A new strategy to quantify uncertainties of wavelet-GRNN-PSO based solar PV power forecasts using bootstrap confidence intervals

Quantification of uncertainties associated with solar photovoltaic (PV) power generation forecasts is essential for optimal management of solar PV farms and their successful integration into the grid. These uncertainties can be appropriately quantified and represented in the form of probabilistic ra...

Full description

Saved in:
Bibliographic Details
Published in2015 IEEE Power & Energy Society General Meeting pp. 1 - 5
Main Authors AlHakeem, Donna, Mandal, Paras, Haque, Ashraf Ul, Yona, Atsushi, Senjyu, Tomonobu, Tzu-Liang Tseng
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.07.2015
Subjects
Online AccessGet full text
ISSN1932-5517
DOI10.1109/PESGM.2015.7286233

Cover

Abstract Quantification of uncertainties associated with solar photovoltaic (PV) power generation forecasts is essential for optimal management of solar PV farms and their successful integration into the grid. These uncertainties can be appropriately quantified and represented in the form of probabilistic rather than deterministic. This paper introduces bootstrap confidence intervals (CIs) to quantify uncertainty estimation of PV power forecasts obtained from the proposed deterministic hybrid intelligent model that uses an integrated framework of wavelet transform (WT) and a generalized regression neural network (GRNN), which is optimized by population-based stochastic particle swarm optimization (PSO) algorithm. This particular combination of deterministic hybrid intelligent model and bootstrap method for uncertainty estimation has not been applied in the area of solar PV forecasting. Test results demonstrate the high degree of efficiency of the proposed methods over the tested alternatives in multiple seasons including sunny days (SDs), cloudy days (CDs), and rainy days (RDs).
AbstractList Quantification of uncertainties associated with solar photovoltaic (PV) power generation forecasts is essential for optimal management of solar PV farms and their successful integration into the grid. These uncertainties can be appropriately quantified and represented in the form of probabilistic rather than deterministic. This paper introduces bootstrap confidence intervals (CIs) to quantify uncertainty estimation of PV power forecasts obtained from the proposed deterministic hybrid intelligent model that uses an integrated framework of wavelet transform (WT) and a generalized regression neural network (GRNN), which is optimized by population-based stochastic particle swarm optimization (PSO) algorithm. This particular combination of deterministic hybrid intelligent model and bootstrap method for uncertainty estimation has not been applied in the area of solar PV forecasting. Test results demonstrate the high degree of efficiency of the proposed methods over the tested alternatives in multiple seasons including sunny days (SDs), cloudy days (CDs), and rainy days (RDs).
Author Haque, Ashraf Ul
Yona, Atsushi
AlHakeem, Donna
Tzu-Liang Tseng
Senjyu, Tomonobu
Mandal, Paras
Author_xml – sequence: 1
  givenname: Donna
  surname: AlHakeem
  fullname: AlHakeem, Donna
  email: dialhakeem@miners.utep.edu
  organization: Dept. of Electr. & Comput. Eng. & Regional Cyber & Energy Security Center, Univ. of Texas at El Paso, El Paso, TX, USA
– sequence: 2
  givenname: Paras
  surname: Mandal
  fullname: Mandal, Paras
  email: pmandal@utep.edu
  organization: Dept. of Electr. & Comput. Eng. & Regional Cyber & Energy Security Center, Univ. of Texas at El Paso, El Paso, TX, USA
– sequence: 3
  givenname: Ashraf Ul
  surname: Haque
  fullname: Haque, Ashraf Ul
  email: a_haque@ieee.org
  organization: Power Study Group, Teshmont Consultants LP, Calgary, AB, Canada
– sequence: 4
  givenname: Atsushi
  surname: Yona
  fullname: Yona, Atsushi
  email: yona@tec.u-ryukyu.ac.jp
  organization: Dept. of Electr. & Electron. Eng., Univ. of the Ryukyus, Okinawa, Japan
– sequence: 5
  givenname: Tomonobu
  surname: Senjyu
  fullname: Senjyu, Tomonobu
  email: b985542@tec.u-ryukyu.ac.jp
  organization: Dept. of Electr. & Electron. Eng., Univ. of the Ryukyus, Okinawa, Japan
– sequence: 6
  surname: Tzu-Liang Tseng
  fullname: Tzu-Liang Tseng
  email: btseng@utep.edu
  organization: Dept. of Ind., Univ. of Texas at El Paso, El Paso, TX, USA
BookMark eNotkM1OAjEUhWuCiYC8gG7uCwz2b6YzS0IQTRCIqFvSljukBqfYFgg7H90xcjZfzuZLzumRTuMbJOSO0SFjtHpYTlbTlyGnLB8qXhZciCsyqFTJZKFESSWtOqTLKsGzPGfqhvRi_KQ0F0zyLvkZQYMniCnohNszJA_fB90kV5_h0FgMSbu2YQRfw0kfcYcpm77O59lytQCjI24g-p0OsPyAvT9hgNoHtDqmCIfomi0Y79Offw_WN7XbYKuFVorhqHfxllzXLXBwYZ-8P07exk_ZbDF9Ho9mmRNUpKysa2GUMtZQIwvORcmZlVxjO1cbRSktNmWhbc4Vz6nlmrUppKgkt1KhEn1y_-91iLjeB_elw3l9OUz8AiwKYm0
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/PESGM.2015.7286233
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781467380409
1467380407
EndPage 5
ExternalDocumentID 7286233
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IM
AAJGR
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i303t-8ff3b77bcb0b46223821c42ae233ab70006d86ac527250c2a1111643942c47e73
IEDL.DBID RIE
ISSN 1932-5517
IngestDate Wed Aug 27 02:43:02 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i303t-8ff3b77bcb0b46223821c42ae233ab70006d86ac527250c2a1111643942c47e73
PageCount 5
ParticipantIDs ieee_primary_7286233
PublicationCentury 2000
PublicationDate 20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 20150701
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE Power & Energy Society General Meeting
PublicationTitleAbbrev PESGM
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0053142
ssj0001767222
Score 2.1295733
Snippet Quantification of uncertainties associated with solar photovoltaic (PV) power generation forecasts is essential for optimal management of solar PV farms and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial neural networks
Bootstrap
Forecasting
generalized regression neural network
particle swarm optimization
Predictive models
Probabilistic logic
solar PV power forecasting
Uncertainty
wavelet transform
Weather forecasting
Title A new strategy to quantify uncertainties of wavelet-GRNN-PSO based solar PV power forecasts using bootstrap confidence intervals
URI https://ieeexplore.ieee.org/document/7286233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwFLRoT3BhK2LXO3DEJXXcODki1EVILRGbuCHbcRBCagpJhcqJT-e9pAsgDtyiHCzHecqMnXkzjJ3IFDkxIjlvCS259G2bG60d91Krw8QTURBRc_JgGPTv5OVD-2GFnS56YZxzpfjMNemy_JefZHZCR2VnSiD_9v0aq6kwqHq1lucpKlBCLKyjsLTK4BziJxxZgZo3zHjRWdy56Q1I1dVuzkb8Ea1SIkt3nQ3mc6oEJS_NSWGa9uOXXeN_J73BGssePogX6LTJVtxoi619sx_cZp_ngKQa8sqgdgpFBq8TTeqhKSDcVWIBMlyFLIV3TREVBe9dD4c8vrkCwr8EctoaQ3wPY4pbA6TAzuq8yIEE9U-AHL6g8ceA--60CjCF51JniXXfYHfdzu1Fn88SGfgzQl3BwzT1jVLGGs_IAJlFKFpWCu3wAbVRhH1JGGjbFgqplRWaPsjEeaSwUjnl77D6KBu5XQbSc5HURqcRUiDKNowsUp2WTkPjJcKTe2yb1vJxXJluPM6Wcf_v2wdsld5npaM9ZPXibeKOkC0U5rgsky8Zpbzj
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsMwELR4HIALjxbxZg8ccUkdJ06OCAEF2lJBQb1VtuMghNQWmgrBiU9nN2nLQxy4RTlYjrPKjJ3ZGcYOZIqcGJGcV4WWXPo24EZrx73U6ijxRBzG1JzcaIa1O3nZCToz7HDaC-Ocy8VnrkKX-b_8pG9HdFR2pATyb9-fZfOBlDIourW-TlRUqISYmkdhceXROcRQOPICNWmZ8eKj1unteYN0XUFlPOaPcJUcW86WWWMyq0JS8lQZZaZi338ZNv532ius_NXFB60pPq2yGddbY0vfDAhL7OMYkFbDsLCofYOsD88jTfqhN0DAK-QCZLkK_RReNYVUZPz8ptnkrdtrIARMYEibY2jdw4AC1wBJsLN6mA2BJPUPgCw-o_EHgDvvtIgwhcdcaYmVX2Z3Z6ftkxofZzLwRwS7jEdp6huljDWekSFyi0hUrRTa4QNqowj9kijUNhAKyZUVmj7JxHqksFI55a-zuV6_5zYYSM_FUhudxkiCKN0wtkh2qjqNjJcIT26yEq1ld1DYbnTHy7j19-19tlBrN-rd-kXzapst0rstVLU7bC57Gbld5A6Z2ctL5hMrdcAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+Power+%26+Energy+Society+General+Meeting&rft.atitle=A+new+strategy+to+quantify+uncertainties+of+wavelet-GRNN-PSO+based+solar+PV+power+forecasts+using+bootstrap+confidence+intervals&rft.au=AlHakeem%2C+Donna&rft.au=Mandal%2C+Paras&rft.au=Haque%2C+Ashraf+Ul&rft.au=Yona%2C+Atsushi&rft.date=2015-07-01&rft.pub=IEEE&rft.issn=1932-5517&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FPESGM.2015.7286233&rft.externalDocID=7286233
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-5517&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-5517&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-5517&client=summon