Mobile traffic forecasting for maximizing 5G network slicing resource utilization

The emerging network slicing paradigm for 5G provides new business opportunities by enabling multi-tenancy support. At the same time, new technical challenges are introduced, as novel resource allocation algorithms are required to accommodate different business models. In particular, infrastructure...

Full description

Saved in:
Bibliographic Details
Published inIEEE INFOCOM 2017 - IEEE Conference on Computer Communications pp. 1 - 9
Main Authors Sciancalepore, Vincenzo, Samdanis, Konstantinos, Costa-Perez, Xavier, Bega, Dario, Gramaglia, Marco, Banchs, Albert
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2017
Subjects
Online AccessGet full text
DOI10.1109/INFOCOM.2017.8057230

Cover

Abstract The emerging network slicing paradigm for 5G provides new business opportunities by enabling multi-tenancy support. At the same time, new technical challenges are introduced, as novel resource allocation algorithms are required to accommodate different business models. In particular, infrastructure providers need to implement radically new admission control policies to decide on network slices requests depending on their Service Level Agreements (SLA). When implementing such admission control policies, infrastructure providers may apply forecasting techniques in order to adjust the allocated slice resources so as to optimize the network utilization while meeting network slices' SLAs. This paper focuses on the design of three key network slicing building blocks responsible for (i) traffic analysis and prediction per network slice, (ii) admission control decisions for network slice requests, and (iii) adaptive correction of the forecasted load based on measured deviations. Our results show very substantial potential gains in terms of system utilization as well as a trade-off between conservative forecasting configurations versus more aggressive ones (higher gains, SLA risk).
AbstractList The emerging network slicing paradigm for 5G provides new business opportunities by enabling multi-tenancy support. At the same time, new technical challenges are introduced, as novel resource allocation algorithms are required to accommodate different business models. In particular, infrastructure providers need to implement radically new admission control policies to decide on network slices requests depending on their Service Level Agreements (SLA). When implementing such admission control policies, infrastructure providers may apply forecasting techniques in order to adjust the allocated slice resources so as to optimize the network utilization while meeting network slices' SLAs. This paper focuses on the design of three key network slicing building blocks responsible for (i) traffic analysis and prediction per network slice, (ii) admission control decisions for network slice requests, and (iii) adaptive correction of the forecasted load based on measured deviations. Our results show very substantial potential gains in terms of system utilization as well as a trade-off between conservative forecasting configurations versus more aggressive ones (higher gains, SLA risk).
Author Sciancalepore, Vincenzo
Banchs, Albert
Gramaglia, Marco
Bega, Dario
Samdanis, Konstantinos
Costa-Perez, Xavier
Author_xml – sequence: 1
  givenname: Vincenzo
  surname: Sciancalepore
  fullname: Sciancalepore, Vincenzo
– sequence: 2
  givenname: Konstantinos
  surname: Samdanis
  fullname: Samdanis, Konstantinos
– sequence: 3
  givenname: Xavier
  surname: Costa-Perez
  fullname: Costa-Perez, Xavier
– sequence: 4
  givenname: Dario
  surname: Bega
  fullname: Bega, Dario
– sequence: 5
  givenname: Marco
  surname: Gramaglia
  fullname: Gramaglia, Marco
– sequence: 6
  givenname: Albert
  surname: Banchs
  fullname: Banchs, Albert
BookMark eNo9kMtOwzAQRY0ECyj9AljkBxL8iGN7iSJaKrVESLC2HMdBIxK7clKV9utp1MJqZu7VmcW5Q9c-eIfQI8EZIVg9rd4WVVltMoqJyCTmgjJ8heZKSMKxwpyxAt-i902ooXPJGE3bgk3aEJ01wwj-a9qT3vxAD8fp5MvEu3Ef4ncydGCnKLoh7KJ1yW6EDo5mhODv0U1rusHNL3OGPhcvH-Vruq6Wq_J5nQKVYkypkMwqYbEqhCHMGMUorXPCWJOLgshTSKUSvKg5UQzLgjnZ1C2npLG5qXM2Q_z8d-e35rA3Xae3EXoTD5pgPSnQ4NtgQ68nBfqi4MQ9nDlwzv0jf-0vt8ZeoQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
ADTOC
UNPAY
DOI 10.1109/INFOCOM.2017.8057230
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISBN 9781509053360
1509053360
EndPage 9
ExternalDocumentID oai:dnet:earchivo____::34168f9e140a26aa184672e8db598459
8057230
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ADTOC
UNPAY
ID FETCH-LOGICAL-i287t-2783c97c0967a13aa9322b4133d476187a1289756b51930863e8dbf521dc4ab43
IEDL.DBID UNPAY
IngestDate Wed Oct 01 16:21:55 EDT 2025
Thu Jun 29 18:37:10 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i287t-2783c97c0967a13aa9322b4133d476187a1289756b51930863e8dbf521dc4ab43
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10016/28657
PageCount 9
ParticipantIDs unpaywall_primary_10_1109_infocom_2017_8057230
ieee_primary_8057230
PublicationCentury 2000
PublicationDate 2017-05
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05
PublicationDecade 2010
PublicationTitle IEEE INFOCOM 2017 - IEEE Conference on Computer Communications
PublicationTitleAbbrev INFOCOM
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.4683394
Snippet The emerging network slicing paradigm for 5G provides new business opportunities by enabling multi-tenancy support. At the same time, new technical challenges...
SourceID unpaywall
ieee
SourceType Open Access Repository
Publisher
StartPage 1
SubjectTerms 3GPP
5G mobile communication
Admission control
Forecasting
Prediction algorithms
Resource management
Training
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gF_WiBoz4yh482tIX3e6ZiGhS0EQSbs2-SIhQCLZR-fXOtqUa48Hbtt0-MtPJfLM73wzAjY4ol-HMtxztYYDCQ2YJprglXbPpM1M-F4bgHI_C4SR4nPamDbituTBa6yL5TNtmWOzlq5XMzVJZN0JwgZB5D_ZoFJZcrYoN5zqs-zAajPvj2KRrUbuaWvVMOYT9PF3zz3e-WPxwH4MjiHcvLrNGXu08E7bc_qrJ-N8vO4b2N1GPPNUu6AQaOm3Bc7wSaOsk23BTH4IgLNWSv5n8ZjMmS_4xX8635rB3T9IyD5wg3pTm1KZazyf4Ry4qkmYbJoO7l_7QqjonWHOMgDLLtM-QjEqMTyh3fc4RpXkC_ZWvAhq6qB90S4z2QmEAHEY1vo6UmKErVzLgIvBPoZmuUn0GxBUOE8zTgZKzIPSUQFV6nsYwg-uACqcDLSOOZF0Wx0gqSXTAriVeXysCDoclxnbQnhKjqd0N538_5wIOzKwyxfASmtkm11cIAzJxXej_C47ItKo
  priority: 102
  providerName: IEEE
Title Mobile traffic forecasting for maximizing 5G network slicing resource utilization
URI https://ieeexplore.ieee.org/document/8057230
http://hdl.handle.net/10016/28657
UnpaywallVersion submittedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0gHNSLGjDiV_bgtaWfW_ZojEhMIJhIgqdmd7tNiFAIlqj8emdoAaPx4K3bzSbNzjbvvXbeDMCNaUdS89S3HOOhQJFcWEok0tIu_fRJE18qMjj3-rw7DB5H4agCm_6EP8oLUIEg3iLzZLQHNR4i3a5Cbdgf3L6UNjjXES0KBaV-IJZFdhsJiLfOaaZmKYewv8zm8vNdTibfcKNztHPfFOkir_YyV7Ze_S7G-PcjHUNjZ8tjgy3gnEDFZHV46s0UvtksX0iqBsGQhBot3yibma7ZVH6Mp-MVDcMHlhVZ3wzZpaZbi_LrPcPzNyktmQ0Ydu6f77pW2SfBGqPeyS1qlqFFpFGNRNL1pURO5ilEJz8JIu5iNBCERBRyRXQNNYxv2olKEbgTHUgV-KdQzWaZOQPmKkco4Zkg0WnAvURh4DzPoKiQJoiU04Q6bWs8L0phxOVuN8HebvN2bi0vHBGX4YkpPJsF5_9dcAEHNCxSDS-hmi-W5grpQK6u15696_JYfAHev7Y6
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtCLGjDiswePtvSxbdkzEUEpaAIJt2Z3uyREKATbqPx6Z9tSjfHgbfvYbjOzk_m-3ZlZgFvZ9pnwZo5uShsJCvOozmnEdGGpTZ9Z5DCuEpyDodebkMepO63AXZkLI6XMgs-koZrZXn60EqlaKmu1EVwgZN6DfZcQ4ubZWkU-nGXSVn_YHXVGgQrY8o3i5eLUlEOopfGafb6zxeKHA-keQbAbOo8beTXShBti-6sq43__7Rga36l62nPphE6gIuM6vAQrjtauJRumKkRoCEylYG8qwlm1tSX7mC_nW3XpPmhxHgmuIeIU6tamWNHXcE4uijTNBky69-NOTy_OTtDnyIESXR2gIagvkKH4zHIYQ5xmc_RYTkR8z0INoWOivutxBeGQ1ziyHfEZOvNIEMaJcwrVeBXLM9AsblJObUkiMSOeHXFUpm1LJBpMEp-bTagrcYTrvDxGWEiiCUYp8fJZRjlMGirrQYsKlaZ2Hc7__s4N1HrjYBAO-sOnCzhQPfKAw0uoJptUXiEoSPh1Nhe-AC_zt_c
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0gHNSLGjDiV3rw2tLPXfZojEhMIJhIgqdmd7tNiFAIlqj8emdoAaPx4K3bzSbNzjbvvfbNDMCNaXOpWRrYrvFRoEgmbCUSaWuPfvqkSSAVJTj3-qw7DB9H0agCm_6EP8oLUIEg1qLkSb4HNRYh3a5Cbdgf3L6UaXCeK1oUCrJ-IJZxp40ExF97mqlZyiHsL7O5_HyXk8k33Ogc7bJvCrvIq7PMlaNXv4sx_v1Ix9DYpeVZgy3gnEDFZHV46s0UvtlWvpBUDcJCEmq0fCM3M11bU_kxno5XNIwerKxwfVvILjXdWpRf7y08f5MyJbMBw879813XLvsk2GPUO7lNzTK04BrVCJdeICVyMl8hOgVJyJmH0UAQEjxiiugaapjAtBOVInAnOpQqDE6hms0ycwaWp1yhhG_CRKch8xOFgfN9g6JCmpArtwl12tZ4XpTCiMvdboKz3ebt3FpeuCIuwxNTeDYLzv-74AIOaFhYDS-hmi-W5grpQK6uywPxBZ64tTk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+INFOCOM+2017+-+IEEE+Conference+on+Computer+Communications&rft.atitle=Mobile+traffic+forecasting+for+maximizing+5G+network+slicing+resource+utilization&rft.au=Sciancalepore%2C+Vincenzo&rft.au=Samdanis%2C+Konstantinos&rft.au=Costa-Perez%2C+Xavier&rft.au=Bega%2C+Dario&rft.date=2017-05-01&rft.pub=IEEE&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FINFOCOM.2017.8057230&rft.externalDocID=8057230