Performance Evaluation of Age Estimation from T1-Weighted Images Using Brain Local Features and CNN
The age of a subject can be estimated from the brain MR image by evaluating morphological changes in healthy aging. We consider using two-types of local features to estimate the age from T1-weighted images: handcrafted and automatically extracted features in this paper. The handcrafted brain local f...
Saved in:
| Published in | Conference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.) Vol. 2018; pp. 694 - 697 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Conference Proceeding Journal Article |
| Language | English |
| Published |
United States
IEEE
01.07.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1557-170X 1558-4615 |
| DOI | 10.1109/EMBC.2018.8512443 |
Cover
| Abstract | The age of a subject can be estimated from the brain MR image by evaluating morphological changes in healthy aging. We consider using two-types of local features to estimate the age from T1-weighted images: handcrafted and automatically extracted features in this paper. The handcrafted brain local features are defined by volumes of brain tissues parcellated into 90 or 1,024 local regions defined by the automated anatomical labeling atlas. The automatically extracted features are obtained by using the convolutional neural network (CNN). This paper explores the difference between the handcrafted features and the automatically extracted features. Through a set of experiments using 1,099 T1-weighted images from a Japanese MR image database, we demonstrate the effectiveness of the proposed methods, analyze the effectiveness of each local region for age estimation and discuss its medical implication. |
|---|---|
| AbstractList | The age of a subject can be estimated from the brain MR image by evaluating morphological changes in healthy aging. We consider using two-types of local features to estimate the age from T1-weighted images: handcrafted and automatically extracted features in this paper. The handcrafted brain local features are defined by volumes of brain tissues parcellated into 90 or 1,024 local regions defined by the automated anatomical labeling atlas. The automatically extracted features are obtained by using the convolutional neural network (CNN). This paper explores the difference between the handcrafted features and the automatically extracted features. Through a set of experiments using 1,099 T1-weighted images from a Japanese MR image database, we demonstrate the effectiveness of the proposed methods, analyze the effectiveness of each local region for age estimation and discuss its medical implication. |
| Author | Taki, Yasuyuki Fujimoto, Ryuichi Fukuda, Hiroshi Hwann-Tzong Chen Ito, Koichi Kai Wu Aoki, Takafumi Sato, Kazunori Tzu-Wei Huang |
| Author_xml | – sequence: 1 givenname: Koichi surname: Ito fullname: Ito, Koichi email: ito@aoki.ecei.tohoku.ac.jp organization: Grad. Sch. of Inf. Sci., Tohoku Univ., Sendai, Japan – sequence: 2 givenname: Ryuichi surname: Fujimoto fullname: Fujimoto, Ryuichi organization: Grad. Sch. of Inf. Sci., Tohoku Univ., Sendai, Japan – sequence: 3 surname: Tzu-Wei Huang fullname: Tzu-Wei Huang organization: Nat. Tsing-Hua Univ., Hsinchu, Taiwan – sequence: 4 surname: Hwann-Tzong Chen fullname: Hwann-Tzong Chen organization: Nat. Tsing-Hua Univ., Hsinchu, Taiwan – sequence: 5 surname: Kai Wu fullname: Kai Wu organization: South China Univ. of Technol., Guangzhou, China – sequence: 6 givenname: Kazunori surname: Sato fullname: Sato, Kazunori organization: Aging & Cancer, Tohoku Univ., Sendai, Japan – sequence: 7 givenname: Yasuyuki surname: Taki fullname: Taki, Yasuyuki organization: Aging & Cancer, Tohoku Univ., Sendai, Japan – sequence: 8 givenname: Hiroshi surname: Fukuda fullname: Fukuda, Hiroshi organization: Tohoku Med. & Pharm. Univ., Japan – sequence: 9 givenname: Takafumi surname: Aoki fullname: Aoki, Takafumi organization: Grad. Sch. of Inf. Sci., Tohoku Univ., Sendai, Japan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30440491$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9UMtOwzAQNKiIPugHICTkH0hZO3ZsH9uohUqlcGgFt8qJ1yGoSaokReLviWjhtKOZ0WhnhqRXViUScstgwhiYh_nzLJ5wYHqiJeNChBdkbJRmMtRRGIkouiQDJqUORMRk7xergCl475Nh03wCcADJrkk_BCFAGDYg6SvWvqoLW6ZI5192f7RtXpW08nSadUzT5sWJ8XVV0A0L3jDPPlp0dFnYDBu6bfIyo7Pa5iVdVand0wXa9lh3ki0djdfrG3Ll7b7B8fmOyHYx38RPwerlcRlPV0HOjWoDZVPHdWSccIZ7I0VXEnwiQDOnETRX1jMfcau40TLVDiUkoEApxARTH47I_Sn3cEwKdLtD3f1ef-_-2naGu5MhR8R_-bxl-AO3zGQM |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO NPM |
| DOI | 10.1109/EMBC.2018.8512443 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present PubMed |
| DatabaseTitle | PubMed |
| DatabaseTitleList | PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781538636466 1538636468 |
| EISSN | 1558-4615 |
| EndPage | 697 |
| ExternalDocumentID | 30440491 8512443 |
| Genre | orig-research Journal Article |
| GroupedDBID | 6IE 6IF 6IH AAJGR ACGFS AFFNX ALMA_UNASSIGNED_HOLDINGS CBEJK M43 RIE RIO RNS 29F 29G 6IK 6IM IPLJI NPM |
| ID | FETCH-LOGICAL-i297t-7acd2869d4d92f9548510fb4081d8e0827af1f62a72985c8de50b07077eebecf3 |
| IEDL.DBID | RIE |
| ISSN | 1557-170X |
| IngestDate | Thu Jan 02 23:03:16 EST 2025 Wed Aug 27 02:50:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i297t-7acd2869d4d92f9548510fb4081d8e0827af1f62a72985c8de50b07077eebecf3 |
| PMID | 30440491 |
| PageCount | 4 |
| ParticipantIDs | pubmed_primary_30440491 ieee_primary_8512443 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-00 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-00 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Conference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.) |
| PublicationTitleAbbrev | EMBC |
| PublicationTitleAlternate | Conf Proc IEEE Eng Med Biol Soc |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020051 ssj0061641 |
| Score | 1.8347846 |
| Snippet | The age of a subject can be estimated from the brain MR image by evaluating morphological changes in healthy aging. We consider using two-types of local... |
| SourceID | pubmed ieee |
| SourceType | Index Database Publisher |
| StartPage | 694 |
| SubjectTerms | Aging Biomedical imaging Estimation Feature extraction Image databases Primary motor cortex |
| Title | Performance Evaluation of Age Estimation from T1-Weighted Images Using Brain Local Features and CNN |
| URI | https://ieeexplore.ieee.org/document/8512443 https://www.ncbi.nlm.nih.gov/pubmed/30440491 |
| Volume | 2018 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJ734ABVf2YNHW9i-exQCQSOEA0RupLs7a4yxGG0v_np32loM8eCtabNpszPb-XZnvm8AbgzERyWFsBJFlBw_QMtsmxPLc5zECTGQMSeC83QWTJbew8pfNeC25sIgYlF8hjZdFrl8tZE5HZX1DDow0chtQjOMgpKrVW-uyLuqrCXvx73RdDCkwq3IrgZV3VN20GMRRcYHMP15f1k88mrnmbDl1440438_8BA6W74em9eR6AgamB7D_i-pwTbI-ZYhwEa1xDfbaHb3bO6YlV6SGBkRTtiCW0_FoSkqdv9m_jmfrCguYANqKcEeKQIygo-52a6zJFVsOJt1YDkeLYYTq2qwYL04cZhZYSKVEwWx8lTsaJJ-MytUC8_ABBWhAQdhorkOnMQg8MiXkUK_L0gfKESyvXZPoJVuUjwDxmP03ZArrjzpSS6E6GvKsGrjDFK6fhfaNF3r91JDY13NVBdOS3PUD1zqge3F_PzvARewR1YtC2YvoZV95HhlYEEmrgt_-AbWvbbL |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgALjxYoTw-MJNSJ8xpp1aqFJurQim5V_AhCiBRBsvDr8SUhRRUDW5TIkuU7576z7_sO4EZDfCUF50YskZLjuMrQaXNsMMuKLU-5IqBIcA4jdzRnDwtn0YDbmgujlCqKz5SJj8VdvlyJHI_K7jQ60NHI3oJthzHmlGytOr1C_6ruLWk3uBuEvT6WbvlmNazqn7KBH4s4MtyH8GcGZfnIq5ln3BRfG-KM_53iAbTXjD0yrWPRITRUegR7v8QGWyCma44AGdQi32SVkPtn_Ubv9ZLGSJByQmbUeCqOTZUk4zf91_kkRXkB6WFTCTLBGEgQQOY6YSdxKkk_itowHw5m_ZFRtVgwXqzAywwvFtLy3UAyGVgJir_pPZpwpoGC9JWGB16c0MS1Yo3BfUf4UjldjgpBnkLrJ_YxNNNVqk6B0EA5tkcllUwwQTnn3QTvWBPtDkLYTgdauFzL91JFY1mtVAdOSnPUH2zsgs0Cevb3gGvYGc3CyXIyjh7PYRctXJbPXkAz-8jVpQYJGb8qfOMblqa6GA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+annual+international+conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society&rft.atitle=Performance+Evaluation+of+Age+Estimation+from+T1-Weighted+Images+Using+Brain+Local+Features+and+CNN&rft.au=Ito%2C+Koichi&rft.au=Fujimoto%2C+Ryuichi&rft.au=Tzu-Wei+Huang&rft.au=Hwann-Tzong+Chen&rft.date=2018-07-01&rft.pub=IEEE&rft.eissn=1558-4615&rft.spage=694&rft.epage=697&rft_id=info:doi/10.1109%2FEMBC.2018.8512443&rft.externalDocID=8512443 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-170X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-170X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-170X&client=summon |