Thermogram breast cancer prediction approach based on Neutrosophic sets and fuzzy c-means algorithm
The early detection of breast cancer makes many women survive. In this paper, a CAD system classifying breast cancer thermograms to normal and abnormal is proposed. This approach consists of two main phases: automatic segmentation and classification. For the former phase, an improved segmentation ap...
Saved in:
Published in | 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Vol. 2015; pp. 4254 - 4257 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1094-687X 1557-170X |
DOI | 10.1109/EMBC.2015.7319334 |
Cover
Abstract | The early detection of breast cancer makes many women survive. In this paper, a CAD system classifying breast cancer thermograms to normal and abnormal is proposed. This approach consists of two main phases: automatic segmentation and classification. For the former phase, an improved segmentation approach based on both Neutrosophic sets (NS) and optimized Fast Fuzzy c-mean (F-FCM) algorithm was proposed. Also, post-segmentation process was suggested to segment breast parenchyma (i.e. ROI) from thermogram images. For the classification, different kernel functions of the Support Vector Machine (SVM) were used to classify breast parenchyma into normal or abnormal cases. Using benchmark database, the proposed CAD system was evaluated based on precision, recall, and accuracy as well as a comparison with related work. The experimental results showed that our system would be a very promising step toward automatic diagnosis of breast cancer using thermograms as the accuracy reached 100%. |
---|---|
AbstractList | The early detection of breast cancer makes many women survive. In this paper, a CAD system classifying breast cancer thermograms to normal and abnormal is proposed. This approach consists of two main phases: automatic segmentation and classification. For the former phase, an improved segmentation approach based on both Neutrosophic sets (NS) and optimized Fast Fuzzy c-mean (F-FCM) algorithm was proposed. Also, post-segmentation process was suggested to segment breast parenchyma (i.e. ROI) from thermogram images. For the classification, different kernel functions of the Support Vector Machine (SVM) were used to classify breast parenchyma into normal or abnormal cases. Using benchmark database, the proposed CAD system was evaluated based on precision, recall, and accuracy as well as a comparison with related work. The experimental results showed that our system would be a very promising step toward automatic diagnosis of breast cancer using thermograms as the accuracy reached 100%. |
Author | Anter, Ahmed Soliman, Mona Hassanien, Aboul Ella Gaber, Tarek Snasel, Vaclav Ismail, Gehad Semary, Noura Ali, Mona |
Author_xml | – sequence: 1 givenname: Tarek surname: Gaber fullname: Gaber, Tarek email: tmgaber@gmail.com organization: Suez Canal Univ., Suez, Egypt – sequence: 2 givenname: Gehad surname: Ismail fullname: Ismail, Gehad organization: Cairo Univ., Cairo, Egypt – sequence: 3 givenname: Ahmed surname: Anter fullname: Anter, Ahmed organization: Beni-Suef Univ., Beni-Suef, Egypt – sequence: 4 givenname: Mona surname: Soliman fullname: Soliman, Mona organization: Cairo Univ., Cairo, Egypt – sequence: 5 givenname: Mona surname: Ali fullname: Ali, Mona organization: Minia Univ., Minia, Egypt – sequence: 6 givenname: Noura surname: Semary fullname: Semary, Noura organization: Menoufia Univ., Shebin El-Kom, Egypt – sequence: 7 givenname: Aboul Ella surname: Hassanien fullname: Hassanien, Aboul Ella organization: Cairo Univ., Cairo, Egypt – sequence: 8 givenname: Vaclav surname: Snasel fullname: Snasel, Vaclav organization: IT4Innovation, VSB-TUO, Czech Republic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26737234$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kNtKw0AQhleo2Fr7ACLIvkDqnrKbXGqpB6h6U8G7sIdJE2kO7CZI-_SmtHVuBv75v7n4rtGobmpA6JaSOaUkfVi-Py3mjNB4rjhNORcXaJaqhAomRMoUTUZoMvREJBP1PUazEH4IIVRJyUR8hcZMKq4YFxNk1wX4qtl4XWHjQYcOW11b8Lj14ErblU2Nddv6RtsCGx3A4SH5gL7zTWjaorQ4QBewrh3O-_1-h21Uga6HZLtpfNkV1Q26zPU2wOy0p-jreblevEarz5e3xeMqKjlRXUSJgliL3DFHjbBgpFNOGKllHPM0zlMOmmluVGJiKbmVCQWTU64IMYYPM0Xs-LevW7371dtt1vqy0n6XUZIdxGVQGZsdxGUncQN0f4Ta3lTg_omzoqFwdyyUAPB_PuN_tcJ1Uw |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO NPM ADTOC UNPAY |
DOI | 10.1109/EMBC.2015.7319334 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore (NTUSG) IEEE Proceedings Order Plans (POP) 1998-present PubMed Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore (NTUSG) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781424492718 1424492718 |
EndPage | 4257 |
ExternalDocumentID | oai:usir.salford.ac.uk:52104 26737234 7319334 |
Genre | orig-research Journal Article |
GroupedDBID | 6IE 6IF 6IH AAJGR ACGFS AFFNX ALMA_UNASSIGNED_HOLDINGS CBEJK M43 RIE RIO RNS 29F 29G 6IK 6IM IPLJI NPM ADTOC UNPAY |
ID | FETCH-LOGICAL-i307t-107e5a4fd2d1b4ceb6d7d4b6a655395f93ea2a3b78b5663c681ebf13700bb3333 |
IEDL.DBID | UNPAY |
ISSN | 1094-687X 1557-170X |
IngestDate | Sun Sep 07 11:17:45 EDT 2025 Wed Feb 19 02:42:29 EST 2025 Wed Aug 27 02:58:26 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i307t-107e5a4fd2d1b4ceb6d7d4b6a655395f93ea2a3b78b5663c681ebf13700bb3333 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=http://usir.salford.ac.uk/id/eprint/52104/1/BreastCancer-Thermal-2015-EMBC15_Tarek.pdf |
PMID | 26737234 |
PageCount | 4 |
ParticipantIDs | ieee_primary_7319334 pubmed_primary_26737234 unpaywall_primary_10_1109_embc_2015_7319334 |
PublicationCentury | 2000 |
PublicationDate | 2015-08-00 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) |
PublicationTitleAbbrev | EMBC |
PublicationTitleAlternate | Conf Proc IEEE Eng Med Biol Soc |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001766245 ssj0020051 ssj0061641 |
Score | 2.297046 |
Snippet | The early detection of breast cancer makes many women survive. In this paper, a CAD system classifying breast cancer thermograms to normal and abnormal is... |
SourceID | unpaywall pubmed ieee |
SourceType | Open Access Repository Index Database Publisher |
StartPage | 4254 |
SubjectTerms | Breast cancer Design automation Feature extraction Image segmentation Level set Support vector machines |
SummonAdditionalLinks | – databaseName: IEEE Xplore (NTUSG) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4BF-ilUGgboNUeemsdHO_LewWBEFIQhyLlFu3LNGriRMYWIr-enXXiRKiH-mR7rZG9M9pvvDPzDcAPnhrHilwn1vA0QQauBHnRElVQhFeruMJC4eG9uH1kdyM-2oFfXS2M9z4mn_k-nsZYvpvbBrfKLmSwF0rZLuxKqdparc1-ihQiYxuePbS2GOlULBG5HK0imuH64np4eYVJXby_EoiMwLFfC7ZPjk1WtvBovykX-vVFT6dbwHPzEYbrV27zTf72m9r07fIdm-P_ftMhnGxK_MhDB15HsOPLT_Bhi53wGGwwoWoW07eIwdz1mli0kYosKgzvoErJmpOcIBw6Eu7c-6auYneEiSXPvn4munSkaJbLV2KTmQ_YSPT0aV5N6j-zE3i8uf59dZusejIkk7Aa1GHVlp5rVrjMDQyz3ggnHTNCC86p4oWiXmeaGpmb4ChSK_KBN8WAyjQ1hobjM-yV89J_BZI7xaxiygYHP7hFhRnkwmWFlrnKZO5VD45xusaLlnZjvJqpHnxpVdMNrHXXg5-drrrB-JOTqrGfGTtGpa_lnP5b_Bkc4FNtjt857NVV478Fv6M236PBvQEkHtGQ priority: 102 providerName: IEEE |
Title | Thermogram breast cancer prediction approach based on Neutrosophic sets and fuzzy c-means algorithm |
URI | https://ieeexplore.ieee.org/document/7319334 https://www.ncbi.nlm.nih.gov/pubmed/26737234 http://usir.salford.ac.uk/id/eprint/52104/1/BreastCancer-Thermal-2015-EMBC15_Tarek.pdf |
UnpaywallVersion | submittedVersion |
Volume | 2015 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLZYOWyngWAbjCEfuCGncRIn8XFUIIRExaGVyinyz60iDVXqqGr_-j27P4a00yRyjJMnxZ_1vuf4ve8hdMViqTNbCqIki4lX4CJeF41wm3p6VZxxXyj8OMzvx9nDhE0O0K7iuoO9erQQtQ2atKGYCjAx_h-X6wPTxFmf9m98urYb-FlpCcwmeLAa0KaM3D7eDCirRqI1L9Fc2w_oMGewq-6hw_Hw6efz9liTxrxvZtIrGFIWFbAKU984ObRXecNEH7tmLlZLUddvKOfuM1ruCnc2mSYvUedkpNb_6ji-89ccodO_ZYD4aU9wx-jANCdIhZdDUheWwShWwSqet_7QxwONd0rl2JOkxnBnaDrXhp4JU4UXxi2waDS23Xq9worMDDAmFvWv13bqfs9O0fjudjS4J9tODWQKPsKBLy8ME5nViaYyU0bmutCZzEXOWMqZ5akRiUhlUUoIH1OVl9RIS9MijqVM4fqCes1rY74hXGqeKZ5xBWE_BEtW0jLXiRVFyZOiNPwMnXiYqvlGjKPaoneGvm5g2w8koQOPH7ne47gfDFufmFd-FVR-snd2zv_r6e_oU0AqJAReoJ5rO_MDghQnL0Ml4eV23f0BwWTozg |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB2V9lB6gdICAQp74AZOHe-u13ulahWgiTi0Um7WfrlEJE7k2qqaX8_OOnEixKE-2V55ZO-M9o13Zt4AfOaxtqzIVGQ0jyNk4IqQFy2SBUV4NZJLLBQejdPhLfsx4ZM9-NrVwjjnQvKZ6-NpiOXbhWlwq-xceHuhlD2DA86YSNpqre2OikjThG2Z9tDeQqxTsijNxGQd0_TX55ejbxeY1sX7a5HICRw6tmAD5dBmZQeRDptyqR4f1Gy2Az1XL2C0eek24-RPv6l136z-4XN86le9hNNtkR_51cHXMey58hUc7fATnoDxRlTNQwIX0Zi9XhODVlKRZYUBHlQq2bCSEwRES_ydsWvqKvRHmBpy7-p7okpLima1eiQmmjuPjkTN7hbVtP49P4Xbq8ubi2G07soQTf16UPt1WziuWGETO9DMOJ1aYZlOVco5lbyQ1KlEUS0y7V1FatJs4HQxoCKOtab-eA375aJ0b4FkVjIjmTTexfeOUaEHWWqTQolMJiJzsgcnOF35siXeyNcz1YM3rWq6gY3uevCl01U3GH5zYpm7uTY5Kn0j593_xX-Cw-HN6Dq__j7--R6e4xNtxt8H2K-rxp15L6TWH4Px_QVEi9Tb |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwELagHOC0i2AXlod84IacxkmcxEeoQAiJigOV2FPkJ1uRhip1hOivZ-w-FokTEjnGyUjxZ803jme-QeiMxVJnthRESRYTr8BFvC4a4Tb19Ko4475Q-G6Y34yy20f2uIFWFdcd7NWjmaht0KQNxVSAifH_uFwfmCbO-rR_6dO13cDPSktgNsGD1YA2ZeTq7nJAWfUgWvMcTbXdRFs5g111D22NhvcXf5fHmjTmfTORXsGQsqiAVZj6xsmhvcoHJtrumql4exV1_YFyrn-g11XhziLT5DnqnIzU_LOO4zd_zU-0_78MEN-vCW4XbZhmD6nwckjqwjIYxSpYxdPWH_p4oPFKqRx7ktQY7gxN59rQM2Gs8My4GRaNxrabz9-wIhMDjIlF_fTSjt2_yT4aXV89DG7IslMDGYOPcODLC8NEZnWiqcyUkbkudCZzkTOWcmZ5akQiUlmUEsLHVOUlNdLStIhjKVO4fqFe89KYA4RLzTPFM64g7IdgyUpa5jqxoih5UpSGH6I9D1M1XYhxVEv0DtHvBWzrgSR04PEj52sc14Nh6xPzyq-Cyk_2ys6fLz19hHYCUiEh8Bj1XNuZEwhSnDxdrrh3UdbnzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+37th+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society+%28EMBC%29&rft.atitle=Thermogram+breast+cancer+prediction+approach+based+on+Neutrosophic+sets+and+fuzzy+c-means+algorithm&rft.au=Gaber%2C+Tarek&rft.au=Ismail%2C+Gehad&rft.au=Anter%2C+Ahmed&rft.au=Soliman%2C+Mona&rft.date=2015-08-01&rft.pub=IEEE&rft.issn=1094-687X&rft.spage=4254&rft.epage=4257&rft_id=info:doi/10.1109%2FEMBC.2015.7319334&rft_id=info%3Apmid%2F26737234&rft.externalDocID=7319334 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-687X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-687X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-687X&client=summon |