Mobile traffic forecasting for maximizing 5G network slicing resource utilization
The emerging network slicing paradigm for 5G provides new business opportunities by enabling multi-tenancy support. At the same time, new technical challenges are introduced, as novel resource allocation algorithms are required to accommodate different business models. In particular, infrastructure...
Saved in:
| Published in | IEEE INFOCOM 2017 - IEEE Conference on Computer Communications pp. 1 - 9 |
|---|---|
| Main Authors | , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.05.2017
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/INFOCOM.2017.8057230 |
Cover
| Abstract | The emerging network slicing paradigm for 5G provides new business opportunities by enabling multi-tenancy support. At the same time, new technical challenges are introduced, as novel resource allocation algorithms are required to accommodate different business models. In particular, infrastructure providers need to implement radically new admission control policies to decide on network slices requests depending on their Service Level Agreements (SLA). When implementing such admission control policies, infrastructure providers may apply forecasting techniques in order to adjust the allocated slice resources so as to optimize the network utilization while meeting network slices' SLAs. This paper focuses on the design of three key network slicing building blocks responsible for (i) traffic analysis and prediction per network slice, (ii) admission control decisions for network slice requests, and (iii) adaptive correction of the forecasted load based on measured deviations. Our results show very substantial potential gains in terms of system utilization as well as a trade-off between conservative forecasting configurations versus more aggressive ones (higher gains, SLA risk). |
|---|---|
| AbstractList | The emerging network slicing paradigm for 5G provides new business opportunities by enabling multi-tenancy support. At the same time, new technical challenges are introduced, as novel resource allocation algorithms are required to accommodate different business models. In particular, infrastructure providers need to implement radically new admission control policies to decide on network slices requests depending on their Service Level Agreements (SLA). When implementing such admission control policies, infrastructure providers may apply forecasting techniques in order to adjust the allocated slice resources so as to optimize the network utilization while meeting network slices' SLAs. This paper focuses on the design of three key network slicing building blocks responsible for (i) traffic analysis and prediction per network slice, (ii) admission control decisions for network slice requests, and (iii) adaptive correction of the forecasted load based on measured deviations. Our results show very substantial potential gains in terms of system utilization as well as a trade-off between conservative forecasting configurations versus more aggressive ones (higher gains, SLA risk). |
| Author | Sciancalepore, Vincenzo Banchs, Albert Gramaglia, Marco Bega, Dario Samdanis, Konstantinos Costa-Perez, Xavier |
| Author_xml | – sequence: 1 givenname: Vincenzo surname: Sciancalepore fullname: Sciancalepore, Vincenzo – sequence: 2 givenname: Konstantinos surname: Samdanis fullname: Samdanis, Konstantinos – sequence: 3 givenname: Xavier surname: Costa-Perez fullname: Costa-Perez, Xavier – sequence: 4 givenname: Dario surname: Bega fullname: Bega, Dario – sequence: 5 givenname: Marco surname: Gramaglia fullname: Gramaglia, Marco – sequence: 6 givenname: Albert surname: Banchs fullname: Banchs, Albert |
| BookMark | eNo9kMtOwzAQRY0ECyj9AljkBxL8iGN7iSJaKrVESLC2HMdBIxK7clKV9utp1MJqZu7VmcW5Q9c-eIfQI8EZIVg9rd4WVVltMoqJyCTmgjJ8heZKSMKxwpyxAt-i902ooXPJGE3bgk3aEJ01wwj-a9qT3vxAD8fp5MvEu3Ef4ncydGCnKLoh7KJ1yW6EDo5mhODv0U1rusHNL3OGPhcvH-Vruq6Wq_J5nQKVYkypkMwqYbEqhCHMGMUorXPCWJOLgshTSKUSvKg5UQzLgjnZ1C2npLG5qXM2Q_z8d-e35rA3Xae3EXoTD5pgPSnQ4NtgQ68nBfqi4MQ9nDlwzv0jf-0vt8ZeoQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO ADTOC UNPAY |
| DOI | 10.1109/INFOCOM.2017.8057230 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781509053360 1509053360 |
| EndPage | 9 |
| ExternalDocumentID | oai:dnet:earchivo____::34168f9e140a26aa184672e8db598459 8057230 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO ADTOC UNPAY |
| ID | FETCH-LOGICAL-i287t-2783c97c0967a13aa9322b4133d476187a1289756b51930863e8dbf521dc4ab43 |
| IEDL.DBID | UNPAY |
| IngestDate | Wed Oct 01 16:21:55 EDT 2025 Thu Jun 29 18:37:10 EDT 2023 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| License | other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i287t-2783c97c0967a13aa9322b4133d476187a1289756b51930863e8dbf521dc4ab43 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10016/28657 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1109_infocom_2017_8057230 ieee_primary_8057230 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-05 |
| PublicationDateYYYYMMDD | 2017-05-01 |
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-05 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE INFOCOM 2017 - IEEE Conference on Computer Communications |
| PublicationTitleAbbrev | INFOCOM |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 2.4683394 |
| Snippet | The emerging network slicing paradigm for 5G provides new business opportunities by enabling multi-tenancy support. At the same time, new technical challenges... |
| SourceID | unpaywall ieee |
| SourceType | Open Access Repository Publisher |
| StartPage | 1 |
| SubjectTerms | 3GPP 5G mobile communication Admission control Forecasting Prediction algorithms Resource management Training |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gF_WiBoz4yh482tIX3e6ZiGhS0EQSbs2-SIhQCLZR-fXOtqUa48Hbtt0-MtPJfLM73wzAjY4ol-HMtxztYYDCQ2YJprglXbPpM1M-F4bgHI_C4SR4nPamDbituTBa6yL5TNtmWOzlq5XMzVJZN0JwgZB5D_ZoFJZcrYoN5zqs-zAajPvj2KRrUbuaWvVMOYT9PF3zz3e-WPxwH4MjiHcvLrNGXu08E7bc_qrJ-N8vO4b2N1GPPNUu6AQaOm3Bc7wSaOsk23BTH4IgLNWSv5n8ZjMmS_4xX8635rB3T9IyD5wg3pTm1KZazyf4Ry4qkmYbJoO7l_7QqjonWHOMgDLLtM-QjEqMTyh3fc4RpXkC_ZWvAhq6qB90S4z2QmEAHEY1vo6UmKErVzLgIvBPoZmuUn0GxBUOE8zTgZKzIPSUQFV6nsYwg-uACqcDLSOOZF0Wx0gqSXTAriVeXysCDoclxnbQnhKjqd0N538_5wIOzKwyxfASmtkm11cIAzJxXej_C47ItKo priority: 102 providerName: IEEE |
| Title | Mobile traffic forecasting for maximizing 5G network slicing resource utilization |
| URI | https://ieeexplore.ieee.org/document/8057230 http://hdl.handle.net/10016/28657 |
| UnpaywallVersion | submittedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0gHNSLGjDiV_bgtaWfW_ZojEhMIJhIgqdmd7tNiFAIlqj8emdoAaPx4K3bzSbNzjbvvXbeDMCNaUdS89S3HOOhQJFcWEok0tIu_fRJE18qMjj3-rw7DB5H4agCm_6EP8oLUIEg3iLzZLQHNR4i3a5Cbdgf3L6UNjjXES0KBaV-IJZFdhsJiLfOaaZmKYewv8zm8vNdTibfcKNztHPfFOkir_YyV7Ze_S7G-PcjHUNjZ8tjgy3gnEDFZHV46s0UvtksX0iqBsGQhBot3yibma7ZVH6Mp-MVDcMHlhVZ3wzZpaZbi_LrPcPzNyktmQ0Ydu6f77pW2SfBGqPeyS1qlqFFpFGNRNL1pURO5ilEJz8JIu5iNBCERBRyRXQNNYxv2olKEbgTHUgV-KdQzWaZOQPmKkco4Zkg0WnAvURh4DzPoKiQJoiU04Q6bWs8L0phxOVuN8HebvN2bi0vHBGX4YkpPJsF5_9dcAEHNCxSDS-hmi-W5grpQK6u15696_JYfAHev7Y6 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtCLGjDiswePtvSxbdkzEUEpaAIJt2Z3uyREKATbqPx6Z9tSjfHgbfvYbjOzk_m-3ZlZgFvZ9pnwZo5uShsJCvOozmnEdGGpTZ9Z5DCuEpyDodebkMepO63AXZkLI6XMgs-koZrZXn60EqlaKmu1EVwgZN6DfZcQ4ubZWkU-nGXSVn_YHXVGgQrY8o3i5eLUlEOopfGafb6zxeKHA-keQbAbOo8beTXShBti-6sq43__7Rga36l62nPphE6gIuM6vAQrjtauJRumKkRoCEylYG8qwlm1tSX7mC_nW3XpPmhxHgmuIeIU6tamWNHXcE4uijTNBky69-NOTy_OTtDnyIESXR2gIagvkKH4zHIYQ5xmc_RYTkR8z0INoWOivutxBeGQ1ziyHfEZOvNIEMaJcwrVeBXLM9AsblJObUkiMSOeHXFUpm1LJBpMEp-bTagrcYTrvDxGWEiiCUYp8fJZRjlMGirrQYsKlaZ2Hc7__s4N1HrjYBAO-sOnCzhQPfKAw0uoJptUXiEoSPh1Nhe-AC_zt_c |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0gHNSLGjDiV3rw2tLPXfZojEhMIJhIgqdmd7tNiFAIlqj8emdoAaPx4K3bzSbNzjbvvfbNDMCNaXOpWRrYrvFRoEgmbCUSaWuPfvqkSSAVJTj3-qw7DB9H0agCm_6EP8oLUIEg1qLkSb4HNRYh3a5Cbdgf3L6UaXCeK1oUCrJ-IJZxp40ExF97mqlZyiHsL7O5_HyXk8k33Ogc7bJvCrvIq7PMlaNXv4sx_v1Ix9DYpeVZgy3gnEDFZHV46s0UvtlWvpBUDcJCEmq0fCM3M11bU_kxno5XNIwerKxwfVvILjXdWpRf7y08f5MyJbMBw879813XLvsk2GPUO7lNzTK04BrVCJdeICVyMl8hOgVJyJmH0UAQEjxiiugaapjAtBOVInAnOpQqDE6hms0ycwaWp1yhhG_CRKch8xOFgfN9g6JCmpArtwl12tZ4XpTCiMvdboKz3ebt3FpeuCIuwxNTeDYLzv-74AIOaFhYDS-hmi-W5grpQK6uywPxBZ64tTk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+INFOCOM+2017+-+IEEE+Conference+on+Computer+Communications&rft.atitle=Mobile+traffic+forecasting+for+maximizing+5G+network+slicing+resource+utilization&rft.au=Sciancalepore%2C+Vincenzo&rft.au=Samdanis%2C+Konstantinos&rft.au=Costa-Perez%2C+Xavier&rft.au=Bega%2C+Dario&rft.date=2017-05-01&rft.pub=IEEE&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FINFOCOM.2017.8057230&rft.externalDocID=8057230 |