Performance Evaluation of Age Estimation from T1-Weighted Images Using Brain Local Features and CNN

The age of a subject can be estimated from the brain MR image by evaluating morphological changes in healthy aging. We consider using two-types of local features to estimate the age from T1-weighted images: handcrafted and automatically extracted features in this paper. The handcrafted brain local f...

Full description

Saved in:
Bibliographic Details
Published inConference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.) Vol. 2018; pp. 694 - 697
Main Authors Ito, Koichi, Fujimoto, Ryuichi, Tzu-Wei Huang, Hwann-Tzong Chen, Kai Wu, Sato, Kazunori, Taki, Yasuyuki, Fukuda, Hiroshi, Aoki, Takafumi
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.07.2018
Subjects
Online AccessGet full text
ISSN1557-170X
1558-4615
DOI10.1109/EMBC.2018.8512443

Cover

Abstract The age of a subject can be estimated from the brain MR image by evaluating morphological changes in healthy aging. We consider using two-types of local features to estimate the age from T1-weighted images: handcrafted and automatically extracted features in this paper. The handcrafted brain local features are defined by volumes of brain tissues parcellated into 90 or 1,024 local regions defined by the automated anatomical labeling atlas. The automatically extracted features are obtained by using the convolutional neural network (CNN). This paper explores the difference between the handcrafted features and the automatically extracted features. Through a set of experiments using 1,099 T1-weighted images from a Japanese MR image database, we demonstrate the effectiveness of the proposed methods, analyze the effectiveness of each local region for age estimation and discuss its medical implication.
AbstractList The age of a subject can be estimated from the brain MR image by evaluating morphological changes in healthy aging. We consider using two-types of local features to estimate the age from T1-weighted images: handcrafted and automatically extracted features in this paper. The handcrafted brain local features are defined by volumes of brain tissues parcellated into 90 or 1,024 local regions defined by the automated anatomical labeling atlas. The automatically extracted features are obtained by using the convolutional neural network (CNN). This paper explores the difference between the handcrafted features and the automatically extracted features. Through a set of experiments using 1,099 T1-weighted images from a Japanese MR image database, we demonstrate the effectiveness of the proposed methods, analyze the effectiveness of each local region for age estimation and discuss its medical implication.
Author Taki, Yasuyuki
Fujimoto, Ryuichi
Fukuda, Hiroshi
Hwann-Tzong Chen
Ito, Koichi
Kai Wu
Aoki, Takafumi
Sato, Kazunori
Tzu-Wei Huang
Author_xml – sequence: 1
  givenname: Koichi
  surname: Ito
  fullname: Ito, Koichi
  email: ito@aoki.ecei.tohoku.ac.jp
  organization: Grad. Sch. of Inf. Sci., Tohoku Univ., Sendai, Japan
– sequence: 2
  givenname: Ryuichi
  surname: Fujimoto
  fullname: Fujimoto, Ryuichi
  organization: Grad. Sch. of Inf. Sci., Tohoku Univ., Sendai, Japan
– sequence: 3
  surname: Tzu-Wei Huang
  fullname: Tzu-Wei Huang
  organization: Nat. Tsing-Hua Univ., Hsinchu, Taiwan
– sequence: 4
  surname: Hwann-Tzong Chen
  fullname: Hwann-Tzong Chen
  organization: Nat. Tsing-Hua Univ., Hsinchu, Taiwan
– sequence: 5
  surname: Kai Wu
  fullname: Kai Wu
  organization: South China Univ. of Technol., Guangzhou, China
– sequence: 6
  givenname: Kazunori
  surname: Sato
  fullname: Sato, Kazunori
  organization: Aging & Cancer, Tohoku Univ., Sendai, Japan
– sequence: 7
  givenname: Yasuyuki
  surname: Taki
  fullname: Taki, Yasuyuki
  organization: Aging & Cancer, Tohoku Univ., Sendai, Japan
– sequence: 8
  givenname: Hiroshi
  surname: Fukuda
  fullname: Fukuda, Hiroshi
  organization: Tohoku Med. & Pharm. Univ., Japan
– sequence: 9
  givenname: Takafumi
  surname: Aoki
  fullname: Aoki, Takafumi
  organization: Grad. Sch. of Inf. Sci., Tohoku Univ., Sendai, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30440491$$D View this record in MEDLINE/PubMed
BookMark eNo9UMtOwzAQNKiIPugHICTkH0hZO3ZsH9uohUqlcGgFt8qJ1yGoSaokReLviWjhtKOZ0WhnhqRXViUScstgwhiYh_nzLJ5wYHqiJeNChBdkbJRmMtRRGIkouiQDJqUORMRk7xergCl475Nh03wCcADJrkk_BCFAGDYg6SvWvqoLW6ZI5192f7RtXpW08nSadUzT5sWJ8XVV0A0L3jDPPlp0dFnYDBu6bfIyo7Pa5iVdVand0wXa9lh3ki0djdfrG3Ll7b7B8fmOyHYx38RPwerlcRlPV0HOjWoDZVPHdWSccIZ7I0VXEnwiQDOnETRX1jMfcau40TLVDiUkoEApxARTH47I_Sn3cEwKdLtD3f1ef-_-2naGu5MhR8R_-bxl-AO3zGQM
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
NPM
DOI 10.1109/EMBC.2018.8512443
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538636466
1538636468
EISSN 1558-4615
EndPage 697
ExternalDocumentID 30440491
8512443
Genre orig-research
Journal Article
GroupedDBID 6IE
6IF
6IH
AAJGR
ACGFS
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIO
RNS
29F
29G
6IK
6IM
IPLJI
NPM
ID FETCH-LOGICAL-i297t-7acd2869d4d92f9548510fb4081d8e0827af1f62a72985c8de50b07077eebecf3
IEDL.DBID RIE
ISSN 1557-170X
IngestDate Thu Jan 02 23:03:16 EST 2025
Wed Aug 27 02:50:00 EDT 2025
IsPeerReviewed true
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i297t-7acd2869d4d92f9548510fb4081d8e0827af1f62a72985c8de50b07077eebecf3
PMID 30440491
PageCount 4
ParticipantIDs pubmed_primary_30440491
ieee_primary_8512443
PublicationCentury 2000
PublicationDate 2018-07-00
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Conference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.)
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Conf Proc IEEE Eng Med Biol Soc
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020051
ssj0061641
Score 1.8347846
Snippet The age of a subject can be estimated from the brain MR image by evaluating morphological changes in healthy aging. We consider using two-types of local...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 694
SubjectTerms Aging
Biomedical imaging
Estimation
Feature extraction
Image databases
Primary motor cortex
Title Performance Evaluation of Age Estimation from T1-Weighted Images Using Brain Local Features and CNN
URI https://ieeexplore.ieee.org/document/8512443
https://www.ncbi.nlm.nih.gov/pubmed/30440491
Volume 2018
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJ734ABVf2YNHW9i-exQCQSOEA0RupLs7a4yxGG0v_np32loM8eCtabNpszPb-XZnvm8AbgzERyWFsBJFlBw_QMtsmxPLc5zECTGQMSeC83QWTJbew8pfNeC25sIgYlF8hjZdFrl8tZE5HZX1DDow0chtQjOMgpKrVW-uyLuqrCXvx73RdDCkwq3IrgZV3VN20GMRRcYHMP15f1k88mrnmbDl1440438_8BA6W74em9eR6AgamB7D_i-pwTbI-ZYhwEa1xDfbaHb3bO6YlV6SGBkRTtiCW0_FoSkqdv9m_jmfrCguYANqKcEeKQIygo-52a6zJFVsOJt1YDkeLYYTq2qwYL04cZhZYSKVEwWx8lTsaJJ-MytUC8_ABBWhAQdhorkOnMQg8MiXkUK_L0gfKESyvXZPoJVuUjwDxmP03ZArrjzpSS6E6GvKsGrjDFK6fhfaNF3r91JDY13NVBdOS3PUD1zqge3F_PzvARewR1YtC2YvoZV95HhlYEEmrgt_-AbWvbbL
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgALjxYoTw-MJNSJ8xpp1aqFJurQim5V_AhCiBRBsvDr8SUhRRUDW5TIkuU7576z7_sO4EZDfCUF50YskZLjuMrQaXNsMMuKLU-5IqBIcA4jdzRnDwtn0YDbmgujlCqKz5SJj8VdvlyJHI_K7jQ60NHI3oJthzHmlGytOr1C_6ruLWk3uBuEvT6WbvlmNazqn7KBH4s4MtyH8GcGZfnIq5ln3BRfG-KM_53iAbTXjD0yrWPRITRUegR7v8QGWyCma44AGdQi32SVkPtn_Ubv9ZLGSJByQmbUeCqOTZUk4zf91_kkRXkB6WFTCTLBGEgQQOY6YSdxKkk_itowHw5m_ZFRtVgwXqzAywwvFtLy3UAyGVgJir_pPZpwpoGC9JWGB16c0MS1Yo3BfUf4UjldjgpBnkLrJ_YxNNNVqk6B0EA5tkcllUwwQTnn3QTvWBPtDkLYTgdauFzL91JFY1mtVAdOSnPUH2zsgs0Cevb3gGvYGc3CyXIyjh7PYRctXJbPXkAz-8jVpQYJGb8qfOMblqa6GA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+annual+international+conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society&rft.atitle=Performance+Evaluation+of+Age+Estimation+from+T1-Weighted+Images+Using+Brain+Local+Features+and+CNN&rft.au=Ito%2C+Koichi&rft.au=Fujimoto%2C+Ryuichi&rft.au=Tzu-Wei+Huang&rft.au=Hwann-Tzong+Chen&rft.date=2018-07-01&rft.pub=IEEE&rft.eissn=1558-4615&rft.spage=694&rft.epage=697&rft_id=info:doi/10.1109%2FEMBC.2018.8512443&rft.externalDocID=8512443
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-170X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-170X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-170X&client=summon