A new strategy to quantify uncertainties of wavelet-GRNN-PSO based solar PV power forecasts using bootstrap confidence intervals
Quantification of uncertainties associated with solar photovoltaic (PV) power generation forecasts is essential for optimal management of solar PV farms and their successful integration into the grid. These uncertainties can be appropriately quantified and represented in the form of probabilistic ra...
        Saved in:
      
    
          | Published in | 2015 IEEE Power & Energy Society General Meeting pp. 1 - 5 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Conference Proceeding | 
| Language | English Japanese  | 
| Published | 
            IEEE
    
        01.07.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1932-5517 | 
| DOI | 10.1109/PESGM.2015.7286233 | 
Cover
| Abstract | Quantification of uncertainties associated with solar photovoltaic (PV) power generation forecasts is essential for optimal management of solar PV farms and their successful integration into the grid. These uncertainties can be appropriately quantified and represented in the form of probabilistic rather than deterministic. This paper introduces bootstrap confidence intervals (CIs) to quantify uncertainty estimation of PV power forecasts obtained from the proposed deterministic hybrid intelligent model that uses an integrated framework of wavelet transform (WT) and a generalized regression neural network (GRNN), which is optimized by population-based stochastic particle swarm optimization (PSO) algorithm. This particular combination of deterministic hybrid intelligent model and bootstrap method for uncertainty estimation has not been applied in the area of solar PV forecasting. Test results demonstrate the high degree of efficiency of the proposed methods over the tested alternatives in multiple seasons including sunny days (SDs), cloudy days (CDs), and rainy days (RDs). | 
    
|---|---|
| AbstractList | Quantification of uncertainties associated with solar photovoltaic (PV) power generation forecasts is essential for optimal management of solar PV farms and their successful integration into the grid. These uncertainties can be appropriately quantified and represented in the form of probabilistic rather than deterministic. This paper introduces bootstrap confidence intervals (CIs) to quantify uncertainty estimation of PV power forecasts obtained from the proposed deterministic hybrid intelligent model that uses an integrated framework of wavelet transform (WT) and a generalized regression neural network (GRNN), which is optimized by population-based stochastic particle swarm optimization (PSO) algorithm. This particular combination of deterministic hybrid intelligent model and bootstrap method for uncertainty estimation has not been applied in the area of solar PV forecasting. Test results demonstrate the high degree of efficiency of the proposed methods over the tested alternatives in multiple seasons including sunny days (SDs), cloudy days (CDs), and rainy days (RDs). | 
    
| Author | Haque, Ashraf Ul Yona, Atsushi AlHakeem, Donna Tzu-Liang Tseng Senjyu, Tomonobu Mandal, Paras  | 
    
| Author_xml | – sequence: 1 givenname: Donna surname: AlHakeem fullname: AlHakeem, Donna email: dialhakeem@miners.utep.edu organization: Dept. of Electr. & Comput. Eng. & Regional Cyber & Energy Security Center, Univ. of Texas at El Paso, El Paso, TX, USA – sequence: 2 givenname: Paras surname: Mandal fullname: Mandal, Paras email: pmandal@utep.edu organization: Dept. of Electr. & Comput. Eng. & Regional Cyber & Energy Security Center, Univ. of Texas at El Paso, El Paso, TX, USA – sequence: 3 givenname: Ashraf Ul surname: Haque fullname: Haque, Ashraf Ul email: a_haque@ieee.org organization: Power Study Group, Teshmont Consultants LP, Calgary, AB, Canada – sequence: 4 givenname: Atsushi surname: Yona fullname: Yona, Atsushi email: yona@tec.u-ryukyu.ac.jp organization: Dept. of Electr. & Electron. Eng., Univ. of the Ryukyus, Okinawa, Japan – sequence: 5 givenname: Tomonobu surname: Senjyu fullname: Senjyu, Tomonobu email: b985542@tec.u-ryukyu.ac.jp organization: Dept. of Electr. & Electron. Eng., Univ. of the Ryukyus, Okinawa, Japan – sequence: 6 surname: Tzu-Liang Tseng fullname: Tzu-Liang Tseng email: btseng@utep.edu organization: Dept. of Ind., Univ. of Texas at El Paso, El Paso, TX, USA  | 
    
| BookMark | eNotkM1OAjEUhWuCiYC8gG7uCwz2b6YzS0IQTRCIqFvSljukBqfYFgg7H90xcjZfzuZLzumRTuMbJOSO0SFjtHpYTlbTlyGnLB8qXhZciCsyqFTJZKFESSWtOqTLKsGzPGfqhvRi_KQ0F0zyLvkZQYMniCnohNszJA_fB90kV5_h0FgMSbu2YQRfw0kfcYcpm77O59lytQCjI24g-p0OsPyAvT9hgNoHtDqmCIfomi0Y79Offw_WN7XbYKuFVorhqHfxllzXLXBwYZ-8P07exk_ZbDF9Ho9mmRNUpKysa2GUMtZQIwvORcmZlVxjO1cbRSktNmWhbc4Vz6nlmrUppKgkt1KhEn1y_-91iLjeB_elw3l9OUz8AiwKYm0 | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IH CBEJK RIE RIO  | 
    
| DOI | 10.1109/PESGM.2015.7286233 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISBN | 9781467380409 1467380407  | 
    
| EndPage | 5 | 
    
| ExternalDocumentID | 7286233 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IM AAJGR ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS  | 
    
| ID | FETCH-LOGICAL-i303t-8ff3b77bcb0b46223821c42ae233ab70006d86ac527250c2a1111643942c47e73 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1932-5517 | 
    
| IngestDate | Wed Aug 27 02:43:02 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Language | English Japanese  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i303t-8ff3b77bcb0b46223821c42ae233ab70006d86ac527250c2a1111643942c47e73 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | ieee_primary_7286233 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20150701 | 
    
| PublicationDateYYYYMMDD | 2015-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2015 text: 20150701 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 2015 IEEE Power & Energy Society General Meeting | 
    
| PublicationTitleAbbrev | PESGM | 
    
| PublicationYear | 2015 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0053142 ssj0001767222  | 
    
| Score | 2.1295733 | 
    
| Snippet | Quantification of uncertainties associated with solar photovoltaic (PV) power generation forecasts is essential for optimal management of solar PV farms and... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | Artificial neural networks Bootstrap Forecasting generalized regression neural network particle swarm optimization Predictive models Probabilistic logic solar PV power forecasting Uncertainty wavelet transform Weather forecasting  | 
    
| Title | A new strategy to quantify uncertainties of wavelet-GRNN-PSO based solar PV power forecasts using bootstrap confidence intervals | 
    
| URI | https://ieeexplore.ieee.org/document/7286233 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwFLRoT3BhK2LXO3DEJXXcODki1EVILRGbuCHbcRBCagpJhcqJT-e9pAsgDtyiHCzHecqMnXkzjJ3IFDkxIjlvCS259G2bG60d91Krw8QTURBRc_JgGPTv5OVD-2GFnS56YZxzpfjMNemy_JefZHZCR2VnSiD_9v0aq6kwqHq1lucpKlBCLKyjsLTK4BziJxxZgZo3zHjRWdy56Q1I1dVuzkb8Ea1SIkt3nQ3mc6oEJS_NSWGa9uOXXeN_J73BGssePogX6LTJVtxoi619sx_cZp_ngKQa8sqgdgpFBq8TTeqhKSDcVWIBMlyFLIV3TREVBe9dD4c8vrkCwr8EctoaQ3wPY4pbA6TAzuq8yIEE9U-AHL6g8ceA--60CjCF51JniXXfYHfdzu1Fn88SGfgzQl3BwzT1jVLGGs_IAJlFKFpWCu3wAbVRhH1JGGjbFgqplRWaPsjEeaSwUjnl77D6KBu5XQbSc5HURqcRUiDKNowsUp2WTkPjJcKTe2yb1vJxXJluPM6Wcf_v2wdsld5npaM9ZPXibeKOkC0U5rgsky8Zpbzj | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsMwELR4HIALjxbxZg8ccUkdJ06OCAEF2lJBQb1VtuMghNQWmgrBiU9nN2nLQxy4RTlYjrPKjJ3ZGcYOZIqcGJGcV4WWXPo24EZrx73U6ijxRBzG1JzcaIa1O3nZCToz7HDaC-Ocy8VnrkKX-b_8pG9HdFR2pATyb9-fZfOBlDIourW-TlRUqISYmkdhceXROcRQOPICNWmZ8eKj1unteYN0XUFlPOaPcJUcW86WWWMyq0JS8lQZZaZi338ZNv532ius_NXFB60pPq2yGddbY0vfDAhL7OMYkFbDsLCofYOsD88jTfqhN0DAK-QCZLkK_RReNYVUZPz8ptnkrdtrIARMYEibY2jdw4AC1wBJsLN6mA2BJPUPgCw-o_EHgDvvtIgwhcdcaYmVX2Z3Z6ftkxofZzLwRwS7jEdp6huljDWekSFyi0hUrRTa4QNqowj9kijUNhAKyZUVmj7JxHqksFI55a-zuV6_5zYYSM_FUhudxkiCKN0wtkh2qjqNjJcIT26yEq1ld1DYbnTHy7j19-19tlBrN-rd-kXzapst0rstVLU7bC57Gbld5A6Z2ctL5hMrdcAw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+Power+%26+Energy+Society+General+Meeting&rft.atitle=A+new+strategy+to+quantify+uncertainties+of+wavelet-GRNN-PSO+based+solar+PV+power+forecasts+using+bootstrap+confidence+intervals&rft.au=AlHakeem%2C+Donna&rft.au=Mandal%2C+Paras&rft.au=Haque%2C+Ashraf+Ul&rft.au=Yona%2C+Atsushi&rft.date=2015-07-01&rft.pub=IEEE&rft.issn=1932-5517&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FPESGM.2015.7286233&rft.externalDocID=7286233 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-5517&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-5517&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-5517&client=summon |