Monolayer MoS2 Films Supported by 3D Nanoporous Metals for High-Efficiency Electrocatalytic Hydrogen Production

The “edge‐free” monolayer MoS2 films supported by 3D nanoporous gold show high catalytic activities towards hydrogen evolution reaction (HER), originating from large out‐of‐plane strains that are geometrically required to manage the 3D curvature of bicontinuous nanoporosity. The large lattice bendin...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 26; no. 47; pp. 8023 - 8028
Main Authors Tan, Yongwen, Liu, Pan, Chen, Luyang, Cong, Weitao, Ito, Yoshikazu, Han, Jiuhui, Guo, Xianwei, Tang, Zheng, Fujita, Takeshi, Hirata, Akihiko, Chen, Mingwei W.
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 17.12.2014
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201403808

Cover

Abstract The “edge‐free” monolayer MoS2 films supported by 3D nanoporous gold show high catalytic activities towards hydrogen evolution reaction (HER), originating from large out‐of‐plane strains that are geometrically required to manage the 3D curvature of bicontinuous nanoporosity. The large lattice bending leads to local semiconductor‐to‐metal transition of 2H MoS2 and the formation of catalytically active sites for HER.
AbstractList The "edge-free" monolayer MoS2 films supported by 3D nanoporous gold show high catalytic activities towards hydrogen evolution reaction (HER), originating from large out-of-plane strains that are geometrically required to manage the 3D curvature of bicontinuous nanoporosity. The large lattice bending leads to local semiconductor-to-metal transition of 2H MoS2 and the formation of catalytically active sites for HER.The "edge-free" monolayer MoS2 films supported by 3D nanoporous gold show high catalytic activities towards hydrogen evolution reaction (HER), originating from large out-of-plane strains that are geometrically required to manage the 3D curvature of bicontinuous nanoporosity. The large lattice bending leads to local semiconductor-to-metal transition of 2H MoS2 and the formation of catalytically active sites for HER.
The “edge‐free” monolayer MoS2 films supported by 3D nanoporous gold show high catalytic activities towards hydrogen evolution reaction (HER), originating from large out‐of‐plane strains that are geometrically required to manage the 3D curvature of bicontinuous nanoporosity. The large lattice bending leads to local semiconductor‐to‐metal transition of 2H MoS2 and the formation of catalytically active sites for HER.
The "edge-free" monolayer MoS2 films supported by 3D nanoporous gold show high catalytic activities towards hydrogen evolution reaction (HER), originating from large out-of-plane strains that are geometrically required to manage the 3D curvature of bicontinuous nanoporosity. The large lattice bending leads to local semiconductor-to-metal transition of 2H MoS2 and the formation of catalytically active sites for HER.
Author Tan, Yongwen
Chen, Luyang
Cong, Weitao
Han, Jiuhui
Fujita, Takeshi
Hirata, Akihiko
Tang, Zheng
Liu, Pan
Ito, Yoshikazu
Chen, Mingwei W.
Guo, Xianwei
Author_xml – sequence: 1
  givenname: Yongwen
  surname: Tan
  fullname: Tan, Yongwen
  organization: WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
– sequence: 2
  givenname: Pan
  surname: Liu
  fullname: Liu, Pan
  organization: WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
– sequence: 3
  givenname: Luyang
  surname: Chen
  fullname: Chen, Luyang
  organization: WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
– sequence: 4
  givenname: Weitao
  surname: Cong
  fullname: Cong, Weitao
  organization: WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
– sequence: 5
  givenname: Yoshikazu
  surname: Ito
  fullname: Ito, Yoshikazu
  organization: WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
– sequence: 6
  givenname: Jiuhui
  surname: Han
  fullname: Han, Jiuhui
  organization: WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
– sequence: 7
  givenname: Xianwei
  surname: Guo
  fullname: Guo, Xianwei
  organization: WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
– sequence: 8
  givenname: Zheng
  surname: Tang
  fullname: Tang, Zheng
  organization: Key Laboratory of Polar Materials and Devices, East China Normal University, 200062, Shanghai, P.R. China
– sequence: 9
  givenname: Takeshi
  surname: Fujita
  fullname: Fujita, Takeshi
  organization: WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
– sequence: 10
  givenname: Akihiko
  surname: Hirata
  fullname: Hirata, Akihiko
  organization: WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
– sequence: 11
  givenname: Mingwei W.
  surname: Chen
  fullname: Chen, Mingwei W.
  email: mwchen@wpi-aimr.tohoku.ac.jp
  organization: WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25363090$$D View this record in MEDLINE/PubMed
BookMark eNo9kU1v1DAQhi1URLctV47IRy5px19Z-7hst91KTUG0wNFyHLsYknhxEtH8e1xtu6fRzDzvaGbeE3TUx94h9IHAOQGgF6bpzDkFwoFJkG_QgghKCg5KHKEFKCYKVXJ5jE6G4TcAqBLKd-iYClYyULBAsYp9bM3sEq7iPcVXoe0GfD_tdjGNrsH1jNklvjN9zIU4Dbhyo2kH7GPC2_D4q9h4H2xwvZ3xpnV2TNGaTMxjsHg7Nyk-uh5_TbGZ7Bhif4be-qx371_iKfp-tXlYb4vbL9c369VtEagSsmCGKEYs44x6z4kFTq331MvaNo1g0tTKSl5DveRESFCOqDrfWQtbOseBs1P0aT93l-LfyQ2j7sJgXdua3uUzNCnZUghBmMzoxxd0qjvX6F0KnUmzfn1SBtQe-BdaNx_6BPSzBfrZAn2wQK8uq9Uhy9pirw3D6J4OWpP-6HKZV9A_767154qQH9_WVJfsP0UBi0E
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
NPM
7X8
DOI 10.1002/adma.201403808
DatabaseName Istex
PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 8028
ExternalDocumentID 25363090
ADMA201403808
ark_67375_WNG_BM11VRC2_6
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WTY
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZY4
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
RWM
WRC
NPM
7X8
ID FETCH-LOGICAL-i2958-3a1931c3432ff41c042cff2f8bcdd538ab9c84b0b7415809e19b648b5c6ee4043
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 06:50:08 EDT 2025
Mon Jul 21 05:55:37 EDT 2025
Wed Jan 22 16:24:52 EST 2025
Sun Sep 21 06:19:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords nanoporous metal
monolayer dichalcogenide
molybdenum disulphide
2D materials
hydrogen evolution reaction
Language English
License 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i2958-3a1931c3432ff41c042cff2f8bcdd538ab9c84b0b7415809e19b648b5c6ee4043
Notes ark:/67375/WNG-BM11VRC2-6
ArticleID:ADMA201403808
istex:EB3D5C6546185D625C6A3B96A5445E43A965C270
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25363090
PQID 1637555138
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1637555138
pubmed_primary_25363090
wiley_primary_10_1002_adma_201403808_ADMA201403808
istex_primary_ark_67375_WNG_BM11VRC2_6
PublicationCentury 2000
PublicationDate December 17, 2014
PublicationDateYYYYMMDD 2014-12-17
PublicationDate_xml – month: 12
  year: 2014
  text: December 17, 2014
  day: 17
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References J. K. Norskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem. 2009, 1, 37.
C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, S. Ryu, ACS Nano 2010, 4, 2695.
J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, J. Am. Chem. Soc. 2013, 135, 17881.
D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nat. Mater. 2013, 12, 850.
T. Fujita, H. Okada, K. Koyama, K. Watanabe, S. Maekawa, M. W. Chen, Phys. Rev. Lett. 2008, 101, 166601.
J. A. Turner, Science 2004, 305, 972.
H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu, Y. Cui, Nano Lett. 2013, 13, 3426.
J. Kibsgaard, T. F. Jaramillo, F. Besenbacher, Nat. Chem. 2014, 6, 248.
G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 2011, 11, 5111.
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296.
S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J.-C. Idrobo, P. M. Ajayan, J. Lou, Nat. Mater. 2013, 12, 754.
J. Kim, S. Byun, A. J. Smith, J. Yu, J. Huang, J. Phys. Chem. Lett. 2013, 4, 1227.
D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, S. O. Kim, Nano Lett. 2014, 14, 1228.
E. Scalise, M. Houssa, G. Pourtois, V. Afanas'ev, A. Stesmans, Nano Res. 2012, 5, 43.
J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, J. K. Norskov, Nat. Mater. 2006, 5, 909.
D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nano Lett. 2013, 13, 6222.
Y.-H. Chang, C.-T. Lin, T.-Y. Chen, C.-L. Hsu, Y.-H. Lee, W. Zhang, K.-H. Wei, L.-J. Li, Adv. Mater. 2013, 25, 756.
Y. Zheng, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2014, DOI: 10.1002/anie.201407031R1.
T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100.
T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, M. W. Chen, Nat. Mater. 2012, 11, 775.
J. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nat. Mater. 2012, 11, 963.
L. Liao, J. Zhu, X. J. Bian, L. N. Zhu, M. D. Scanlon, H. H. Girault, B. H. Liu, Adv. Funct. Mater. 2013, 23, 5326.
J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature 2001, 410, 450.
X. Ge, L. Chen, L. Zhang, Y. Wen, A. Hirata, M. Chen, Adv. Mater. 2014, 26, 3100.
Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, M. Jaroniec, S. Z. Qiao, ACS Nano 2014, 8, 5290.
Y. Yu, S.-Y. Huang, Y. Li, S. N. Steinmann, W. Yang, L. Cao, Nano Lett. 2014, 14, 553.
M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.
H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, C. J. Chang, Science 2012, 335, 698.
T. Fujita, L. H. Qian, K. Inoke, J. Erlebacher, M. W. Chen, Appl. Phyl. Lett. 2008, 92, 251902.
B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308.
A. B. Laursen, S. Kegnaes, S. Dahl, I. Chorkendorff, Energy Environ. Sci. 2012, 5, 5577.
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Nano Lett. 2010, 10, 1271.
Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara, T. F. Jaramillo, Nano Lett. 2011, 11, 4168.
a) Y. Ito, H.-J. Qiu, T. Fujita, Y. Tanabe, K. Tanigaki, M. W. Chen, Adv. Mater. 2014, 26, 4145
b) Y. Ito, Y. Tanabe, H.-J. Qiu, K. Sugawara, S. Heguri, N. H. Tu, K. K. Huynh, T. Fujita, T. Takahashi, K. Tanigaki, M. W. Chen, Angew. Chem. Int. Ed. 2014, 53, 4822.
Z. Lu, W. Zhu, X. Yu, H. Zhang, Y. Li, X. Sun, X. Wang, H. Wang, J. Wang, J. Luo, X. Lei, L. Jiang, Adv. Mater. 2014, 26, 2683.
C. Gong, C. Huang, J. Miller, L. Cheng, Y. Hao, D. Cobden, J. Kim, R. S. Ruoff, R. M. Wallace, K. Cho, X. Xu, Y. J. Chabal, ACS Nano 2013, 7, 11350.
Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S. Z. Qiao, Nat. Commun. 2014, 5, 3783.
D. Merki, S. Fierro, H. Vrubel, X. Hu, Chem. Sci. 2011, 2, 1262.
Z. Wu, B. Fang, Z. Wang, C. Wang, Z. Liu, F. Liu, W. Wang, A. Alfantazi, D. Wang, D. P. Wilkinson, ACS Catal. 2013, 3, 2101.
M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 2013, 135, 10274.
H. Vrubel, D. Merki, X. Hu, Energy Environ. Sci. 2012, 5, 6136.
A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H. S.J. van derZant, G. A. Steele, Nano Lett. 2013, 13, 5361.
G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, M. Chhowalla, ACS Nano 2012, 6, 7311.
J. Bonde, P. G. Moses, T. F. Jaramillo, J. K. Norskov, I. Chorkendorff, Faraday Discuss. 2009, 140, 219.
J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, Y. Xie, Adv. Mater. 2013, 25, 5807.
T. Fujita, Y. Ito, Y. W. Tan, H. Yamaguchi, D. Hojo, A. Hirata, D. Voiry, M. Chhowalla, M. W. Chen, Nanoscale 2014, 6, 12458.
2010; 10
2013; 3
2013; 25
2013; 4
2011; 2
2013; 23
2014; 26
2006; 5
2011; 11
2008; 101
2013; 7
2004; 305
2008; 92
2012; 11
2011; 133
2001; 410
2014; 5
2014 2014; 26 53
2007; 317
2013; 13
2013; 12
2005; 127
2010; 110
2014; 14
2013; 135
2009; 140
2014
2012; 6
2014; 8
2012; 335
2009; 1
2012; 5
2014; 6
2010; 4
References_xml – reference: G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 2011, 11, 5111.
– reference: D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, S. O. Kim, Nano Lett. 2014, 14, 1228.
– reference: H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu, Y. Cui, Nano Lett. 2013, 13, 3426.
– reference: J. Kibsgaard, T. F. Jaramillo, F. Besenbacher, Nat. Chem. 2014, 6, 248.
– reference: b) Y. Ito, Y. Tanabe, H.-J. Qiu, K. Sugawara, S. Heguri, N. H. Tu, K. K. Huynh, T. Fujita, T. Takahashi, K. Tanigaki, M. W. Chen, Angew. Chem. Int. Ed. 2014, 53, 4822.
– reference: J. Kim, S. Byun, A. J. Smith, J. Yu, J. Huang, J. Phys. Chem. Lett. 2013, 4, 1227.
– reference: H. Vrubel, D. Merki, X. Hu, Energy Environ. Sci. 2012, 5, 6136.
– reference: A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H. S.J. van derZant, G. A. Steele, Nano Lett. 2013, 13, 5361.
– reference: H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, C. J. Chang, Science 2012, 335, 698.
– reference: E. Scalise, M. Houssa, G. Pourtois, V. Afanas'ev, A. Stesmans, Nano Res. 2012, 5, 43.
– reference: J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, Y. Xie, Adv. Mater. 2013, 25, 5807.
– reference: T. Fujita, L. H. Qian, K. Inoke, J. Erlebacher, M. W. Chen, Appl. Phyl. Lett. 2008, 92, 251902.
– reference: J. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nat. Mater. 2012, 11, 963.
– reference: B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308.
– reference: Z. Wu, B. Fang, Z. Wang, C. Wang, Z. Liu, F. Liu, W. Wang, A. Alfantazi, D. Wang, D. P. Wilkinson, ACS Catal. 2013, 3, 2101.
– reference: J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature 2001, 410, 450.
– reference: Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S. Z. Qiao, Nat. Commun. 2014, 5, 3783.
– reference: X. Ge, L. Chen, L. Zhang, Y. Wen, A. Hirata, M. Chen, Adv. Mater. 2014, 26, 3100.
– reference: G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, M. Chhowalla, ACS Nano 2012, 6, 7311.
– reference: Y.-H. Chang, C.-T. Lin, T.-Y. Chen, C.-L. Hsu, Y.-H. Lee, W. Zhang, K.-H. Wei, L.-J. Li, Adv. Mater. 2013, 25, 756.
– reference: A. B. Laursen, S. Kegnaes, S. Dahl, I. Chorkendorff, Energy Environ. Sci. 2012, 5, 5577.
– reference: Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara, T. F. Jaramillo, Nano Lett. 2011, 11, 4168.
– reference: S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J.-C. Idrobo, P. M. Ajayan, J. Lou, Nat. Mater. 2013, 12, 754.
– reference: a) Y. Ito, H.-J. Qiu, T. Fujita, Y. Tanabe, K. Tanigaki, M. W. Chen, Adv. Mater. 2014, 26, 4145;
– reference: J. A. Turner, Science 2004, 305, 972.
– reference: Y. Yu, S.-Y. Huang, Y. Li, S. N. Steinmann, W. Yang, L. Cao, Nano Lett. 2014, 14, 553.
– reference: Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296.
– reference: J. K. Norskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem. 2009, 1, 37.
– reference: M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 2013, 135, 10274.
– reference: D. Merki, S. Fierro, H. Vrubel, X. Hu, Chem. Sci. 2011, 2, 1262.
– reference: T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, M. W. Chen, Nat. Mater. 2012, 11, 775.
– reference: J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, J. K. Norskov, Nat. Mater. 2006, 5, 909.
– reference: T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100.
– reference: D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nat. Mater. 2013, 12, 850.
– reference: A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Nano Lett. 2010, 10, 1271.
– reference: J. Bonde, P. G. Moses, T. F. Jaramillo, J. K. Norskov, I. Chorkendorff, Faraday Discuss. 2009, 140, 219.
– reference: Y. Zheng, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2014, DOI: 10.1002/anie.201407031R1.
– reference: Z. Lu, W. Zhu, X. Yu, H. Zhang, Y. Li, X. Sun, X. Wang, H. Wang, J. Wang, J. Luo, X. Lei, L. Jiang, Adv. Mater. 2014, 26, 2683.
– reference: T. Fujita, Y. Ito, Y. W. Tan, H. Yamaguchi, D. Hojo, A. Hirata, D. Voiry, M. Chhowalla, M. W. Chen, Nanoscale 2014, 6, 12458.
– reference: J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, J. Am. Chem. Soc. 2013, 135, 17881.
– reference: D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nano Lett. 2013, 13, 6222.
– reference: L. Liao, J. Zhu, X. J. Bian, L. N. Zhu, M. D. Scanlon, H. H. Girault, B. H. Liu, Adv. Funct. Mater. 2013, 23, 5326.
– reference: C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, S. Ryu, ACS Nano 2010, 4, 2695.
– reference: M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.
– reference: T. Fujita, H. Okada, K. Koyama, K. Watanabe, S. Maekawa, M. W. Chen, Phys. Rev. Lett. 2008, 101, 166601.
– reference: Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, M. Jaroniec, S. Z. Qiao, ACS Nano 2014, 8, 5290.
– reference: C. Gong, C. Huang, J. Miller, L. Cheng, Y. Hao, D. Cobden, J. Kim, R. S. Ruoff, R. M. Wallace, K. Cho, X. Xu, Y. J. Chabal, ACS Nano 2013, 7, 11350.
– volume: 11
  start-page: 963
  year: 2012
  publication-title: Nat. Mater.
– volume: 92
  start-page: 251902
  year: 2008
  publication-title: Appl. Phyl. Lett.
– volume: 5
  start-page: 909
  year: 2006
  publication-title: Nat. Mater.
– volume: 410
  start-page: 450
  year: 2001
  publication-title: Nature
– volume: 5
  start-page: 3783
  year: 2014
  publication-title: Nat. Commun.
– volume: 7
  start-page: 11350
  year: 2013
  publication-title: ACS Nano
– volume: 4
  start-page: 2695
  year: 2010
  publication-title: ACS Nano
– volume: 101
  start-page: 166601
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 140
  start-page: 219
  year: 2009
  publication-title: Faraday Discuss.
– volume: 8
  start-page: 5290
  year: 2014
  publication-title: ACS Nano
– volume: 26
  start-page: 2683
  year: 2014
  publication-title: Adv. Mater.
– volume: 6
  start-page: 12458
  year: 2014
  publication-title: Nanoscale
– volume: 4
  start-page: 1227
  year: 2013
  publication-title: J. Phys. Chem. Lett.
– volume: 305
  start-page: 972
  year: 2004
  publication-title: Science
– volume: 127
  start-page: 5308
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 7296
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 775
  year: 2012
  publication-title: Nat. Mater.
– volume: 5
  start-page: 5577
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 754
  year: 2013
  publication-title: Nat. Mater.
– volume: 14
  start-page: 1228
  year: 2014
  publication-title: Nano Lett.
– volume: 3
  start-page: 2101
  year: 2013
  publication-title: ACS Catal.
– volume: 25
  start-page: 5807
  year: 2013
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1271
  year: 2010
  publication-title: Nano Lett.
– volume: 6
  start-page: 248
  year: 2014
  publication-title: Nat. Chem.
– volume: 13
  start-page: 6222
  year: 2013
  publication-title: Nano Lett.
– volume: 13
  start-page: 3426
  year: 2013
  publication-title: Nano Lett.
– volume: 335
  start-page: 698
  year: 2012
  publication-title: Science
– volume: 26 53
  start-page: 4145 4822
  year: 2014 2014
  publication-title: Adv. Mater. Angew. Chem. Int. Ed.
– volume: 5
  start-page: 6136
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 43
  year: 2012
  publication-title: Nano Res.
– volume: 14
  start-page: 553
  year: 2014
  publication-title: Nano Lett.
– volume: 13
  start-page: 5361
  year: 2013
  publication-title: Nano Lett.
– volume: 135
  start-page: 17881
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 7311
  year: 2012
  publication-title: ACS Nano
– volume: 135
  start-page: 10274
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1262
  year: 2011
  publication-title: Chem. Sci.
– volume: 26
  start-page: 3100
  year: 2014
  publication-title: Adv. Mater.
– volume: 11
  start-page: 4168
  year: 2011
  publication-title: Nano Lett.
– volume: 25
  start-page: 756
  year: 2013
  publication-title: Adv. Mater.
– volume: 110
  start-page: 6446
  year: 2010
  publication-title: Chem. Rev.
– year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 850
  year: 2013
  publication-title: Nat. Mater.
– volume: 11
  start-page: 5111
  year: 2011
  publication-title: Nano Lett.
– volume: 317
  start-page: 100
  year: 2007
  publication-title: Science
– volume: 23
  start-page: 5326
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 37
  year: 2009
  publication-title: Nat. Chem.
SSID ssj0009606
Score 2.5972116
Snippet The “edge‐free” monolayer MoS2 films supported by 3D nanoporous gold show high catalytic activities towards hydrogen evolution reaction (HER), originating from...
The "edge-free" monolayer MoS2 films supported by 3D nanoporous gold show high catalytic activities towards hydrogen evolution reaction (HER), originating from...
SourceID proquest
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 8023
SubjectTerms 2D materials
hydrogen evolution reaction
molybdenum disulphide
monolayer dichalcogenide
nanoporous metal
Title Monolayer MoS2 Films Supported by 3D Nanoporous Metals for High-Efficiency Electrocatalytic Hydrogen Production
URI https://api.istex.fr/ark:/67375/WNG-BM11VRC2-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201403808
https://www.ncbi.nlm.nih.gov/pubmed/25363090
https://www.proquest.com/docview/1637555138
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZQucCBHToslZEQt7S2YzvJcejMMEKkQi2F3ixvkarCBGaRGE78BH4jv4T3nE7aIk5wy-Ysfos_O-99j5AXudOscYFlhYo-k74pMsu9y5rCWiUDlz7lrdUHenos35yok0tZ_B0_RL_ghpaR_DUauHWLvQvSUBsSbxDyzZUp25fnGsnzR4cX_FEIzxPZXq6ySstyw9rIxN7V5gBNsVe__Q1nXoWtadyZ3CZ288ZduMnZ7mrpdv33P8gc_-eT7pBb56CUDjstukuuxdk9cvMSVeF98hWMH2bBANBp3R4JOjn99HlBsSYoRusG6tY0H1Hw1S0caFcLWkeA9QsKmJhiLMmvHz_Hia0CUz3puCu-k9aO1vBQOl2HeQu6TN91DLSgLQ_I8WT8fn-anZdryE5FpcostwAGucdM1aaR3IM78E0jmtL5EMCvWlf5UjrmEMSUrIq8ciATp7yOEUl-HpKtWTuL24RGIaGNFqwKXhbCOhsdC4VWKsJ8KbcD8jKJy3zpKDmMnZ9hhFqhzMeD1-ZVzfmHw31h9IA838jTgN3gzxA7i9ALBnBoobC6TTkgjzpB93cTKtc5q9iAiCSu_kTH8SwMCsr0gjLDUT3s9x7_S6Mn5AZuY5wML56SreV8FZ8B2lm6HXIdrnx7tJM0-zd06Pog
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOUAPhQJtl0cxEuKW1nHsPI5Lu9sFmhUqLfRm-RWpKmzafUgsp_6E_kZ-CTNON20Rp3KMIyex55HP9sw3hLxNTMoq41iUSW8jYass0rE1UZVpLYWLhQ15a-UwHRyJj8dyEU2IuTANP0S74YaWEfw1GjhuSG9fs4ZqF4iDkHAux3Tf--GQDnHRwTWDFAL0QLeXyKhIRb7gbWR8-3Z_AKc4rz__hTRvA9fw5-k_ImbxzU3AyenWbGq27K-_6Bz_a1CPycoVLqXdRpFWyT0_ekKWb7AVPiXnYP-wEAaMTsv6C6f9k-8_JhTLgmLArqNmTpNdCu66hoZ6NqGlB2Q_oQCLKYaT_L647AXCCsz2pL2m_k7YPprDS-lg7sY1qDP93JDQgsI8I0f93uHOILqq2BCd8ELmUaIBD8YWk1WrSsQWPIKtKl7lxjoHrlWbwubCMIM4JmeFjwsDQjHSpt4jz88aWRrVI79BqOcC-qScFc6KjGujvWEuS6X0sGRKdIe8C_JSZw0rh9LjUwxSy6T6NtxT78s4_nqww1XaIW8WAlVgOngeokceZkEBFM0kFrjJO2S9kXT7NC6TNGEF6xAe5NXeaGieuUJBqVZQqrtbdtur53fp9Jo8GByW-2r_w_DTC_IQ2zFsJs5ekqXpeOZfAfiZms2g3n8AOmb8qg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZQkRAc2ClTNiMhbmkdx85yHDozDEtGVaHQm-VVqgqTdhaJ4cRP4DfyS3jP6aQt4gTHOHIS-y3-7Lz3PUJeZCZnwTiWFNLbRNhQJDq1JgmF1lK4VNiYt1ZP8vGBeHsoDy9k8bf8EN2BG1pG9Ndo4Ccu7JyThmoXeYOQb67EbN-rIoe1EmHR_jmBFOLzyLaXyaTKRbmmbWR853J_wKY4rd_-BjQv49a48IxuEb3-5Dbe5Hh7uTDb9vsfbI7_M6bb5OYZKqX9Vo3ukCt-epfcuMBVeI-cgvXDNhgQOq2bD5yOjr58nVMsCorhuo6aFc0GFJx1Aw3Nck5rD7h-TgEUUwwm-fXj5zDSVWCuJx221Xfi4dEKXkrHKzdrQJnpXktBC-pynxyMhh93x8lZvYbkiFeyTDINaDC1mKoagkgt-AMbAg-lsc6BY9WmsqUwzCCKKVnl08qATIy0uffI8vOAbEybqX9IqOcC-uScVc6KgmujvWGuyKX0sGHKdI-8jOJSJy0nh9KzYwxRK6T6PHmtXtVp-ml_l6u8R56v5anAcPBviJ56mAUFQLSQWN6m7JHNVtDd07jM8oxVrEd4FFd3oyV55goFpTpBqf6g7ndXW__S6Rm5tjcYqfdvJu8ekevYjDEzafGYbCxmS_8EkM_CPI3K_RtHcPtZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monolayer+MoS2+Films+Supported+by+3D+Nanoporous+Metals+for+High%E2%80%90Efficiency+Electrocatalytic+Hydrogen+Production&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tan%2C+Yongwen&rft.au=Liu%2C+Pan&rft.au=Chen%2C+Luyang&rft.au=Cong%2C+Weitao&rft.date=2014-12-17&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=26&rft.issue=47&rft.spage=8023&rft.epage=8028&rft_id=info:doi/10.1002%2Fadma.201403808&rft.externalDBID=10.1002%252Fadma.201403808&rft.externalDocID=ADMA201403808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon