BeBOP - Combining Reactive Planning and Bayesian Optimization to Solve Robotic Manipulation Tasks

Robotic systems for manipulation tasks are increasingly expected to be easy to configure for new tasks. While in the past, robot programs were often written statically and tuned manually, the current, faster transition times call for robust, modular and interpretable solutions that also allow a robo...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE International Conference on Robotics and Automation (ICRA) pp. 16459 - 16466
Main Authors Styrud, Jonathan, Mayr, Matthias, Hellsten, Erik, Krueger, Volker, Smith, Christian
Format Conference Proceeding
LanguageEnglish
Published IEEE 13.05.2024
Subjects
Online AccessGet full text
DOI10.1109/ICRA57147.2024.10611468

Cover

Abstract Robotic systems for manipulation tasks are increasingly expected to be easy to configure for new tasks. While in the past, robot programs were often written statically and tuned manually, the current, faster transition times call for robust, modular and interpretable solutions that also allow a robotic system to learn how to perform a task. We propose the method Behavior-based Bayesian Optimization and Planning (BeBOP) that combines two approaches for generating behavior trees: we build the structure using a reactive planner and learn specific parameters with Bayesian optimization. The method is evaluated on a set of robotic manipulation benchmarks and is shown to outperform state-of-the-art reinforcement learning algorithms by being up to 46 times faster while simultaneously being less dependent on reward shaping. We also propose a modification to the uncertainty estimate for the random forest surrogate models that drastically improves the results.
AbstractList Robotic systems for manipulation tasks are increasingly expected to be easy to configure for new tasks. While in the past, robot programs were often written statically and tuned manually, the current, faster transition times call for robust, modular and interpretable solutions that also allow a robotic system to learn how to perform a task. We propose the method Behavior-based Bayesian Optimization and Planning (BeBOP) that combines two approaches for generating behavior trees: we build the structure using a reactive planner and learn specific parameters with Bayesian optimization. The method is evaluated on a set of robotic manipulation benchmarks and is shown to outperform state-of-the-art reinforcement learning algorithms by being up to 46 times faster while simultaneously being less dependent on reward shaping. We also propose a modification to the uncertainty estimate for the random forest surrogate models that drastically improves the results.
Author Styrud, Jonathan
Krueger, Volker
Mayr, Matthias
Smith, Christian
Hellsten, Erik
Author_xml – sequence: 1
  givenname: Jonathan
  surname: Styrud
  fullname: Styrud, Jonathan
  organization: ABB Robotics,Västerảs,Sweden
– sequence: 2
  givenname: Matthias
  surname: Mayr
  fullname: Mayr, Matthias
  organization: Lund University,Lund,Sweden
– sequence: 3
  givenname: Erik
  surname: Hellsten
  fullname: Hellsten, Erik
  organization: Lund University,Lund,Sweden
– sequence: 4
  givenname: Volker
  surname: Krueger
  fullname: Krueger, Volker
  organization: Lund University,Lund,Sweden
– sequence: 5
  givenname: Christian
  surname: Smith
  fullname: Smith, Christian
  organization: Royal Institute of Technology (KTH),Division of Robotics, Perception and Learning,Stockholm,Sweden
BookMark eNo1j91Kw0AUhFfQC619A8F9gcSc7G5297IJ_hQqKTH35SQ5kcVktzRRqE9vsXo1w3zDwNywSx88MXYPSQyQ2Id1Ua2UBqnjNEllDEkGIDNzwZZWWyNUIoxUWl4zzCkvtzziRRgb551_5xVhO7sv4tsB_W-CvuM5Hmly6Hm5n93ovnF2wfM58LcwnLpVaMLsWv6K3u0_hzOtcfqYbtlVj8NEyz9dsPrpsS5eok35vC5Wm8iJRM6RkjazBLLRoLTIUHVGQWNlb1Ik3aUaCPpWd9Ja6LpGGJB48laRgtZosWB351lHRLv9wY14OO7-j4sf7fhSZw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICRA57147.2024.10611468
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350384574
EndPage 16466
ExternalDocumentID 10611468
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i304t-54969e14b715736a5d851b94f82ae7d271e1fc7d4991ddb3814a49995e51c873
IEDL.DBID RIE
IngestDate Wed Aug 14 05:40:31 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i304t-54969e14b715736a5d851b94f82ae7d271e1fc7d4991ddb3814a49995e51c873
PageCount 8
ParticipantIDs ieee_primary_10611468
PublicationCentury 2000
PublicationDate 2024-May-13
PublicationDateYYYYMMDD 2024-05-13
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-13
  day: 13
PublicationDecade 2020
PublicationTitle 2024 IEEE International Conference on Robotics and Automation (ICRA)
PublicationTitleAbbrev ICRA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9024937
Snippet Robotic systems for manipulation tasks are increasingly expected to be easy to configure for new tasks. While in the past, robot programs were often written...
SourceID ieee
SourceType Publisher
StartPage 16459
SubjectTerms Bayes methods
Bayesian Optimization
Behavior Trees
Benchmark testing
Planning
Robotic manipulation
Service robots
Task analysis
Task Planning
Time measurement
Uncertainty
Title BeBOP - Combining Reactive Planning and Bayesian Optimization to Solve Robotic Manipulation Tasks
URI https://ieeexplore.ieee.org/document/10611468
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl7TNW3SdEc3HFPYD-aE3cZL8gZj2orrDvrXm3StoiB4KyWQkpe8977mfe8j5CaNIFI6AuZSa82E1JJBDCnzDXGjcBkbE3s28nCUDJ7Ew1zOK7J6yYVBxLL4DAP_WN7l29xs_a-ytocvnirUIA2VJjuyVlWzxcNO-743vZWKC-VgXySCevQP3ZQybPQPyKiecFctsg62hQ7Mx69ejP_-okPS-mbo0clX7Dkie5gdE-hidzyhjLpDrkvhBzpFKB0arcWJKGSWduEdPXmSjp3DeKmYmLTI6WP-7MZOc527_USHkK1qeS86g8160yKz_t2sN2CVhAJbxaEomEN_SQe50IpLFScgrcuwdEcsnY1Q2Uhx5EujrMM93FrtwrcAj4EkSm5SFZ-QZpZneEpoaH3fHuOyK4GiYxxMSgHDEMBTXaWyZ6Tll2fxumuSsahX5vyP9xdk31vJX8Tz-JI0i7ctXrn4Xujr0q6fGselGA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86D3pSceK3OXhN17TJ0h7dcGy6L2aF3UY-3mBMW3HdQf96k65VFARvpQRS8pL33q95v_dD6CYKZCBUIIlNrRVhXHEiQxkR1xA38Oeh1qFjIw-Gze4Tu5_yaUlWL7gwAFAUn4HnHou7fJPptftV1nDwxVGFttEOZ4zxDV2rrNqiftzotSe3XFAmLPALmFeN_6GcUgSOzj4aVlNu6kWW3jpXnv741Y3x3990gOrfHD08_oo-h2gL0iMkW9AajTHB9pirQvoBT0AWLg1X8kRYpga35Ds4-iQeWZfxUnIxcZ7hx-zZjp1kKrM7Cg9kuqgEvnAiV8tVHSWdu6TdJaWIAlmEPsuJxX_NGChTgnIRNiU3NsdSMZtbK4EwgaBA51oYi3yoMcoGcCYdCuLAqY5EeIxqaZbCCcK-cZ17tM2vGLBYW6AUSfB9KR3ZlQtziupueWavmzYZs2plzv54f412u8mgP-v3hg_naM9ZzF3L0_AC1fK3NVzaaJ-rq8LGn_BAqGU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=BeBOP+-+Combining+Reactive+Planning+and+Bayesian+Optimization+to+Solve+Robotic+Manipulation+Tasks&rft.au=Styrud%2C+Jonathan&rft.au=Mayr%2C+Matthias&rft.au=Hellsten%2C+Erik&rft.au=Krueger%2C+Volker&rft.date=2024-05-13&rft.pub=IEEE&rft.spage=16459&rft.epage=16466&rft_id=info:doi/10.1109%2FICRA57147.2024.10611468&rft.externalDocID=10611468