1002/cphc.200600190

Cover

Abstract Interactions between O2 and CeO2 are examined experimentally using in situ Raman spectroscopy and theoretically using density‐functional slab‐model calculations. Two distinct oxygen bands appear at 825 and 1131 cm−1, corresponding to peroxo‐ and superoxo‐like species, respectively, when partially reduced CeO2 is exposed to 10 % O2. Periodic density‐functional theory (DFT) calculations aid the interpretation of spectroscopic observations and provide energetic and geometric information for the dioxygen species adsorbed on CeO2. The O2 adsorption energies on unreduced CeO2 surfaces are endothermic (0.91<ΔEads<0.98 eV), while those on reduced surfaces are exothermic (−4. 0<ΔEads<−0.9 eV), depending on other relevant surface processes such as chemisorption and diffusion into the bulk. Partial reduction of surface Ce4+ to Ce3+ (together with formation of oxygen vacancies) alters geometrical parameters and, accordingly, leads to a shift in the vibrational frequencies of adsorbed oxygen species compared to those on unreduced CeO2. Moreover, the location of oxygen vacancies affects the formation and subsequent dissociation of oxygen species on the surfaces. DFT predictions of the energetics support the experimental observation that the reduced surfaces are energetically more favorable than the unreduced surfaces for oxygen adsorption and reduction. Lack of oxygen: O2–CeO2 interactions are explored using Raman spectroscopy (see figure) and density functional calculations, yielding energetic and geometric information. The location of oxygen vacancies influences the formation and dissociation of adsorbed oxygen species and a reduced surface is shown to be energetically more favorable for oxygen reduction.
AbstractList Interactions between O2 and CeO2 are examined experimentally using in situ Raman spectroscopy and theoretically using density‐functional slab‐model calculations. Two distinct oxygen bands appear at 825 and 1131 cm−1, corresponding to peroxo‐ and superoxo‐like species, respectively, when partially reduced CeO2 is exposed to 10 % O2. Periodic density‐functional theory (DFT) calculations aid the interpretation of spectroscopic observations and provide energetic and geometric information for the dioxygen species adsorbed on CeO2. The O2 adsorption energies on unreduced CeO2 surfaces are endothermic (0.91<ΔEads<0.98 eV), while those on reduced surfaces are exothermic (−4. 0<ΔEads<−0.9 eV), depending on other relevant surface processes such as chemisorption and diffusion into the bulk. Partial reduction of surface Ce4+ to Ce3+ (together with formation of oxygen vacancies) alters geometrical parameters and, accordingly, leads to a shift in the vibrational frequencies of adsorbed oxygen species compared to those on unreduced CeO2. Moreover, the location of oxygen vacancies affects the formation and subsequent dissociation of oxygen species on the surfaces. DFT predictions of the energetics support the experimental observation that the reduced surfaces are energetically more favorable than the unreduced surfaces for oxygen adsorption and reduction. Lack of oxygen: O2–CeO2 interactions are explored using Raman spectroscopy (see figure) and density functional calculations, yielding energetic and geometric information. The location of oxygen vacancies influences the formation and dissociation of adsorbed oxygen species and a reduced surface is shown to be energetically more favorable for oxygen reduction.
Interactions between O(2) and CeO(2) are examined experimentally using in situ Raman spectroscopy and theoretically using density-functional slab-model calculations. Two distinct oxygen bands appear at 825 and 1131 cm(-1), corresponding to peroxo- and superoxo-like species, respectively, when partially reduced CeO(2) is exposed to 10 % O(2). Periodic density-functional theory (DFT) calculations aid the interpretation of spectroscopic observations and provide energetic and geometric information for the dioxygen species adsorbed on CeO(2). The O(2) adsorption energies on unreduced CeO(2) surfaces are endothermic (0.91<DeltaE(ads)<0.98 eV), while those on reduced surfaces are exothermic (-4. 0<DeltaE(ads)<-0.9 eV), depending on other relevant surface processes such as chemisorption and diffusion into the bulk. Partial reduction of surface Ce(4+) to Ce(3+) (together with formation of oxygen vacancies) alters geometrical parameters and, accordingly, leads to a shift in the vibrational frequencies of adsorbed oxygen species compared to those on unreduced CeO(2). Moreover, the location of oxygen vacancies affects the formation and subsequent dissociation of oxygen species on the surfaces. DFT predictions of the energetics support the experimental observation that the reduced surfaces are energetically more favorable than the unreduced surfaces for oxygen adsorption and reduction.Interactions between O(2) and CeO(2) are examined experimentally using in situ Raman spectroscopy and theoretically using density-functional slab-model calculations. Two distinct oxygen bands appear at 825 and 1131 cm(-1), corresponding to peroxo- and superoxo-like species, respectively, when partially reduced CeO(2) is exposed to 10 % O(2). Periodic density-functional theory (DFT) calculations aid the interpretation of spectroscopic observations and provide energetic and geometric information for the dioxygen species adsorbed on CeO(2). The O(2) adsorption energies on unreduced CeO(2) surfaces are endothermic (0.91<DeltaE(ads)<0.98 eV), while those on reduced surfaces are exothermic (-4. 0<DeltaE(ads)<-0.9 eV), depending on other relevant surface processes such as chemisorption and diffusion into the bulk. Partial reduction of surface Ce(4+) to Ce(3+) (together with formation of oxygen vacancies) alters geometrical parameters and, accordingly, leads to a shift in the vibrational frequencies of adsorbed oxygen species compared to those on unreduced CeO(2). Moreover, the location of oxygen vacancies affects the formation and subsequent dissociation of oxygen species on the surfaces. DFT predictions of the energetics support the experimental observation that the reduced surfaces are energetically more favorable than the unreduced surfaces for oxygen adsorption and reduction.
Interactions between O(2) and CeO(2) are examined experimentally using in situ Raman spectroscopy and theoretically using density-functional slab-model calculations. Two distinct oxygen bands appear at 825 and 1131 cm(-1), corresponding to peroxo- and superoxo-like species, respectively, when partially reduced CeO(2) is exposed to 10 % O(2). Periodic density-functional theory (DFT) calculations aid the interpretation of spectroscopic observations and provide energetic and geometric information for the dioxygen species adsorbed on CeO(2). The O(2) adsorption energies on unreduced CeO(2) surfaces are endothermic (0.91<DeltaE(ads)<0.98 eV), while those on reduced surfaces are exothermic (-4. 0<DeltaE(ads)<-0.9 eV), depending on other relevant surface processes such as chemisorption and diffusion into the bulk. Partial reduction of surface Ce(4+) to Ce(3+) (together with formation of oxygen vacancies) alters geometrical parameters and, accordingly, leads to a shift in the vibrational frequencies of adsorbed oxygen species compared to those on unreduced CeO(2). Moreover, the location of oxygen vacancies affects the formation and subsequent dissociation of oxygen species on the surfaces. DFT predictions of the energetics support the experimental observation that the reduced surfaces are energetically more favorable than the unreduced surfaces for oxygen adsorption and reduction.
Author Liu, Meilin
Choi, Y. M.
Abernathy, Harry
Lin , M. C.
Chen, Hsin-Tsung
Author_xml – sequence: 1
  givenname: Y. M.
  surname: Choi
  fullname: Choi, Y. M.
  organization: Center for Innovative Fuel Cell and Battery Technologies School of Materials Science and Engineering Georgia Institute of Technology, Atlanta, GA 30332, USA, Fax: (+1) 404-894-9140
– sequence: 2
  givenname: Harry
  surname: Abernathy
  fullname: Abernathy, Harry
  organization: Center for Innovative Fuel Cell and Battery Technologies School of Materials Science and Engineering Georgia Institute of Technology, Atlanta, GA 30332, USA, Fax: (+1) 404-894-9140
– sequence: 3
  givenname: Hsin-Tsung
  surname: Chen
  fullname: Chen, Hsin-Tsung
  organization: Department of Chemistry, Emory University 1515 Dickey Drive, Atlanta, GA 30322, USA
– sequence: 4
  givenname: M. C.
  surname: Lin 
  fullname: Lin , M. C.
  organization: Department of Chemistry, Emory University 1515 Dickey Drive, Atlanta, GA 30322, USA
– sequence: 5
  givenname: Meilin
  surname: Liu
  fullname: Liu, Meilin
  email: meilin.liu@mse.gatech.edu
  organization: Center for Innovative Fuel Cell and Battery Technologies School of Materials Science and Engineering Georgia Institute of Technology, Atlanta, GA 30332, USA, Fax: (+1) 404-894-9140
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18097032$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16900562$$D View this record in MEDLINE/PubMed
BookMark eNpFkc1P3DAQxS1ExVd75Yh8obfA2E4c54jCp4RYRIsq9WI5EwcM2STYicry19fb3S4nj9_85mnst0-2u76zhBwyOGEA_BSHZzzhABKAFbBF9lgqiiSXKdte1ykX2S7ZD-EFABTkbIfsMlkAZJLvkZfy2XiDo_Xuw4yu72jf0BlPSjvj9KaLemxGOdDH4LqnKNEfbpzog5mbWA4WR98H7IcFNV1NL50PY3LvXYduaC0tTYtT-884fCVfGtMG-219HpDHy4uf5XVyO7u6Kc9uEyfifglTEjgiZMzWqkHZmDyTdSNTAQgp5ynLVMGqBkVVGc4VrxAbtJW1qApVozgg31e-g-_fJhtGPXcBbduazvZT0FKplEWjCB6twama21oP3s2NX-j_vxOB4zVgApq28SY-K3xyCoocxJIrVtwf19rFZx_0MiO9zEhvMtLl_XW5ucXZZDXrwmjfN7PGv2qZizzTv-6udKrOHxQrmP4t_gI7mpYq
ContentType Journal Article
Copyright Copyright © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2006 INIST-CNRS
Copyright_xml – notice: Copyright © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2006 INIST-CNRS
DBID BSCLL
IQODW
NPM
7X8
DOI 10.1002/cphc.200600190
DatabaseName Istex
Pascal-Francis
PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1439-7641
EndPage 1963
ExternalDocumentID 16900562
18097032
CPHC200600190
ark_67375_WNG_48DR8191_Z
Genre article
Journal Article
GrantInformation_xml – fundername: INER
  funderid: NL 940251
– fundername: National Center for High‐Performance Computing, Taiwan
– fundername: Taiwan National Science Council
– fundername: DOE‐NETL‐SECA core technology program
  funderid: DE-FC26-02NT41572
GroupedDBID ---
-DZ
-~X
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
4ZD
50Y
53G
5GY
5VS
66C
6J9
77Q
8-0
8-1
8UM
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
OIG
P2P
P2W
PQQKQ
QRW
R.K
RNS
ROL
RX1
SUPJJ
UPT
V2E
W99
WBKPD
WH7
WJL
WOHZO
WXSBR
XPP
XV2
Y6R
YZZ
ZZTAW
~S-
A00
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AIWBW
AJBDE
P4E
RWI
WYJ
.GJ
31~
AGHNM
AI.
EBD
EMOBN
HF~
IQODW
SV3
VH1
XSW
ZGI
NPM
7X8
ID FETCH-LOGICAL-i3080-18602cc051ed8fc6fa756df6430c0422415891bfc3bba2282bccfcebeec898dc3
IEDL.DBID DR2
ISSN 1439-4235
IngestDate Thu Sep 04 16:10:17 EDT 2025
Wed Feb 19 01:54:25 EST 2025
Mon Jul 21 09:14:47 EDT 2025
Wed Jan 22 16:39:22 EST 2025
Sun Sep 21 06:18:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Cerium Oxides
Oxygen
cerium
In situ
Surface chemistry
Crystal face
Characterization
density-functional calculations
Gas solid adsorption
Raman specroscopy
Density functional
Adsorption
Gas solid interface
Calculation
Raman spectrometry
Lanthanide Compounds
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i3080-18602cc051ed8fc6fa756df6430c0422415891bfc3bba2282bccfcebeec898dc3
Notes DOE-NETL-SECA core technology program - No. DE-FC26-02NT41572
istex:075A492D0EE9F4477346B831A1AB1D5CB47DD4D0
ArticleID:CPHC200600190
National Center for High-Performance Computing, Taiwan
Taiwan National Science Council
INER - No. NL 940251
ark:/67375/WNG-48DR8191-Z
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 16900562
PQID 68841422
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_68841422
pubmed_primary_16900562
pascalfrancis_primary_18097032
wiley_primary_10_1002_cphc_200600190_CPHC200600190
istex_primary_ark_67375_WNG_48DR8191_Z
PublicationCentury 2000
PublicationDate September 11, 2006
PublicationDateYYYYMMDD 2006-09-11
PublicationDate_xml – month: 09
  year: 2006
  text: September 11, 2006
  day: 11
PublicationDecade 2000
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Chemphyschem
PublicationTitleAlternate ChemPhysChem
PublicationYear 2006
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley
References C. Xia, M. Liu, Solid State Ionics 2001, 144, 249
H. Inaba, H. Tagawa, Solid State Ionics 1996, 83, 1
R. M. Heck, R. J. Farrauto, Catalytic Air Pollution Control, Van Nostrand Reinhold, New York, 1995.
R. M. Ferrizz, G. S. Wong, T. Egami, J. M. Vohs, Langmuir 2001, 17, 2464.
C. Li, K. Domen, K.-i. Maruya, T. Onishi, J. Catal. 1990, 123, 436.
S. Zha, A. Moore, H. Abernathy, M. Liu, J. Electrochem. Soc. 2004, 151, A1128
A. Siokou, R. M. Nix, J. Phys. Chem. B 1999, 103, 6984.
N. V. Skorodumova, S. I. Simak, B. I. Lundqvist, I. A. Abrikosov, B. Johansson, Phys. Rev. Lett. 2002, 89, 166601.
N. V. Skorodumova, M. Baudin, K. Hermansson, Phys. Rev. B 2004, 69, 075401
G. Herzberg, Molecular Spectra and Molecular Structure, Vol. I-Spectra of Diatomic Molecules, 2nd ed., Krieger, Malabar, 1950.
M. A. Henderson, C. L. Perkins, M. H. Engelhard, S. Thevuthasan, C. H. F. Peden, Surf. Sci. 2003, 526, 1.
N. Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam, 1995.
G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
L. Y. Mo, X. M. Zheng, C. T. Yeh, ChemPhysChem 2005, 6, 1470.
M. Liu, X. Lu, P. Faguy, Proc. Electrochem. Soc. 2003, 2003-7, 1132.
A. Trovarelli, Catalysis by Ceria and Related Materials, Imperial College Press, London, 2000
V. V. Pushkarev, V. I. Kovalchuk, J. L. d′Itri, J. Phys. Chem. B 2004, 108, 5341.
M. Haneda, T. Mizushima, N. Kakuta, J. Chem. Soc. Faraday Trans. 1995, 4459.
P. Blochl, Phys. Rev. B 1994, 17, 953.
G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169
A. Bielanski, J. Haber, Oxygen in catalysis, Marcel Dekker, New York, 1991.
W. H. Weber, K. C. Hass, J. R. McBride, Phys. Rev. B 1993, 48, 178.
E. A. Kummerle, G. Heger, J. Solid State Chem. 1999, 147, 485.
Y. Zhang, Z. Kang, J. Dong, H. Abernathy, M. Liu, J. Solid State Chem. 2006, 179, 1733.
C. Xia, M. Liu, Solid State Ionics 2002, 152, 423
L. Y. Mo, X. M. Zheng, C. T. Yeh, Chem. Commun. 2004, 12, 1426
S. Zha, W. Rauch, M. Liu, Solid State Ionics 2004, 166, 241.
W. J. Hehre, L. Radom, P. v. R. Schleyer, J. A. Pople, Ab initio molecular orbital theory, Wiley, New York, 1986.
G. Henkelman, A. Arnaldsson, H. Jonsson, Comput. Mater. Sci. 2006, 36, 354
S. Gennard, F. Cora, C. Richard, A. Catlow, J. Phys. Chem. B 1999, 103, 10158
F. Chen, S. Zha, J. Dong, M. Liu, Solid State Ionics 2004, 166, 269
C. Li, K. Domen, K.-i. Maruya, T. Onishi, J. Am. Chem. Soc. 1989, 111, 7683
Z. Yang, T. K. Woo, M. Baudin, K. Hermansson, J. Chem. Phys. 2004, 120, 7741.
2001; 144
1993; 48
2004; 166
1993; 47
2004; 120
2002; 152
2004; 69
2006; 36
1989; 111
1995
1950
1999; 103
1999; 147
2003; 2003‐7
1991
1990; 123
2004; 108
1996; 54
2006; 179
2003; 526
2000
2002; 89
2004; 151
2004; 12
1996; 83
1986
2005; 6
2001; 17
1994; 17
References_xml – reference: L. Y. Mo, X. M. Zheng, C. T. Yeh, ChemPhysChem 2005, 6, 1470.
– reference: S. Zha, A. Moore, H. Abernathy, M. Liu, J. Electrochem. Soc. 2004, 151, A1128;
– reference: E. A. Kummerle, G. Heger, J. Solid State Chem. 1999, 147, 485.
– reference: G. Henkelman, A. Arnaldsson, H. Jonsson, Comput. Mater. Sci. 2006, 36, 354;
– reference: C. Xia, M. Liu, Solid State Ionics 2002, 152, 423;
– reference: C. Li, K. Domen, K.-i. Maruya, T. Onishi, J. Am. Chem. Soc. 1989, 111, 7683;
– reference: A. Bielanski, J. Haber, Oxygen in catalysis, Marcel Dekker, New York, 1991.
– reference: F. Chen, S. Zha, J. Dong, M. Liu, Solid State Ionics 2004, 166, 269;
– reference: M. A. Henderson, C. L. Perkins, M. H. Engelhard, S. Thevuthasan, C. H. F. Peden, Surf. Sci. 2003, 526, 1.
– reference: Z. Yang, T. K. Woo, M. Baudin, K. Hermansson, J. Chem. Phys. 2004, 120, 7741.
– reference: M. Liu, X. Lu, P. Faguy, Proc. Electrochem. Soc. 2003, 2003-7, 1132.
– reference: G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
– reference: P. Blochl, Phys. Rev. B 1994, 17, 953.
– reference: R. M. Ferrizz, G. S. Wong, T. Egami, J. M. Vohs, Langmuir 2001, 17, 2464.
– reference: S. Zha, W. Rauch, M. Liu, Solid State Ionics 2004, 166, 241.
– reference: N. Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam, 1995.
– reference: H. Inaba, H. Tagawa, Solid State Ionics 1996, 83, 1;
– reference: W. J. Hehre, L. Radom, P. v. R. Schleyer, J. A. Pople, Ab initio molecular orbital theory, Wiley, New York, 1986.
– reference: S. Gennard, F. Cora, C. Richard, A. Catlow, J. Phys. Chem. B 1999, 103, 10158;
– reference: Y. Zhang, Z. Kang, J. Dong, H. Abernathy, M. Liu, J. Solid State Chem. 2006, 179, 1733.
– reference: N. V. Skorodumova, M. Baudin, K. Hermansson, Phys. Rev. B 2004, 69, 075401;
– reference: A. Trovarelli, Catalysis by Ceria and Related Materials, Imperial College Press, London, 2000;
– reference: N. V. Skorodumova, S. I. Simak, B. I. Lundqvist, I. A. Abrikosov, B. Johansson, Phys. Rev. Lett. 2002, 89, 166601.
– reference: G. Herzberg, Molecular Spectra and Molecular Structure, Vol. I-Spectra of Diatomic Molecules, 2nd ed., Krieger, Malabar, 1950.
– reference: G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169;
– reference: C. Li, K. Domen, K.-i. Maruya, T. Onishi, J. Catal. 1990, 123, 436.
– reference: V. V. Pushkarev, V. I. Kovalchuk, J. L. d′Itri, J. Phys. Chem. B 2004, 108, 5341.
– reference: C. Xia, M. Liu, Solid State Ionics 2001, 144, 249;
– reference: W. H. Weber, K. C. Hass, J. R. McBride, Phys. Rev. B 1993, 48, 178.
– reference: R. M. Heck, R. J. Farrauto, Catalytic Air Pollution Control, Van Nostrand Reinhold, New York, 1995.
– reference: L. Y. Mo, X. M. Zheng, C. T. Yeh, Chem. Commun. 2004, 12, 1426;
– reference: A. Siokou, R. M. Nix, J. Phys. Chem. B 1999, 103, 6984.
– reference: M. Haneda, T. Mizushima, N. Kakuta, J. Chem. Soc. Faraday Trans. 1995, 4459.
– volume: 108
  start-page: 5341
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 17
  start-page: 953
  year: 1994
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 1426
  year: 2004
  publication-title: Chem. Commun.
– volume: 166
  start-page: 269
  year: 2004
  publication-title: Solid State Ionics
– volume: 526
  start-page: 1
  year: 2003
  publication-title: Surf. Sci.
– volume: 6
  start-page: 1470
  year: 2005
  publication-title: ChemPhysChem
– volume: 147
  start-page: 485
  year: 1999
  publication-title: J. Solid State Chem.
– year: 2000
– volume: 120
  start-page: 7741
  year: 2004
  publication-title: J. Chem. Phys.
– volume: 151
  start-page: 1128
  year: 2004
  publication-title: J. Electrochem. Soc.
– volume: 144
  start-page: 249
  year: 2001
  publication-title: Solid State Ionics
– year: 1950
– volume: 48
  start-page: 178
  year: 1993
  publication-title: Phys. Rev. B
– volume: 47
  start-page: 558
  year: 1993
  publication-title: Phys. Rev. B
– volume: 2003‐7
  start-page: 1132
  year: 2003
  publication-title: Proc. Electrochem. Soc.
– volume: 123
  start-page: 436
  year: 1990
  publication-title: J. Catal.
– volume: 69
  start-page: 075401
  year: 2004
  publication-title: Phys. Rev. B
– volume: 111
  start-page: 7683
  year: 1989
  publication-title: J. Am. Chem. Soc.
– year: 1986
– volume: 89
  start-page: 166601
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 179
  start-page: 1733
  year: 2006
  publication-title: J. Solid State Chem.
– start-page: 4459
  year: 1995
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 103
  start-page: 6984
  year: 1999
  publication-title: J. Phys. Chem. B
– volume: 83
  start-page: 1
  year: 1996
  publication-title: Solid State Ionics
– volume: 152
  start-page: 423
  year: 2002
  publication-title: Solid State Ionics
– volume: 17
  start-page: 2464
  year: 2001
  publication-title: Langmuir
– volume: 103
  start-page: 10158
  year: 1999
  publication-title: J. Phys. Chem. B
– year: 1995
– volume: 54
  start-page: 11169
  year: 1996
  publication-title: Phys. Rev. B
– year: 1991
– volume: 36
  start-page: 354
  year: 2006
  publication-title: Comput. Mater. Sci.
– volume: 166
  start-page: 241
  year: 2004
  publication-title: Solid State Ionics
SSID ssj0008071
Score 2.2979767
Snippet Interactions between O2 and CeO2 are examined experimentally using in situ Raman spectroscopy and theoretically using density‐functional slab‐model...
Interactions between O(2) and CeO(2) are examined experimentally using in situ Raman spectroscopy and theoretically using density-functional slab-model...
SourceID proquest
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1957
SubjectTerms adsorption
cerium
Chemistry
density-functional calculations
Exact sciences and technology
General and physical chemistry
Raman spectroscopy
Solid-gas interface
surface chemistry
Surface physical chemistry
Title Characterization of O2-CeO2 Interactions Using In Situ Raman Spectroscopy and First-Principle Calculations
URI https://api.istex.fr/ark:/67375/WNG-48DR8191-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.200600190
https://www.ncbi.nlm.nih.gov/pubmed/16900562
https://www.proquest.com/docview/68841422
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1439-4235
  databaseCode: DR2
  dateStart: 20000101
  customDbUrl:
  isFulltext: true
  eissn: 1439-7641
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008071
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqLvTSAi3t8utDxS2wcf6cIwosKw6AtkWgXizbicUKyK7IrgSc9hGQeMN9EmbsTZatemovURJrDp4Z25_H428I-aECliCpiCdzlXhhHmhPKQ6PPE0M0q0YlyB7Fncvw9Pr6PrdLX7HD9EE3HBk2PkaB7hU1cGcNFQPbywFIa7YKW7a_SCy57S9OX8Ub7sdV4jHnSyIatbGNjtYFAdoilp9xNRIWYF2jCtr8TfcuQhj7TrU-Uxk3QOXfnK7Px6pff38B7nj_3RxhXyagVR66LxqlXwoyjWynNW14b6QMmt4nt01Tjow9JxNJ69Zcc6oDTO6GxMVtUkJ8Iv-7I_GtCfvJbwObfEdvBLzRGWZ004fUOh08nJRx_5pJu_0rLRY9ZVcdo5_ZV1vVrnB6wegdM_HylZaw4Avcm50bGQSxbkB9NPWSDoGqIGnvjI6UEqCRzCltdHgT4XmKc91sE6WykFZfCe0HWs_QEGMXsuIS3Aq7hcsMjLyFVMtsmctJ4aOnUPIh1tMVksicXV2IkJ-1MM9qfjdIjsLpm0EkMEM5j3WIru1rQWoEw9OZFkMxpWIOQ8xVtYi35wLzGXjFMlUoYVZQ84bLBs0E2hC0ZhQZBfdrPna-BehTfLRRYFSz_e3yNLoYVxsAy4aqR3r-28EnQc8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5V5dBeeLRAw6P1oeK2bdb78h7RlpCWklZpKxAXy_auRVTYRE0iAaf-BCT-YX8JM3Z2oyBOcFntrjUHz8Mej2e-AdjXEc8IVCRQpc6CuIxMoLXAR5lnluBWrE-QHaT9q_jkY9JkE1ItjMeHaANuZBluvSYDp4D04RI11Ew-OwxC2rJzPLXfo0s6ss2j4RJBSnT9mSumC08eJQ1uY5cfrtKjc0p8_UbJkWqK_LG-scXfPM9VR9btRL0HoJs5-ASU64P5TB-YH3_AO_7XJB_C_YWfyl57xXoEa1W9BRtF0x5uG-qihXr2lZxsbNkZv7v9VVRnnLlIoy-amDKXl4C_2MVoNmdD9VXh68T136GqmO9M1SXrjdARvbv9ed6E_1mhvphFd7HpY7jqvbks-sGieUMwipDrQUjNrYxBm69KYU1qVZakpUUHqGsIdwwdB5GH2ppIa4VKwbUx1qBKVUbkojTRE1ivx3W1A6ybmjAiQgpgq0Qo1CsRVjyxKgk11x145UQnJx6gQ6qba8pXyxL5YfBWxuJoSMdS-akDuyuybQkIxAyXPt6BvUbYEtlJdyeqrsbzqUyFiClc1oGnXgeWtGlOeKo4wp0klwMOEJpLEqFsRSiL837Rfj37F6I92Ohfvj-Vp8eDd89h0weF8iAMX8D67GZevUQ3aaZ3nSH8Bm6HC1g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB5VRSpcgPIbCq0PiNu2We-f91htG1JAaRSoqLhYtnctosImahIJOPURkHjDPkln7OyGIE5wWe2uNQfPjO3P4_E3AC91xDMiFQlUqbMgLiMTaC3wUeaZJboV6xNkB2n_LH5znpz_dovf80O0ATcaGW6-pgE-Le3BijTUTD87CkJasXPctN-KU9xiESwarQikRNdvuWI67-RR0tA2dvnBujxiU1LrN8qNVDNUj_V1Lf4GPNdxrFuIevdANV3w-ScX-4u53jc__mB3_J8-3oe7S5TKDr1bbcNGVT-A20VTHO4h1EVL9OzvcbKJZaf8-upXUZ1y5uKM_srEjLmsBPzF3o_nCzZSXxW-Tl31HboT852pumS9McLQ66ufwyb4zwr1xSxri80ewVnv-EPRD5alG4JxhEoPQiptZQyO-KoU1qRWZUlaWoQ_XUOsYwgbRB5qayKtFboE18ZYgw5VGZGL0kSPYbOe1NVTYN3UhBEJUvhaJUKhV4mw4olVSai57sArZzk59fQcUl1eULZalsiPg9cyFkcj2pTKTx3YXTNtK0AUZjjx8Q7sNbaWqE46OVF1NVnMZCpETMGyDjzxLrCSTXNiU8UW7gy5anB00FySCWVrQlkM-0X79exfhPZga3jUk-9OBm934I6PCOVBGD6HzfnlonqBGGmud90wuAFH1AoH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+O2%E2%80%93CeO2+Interactions+Using+In+Situ+Raman+Spectroscopy+and+First%E2%80%90Principle+Calculations&rft.jtitle=Chemphyschem&rft.au=Choi%2C+Y.+M.&rft.au=Abernathy%2C+Harry&rft.au=Chen%2C+Hsin%E2%80%90Tsung&rft.au=Lin%E2%80%89%2C+M.+C.&rft.date=2006-09-11&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1439-4235&rft.eissn=1439-7641&rft.volume=7&rft.issue=9&rft.spage=1957&rft.epage=1963&rft_id=info:doi/10.1002%2Fcphc.200600190&rft.externalDBID=10.1002%252Fcphc.200600190&rft.externalDocID=CPHC200600190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon