Image Segmentation Based Graph-Cut Approach to Fast Color Image Coding via Graph Fourier Transform

Colorization-based image coding is a technique to compress chrominance information of an image using a colorization technique. The conventional algorithm applies graph Fourier transform to the colorization-based coding. In this algorithm, several pixels on the image are defined as vertices of the gr...

Full description

Saved in:
Bibliographic Details
Published inVisual communications and image processing (Online) pp. 1 - 4
Main Authors Abiko, Kaito, Uruma, Kazuniri, Sugawara, Mamoru, Hangai, Seiichiro, Hamamoto, Takayuki
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.12.2019
Subjects
Online AccessGet full text
ISSN2642-9357
DOI10.1109/VCIP47243.2019.8966021

Cover

Abstract Colorization-based image coding is a technique to compress chrominance information of an image using a colorization technique. The conventional algorithm applies graph Fourier transform to the colorization-based coding. In this algorithm, several pixels on the image are defined as vertices of the graph, and the chrominance values of that pixels are set as graph signals. Then, the graph signal corresponding to the several chrominance values on the image is transformed to the graph spectrum based on the graph Fourier transform, and the graph spectrum is compressed and stored. Because the stored graph spectrum gives the graph signal on the image based on the inverse graph Fourier transform in decoding phase, the color image is recovered from the luminance image and the several chrominance values corresponding to the graph signal. However, high calculation time is required to perform graph Fourier transform, and therefore, this paper proposes a fast graph Fourier transform to improve the conventional colorization-based image coding algorithm. In numerical examples, although the PSNR value is decreased 0.3 dB, the proposed algorithm is 16.8 times faster than the conventional method.
AbstractList Colorization-based image coding is a technique to compress chrominance information of an image using a colorization technique. The conventional algorithm applies graph Fourier transform to the colorization-based coding. In this algorithm, several pixels on the image are defined as vertices of the graph, and the chrominance values of that pixels are set as graph signals. Then, the graph signal corresponding to the several chrominance values on the image is transformed to the graph spectrum based on the graph Fourier transform, and the graph spectrum is compressed and stored. Because the stored graph spectrum gives the graph signal on the image based on the inverse graph Fourier transform in decoding phase, the color image is recovered from the luminance image and the several chrominance values corresponding to the graph signal. However, high calculation time is required to perform graph Fourier transform, and therefore, this paper proposes a fast graph Fourier transform to improve the conventional colorization-based image coding algorithm. In numerical examples, although the PSNR value is decreased 0.3 dB, the proposed algorithm is 16.8 times faster than the conventional method.
Author Abiko, Kaito
Uruma, Kazuniri
Hangai, Seiichiro
Hamamoto, Takayuki
Sugawara, Mamoru
Author_xml – sequence: 1
  givenname: Kaito
  surname: Abiko
  fullname: Abiko, Kaito
  organization: Tokyo University of science,Tokyo,Japan
– sequence: 2
  givenname: Kazuniri
  surname: Uruma
  fullname: Uruma, Kazuniri
  organization: Kogakuin University,Tokyo,Japan
– sequence: 3
  givenname: Mamoru
  surname: Sugawara
  fullname: Sugawara, Mamoru
  organization: Tokyo University of science,Tokyo,Japan
– sequence: 4
  givenname: Seiichiro
  surname: Hangai
  fullname: Hangai, Seiichiro
  organization: Tokyo University of science,Tokyo,Japan
– sequence: 5
  givenname: Takayuki
  surname: Hamamoto
  fullname: Hamamoto, Takayuki
  organization: Tokyo University of science,Tokyo,Japan
BookMark eNotkNFKwzAUhqMouM09gSB5gc6cJE17LmdxczBQcHo7ztrTLbI2Je0E315hu_quvo-ffyxu2tCyEI-gZgAKn76K1bvNtDUzrQBnOTqnNFyJMWQ6B5NpY67FSDurEzRpdiemff-tlNIpGI35SOxWDe1ZfvC-4XagwYdWPlPPlVxG6g5JcRrkvOtioPIghyAX1A-yCMcQ5dksQuXbvfzxdDbkIpyi5yg3kdq-DrG5F7c1HXueXjgRn4uXTfGarN-Wq2K-Tvz_kiHZZVhXNVQOS0PWYs5lpQl2kNqy1KzqWkFpkclmOaBjUip17HIDCMoimol4OHc9M2-76BuKv9vLJeYPxN1XeQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/VCIP47243.2019.8966021
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1728137233
9781728137230
EISSN 2642-9357
EndPage 4
ExternalDocumentID 8966021
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i298t-b79fdf1d69c3a4498ecd2a1b154cc2e0ff01c49ea478196ea0056e68319104993
IEDL.DBID RIE
IngestDate Wed Aug 27 02:32:23 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i298t-b79fdf1d69c3a4498ecd2a1b154cc2e0ff01c49ea478196ea0056e68319104993
PageCount 4
ParticipantIDs ieee_primary_8966021
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Visual communications and image processing (Online)
PublicationTitleAbbrev VCIP
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002513298
Score 2.1476479
Snippet Colorization-based image coding is a technique to compress chrominance information of an image using a colorization technique. The conventional algorithm...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Color
colorization
Decoding
fast algorithm
Fourier transforms
graph Fourier transform
Image coding
image compression
Image segmentation
Laplace equations
Signal processing algorithms
signal processing on graphs
Title Image Segmentation Based Graph-Cut Approach to Fast Color Image Coding via Graph Fourier Transform
URI https://ieeexplore.ieee.org/document/8966021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbHhhxGyfOh0eICC1SUSVa1K2ynQuqUBPUJgz8euw4LQIxsEWRTo7O8b2zfe8dQteOoq4UEBDglBMmKCMyZYJ4KWS-H6XCAXOjO34KhjP2OPfnLXSz48IAQF18Bn3zWN_lp4WqzFHZIDJSkoY1vhdGgeVq7c5TNE57Lo8aEjB1-OAlHk1Y6DLPFHDpP8Ia_-iiUoNI0kHj7fC2duStX5Wyrz5_KTP-9_sOUO-brocnOyA6RC3Ij1CnyS9xs3o3XSRHKx098DO8rhrGUY7vNIql-MHIVpO4KvFtozGOywInYlPiWEfHNbaWcWEGwB9LYS1wYjve4ek2_e2hWXI_jYek6bFAltpbJZEhz9KMpgFXnmCMR6BSV1CpMyulXHCyzKGKcRCGksoDEEY7FIJIr1xqdkveMWrnRQ4nCOu9jZMp4I4PjHka8wI96Y4npHJ1kPDDU9Q1Llu8WxmNReOts79fn6N9M222cuQCtct1BZca_0t5VU_8F7LAr2E
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSECsbf9uDRQrd1Yz3q4gQFQiIYbqTt3gwxbAY2D_71ttvAaDx4a5q8tHlt33tt3_c9hK6psmwpwCPALU6YsBiRERPEiSB2XT8SFMyP7nDk9abscebOauhmi4UBgCL5DNqmWfzlR6nKzVNZxzdUkgY1vuMyxtwSrbV9UdGe2rG5X8GALco7L0F_zLo2c0wKl94TpfiPOiqFGwkbaLiZQJk98tbOM9lWn7-4Gf87w33U-gbs4fHWFR2gGiSHqFFFmLg6v-smkv2lth_4GV6XFeYowXfaj0X4wRBXkyDP8G3FMo6zFIdineFA28cVLiWD1AyAPxailMBhWfMOTzYBcAtNw_tJ0CNVlQWy0NrKiOzyOIqtyOPKEYxxH1RkC0vq2EopG2gcU0sxDsKAUrkHwrCHgufrs2uZ-5JzhOpJmsAxwvp2Q2MFnLrAmKO9nqeXnTpCKlubCbd7gppGZfP3kkhjXmnr9O_uK7TbmwwH80F_9HSG9swSlnkk56ierXK40NFAJi-LTfAFEcSyrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Visual+communications+and+image+processing+%28Online%29&rft.atitle=Image+Segmentation+Based+Graph-Cut+Approach+to+Fast+Color+Image+Coding+via+Graph+Fourier+Transform&rft.au=Abiko%2C+Kaito&rft.au=Uruma%2C+Kazuniri&rft.au=Sugawara%2C+Mamoru&rft.au=Hangai%2C+Seiichiro&rft.date=2019-12-01&rft.pub=IEEE&rft.eissn=2642-9357&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FVCIP47243.2019.8966021&rft.externalDocID=8966021