Predicting sporadic grid data transfers

The increasingly common practice of replicating datasets and using resources as distributed data stores in grid environments has led to the problem of determining which replica can be accessed most efficiently. Due diverse performance characteristics and load variations of several components in the...

Full description

Saved in:
Bibliographic Details
Published in11th International Symposium on High-Performance Distributed Computing (HPDC-11 2002) pp. 188 - 196
Main Authors Vazhkudai, S., Schopf, J.M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2002
Subjects
Online AccessGet full text
ISBN0769516866
9780769516868
ISSN1082-8907
DOI10.1109/HPDC.2002.1029918

Cover

Abstract The increasingly common practice of replicating datasets and using resources as distributed data stores in grid environments has led to the problem of determining which replica can be accessed most efficiently. Due diverse performance characteristics and load variations of several components in the end-to-end path linking these various locations, selecting a replica from among many requires accurate prediction information of the data transfer times between the sources and sinks. In this paper we present a prediction system that is based on combining end-to-end application throughput observations and network load variations, capturing the whole-system performance and variations in load patterns, respectively. We develop a set of regression models to derive predictions that characterize the effect of network load variations on file transfer times. We apply these techniques to the GridFTP data movement tool, part of the Globus Toolkit/spl trade/, and observe performance gains of up to 10% in prediction accuracy when compared with approaches based on past system behavior in isolation.
AbstractList The increasingly common practice of replicating datasets and using resources as distributed data stores in Grid environments has led to the problem of determining which replica can be accessed most efficiently. Because of diverse performance characteristics and load variations of several components in the end-to-end path linking these various locations, selecting a replica from among many requires accurate prediction information of the data transfer times between the sources and sinks.In this paper we present a prediction system that is based on combining end-to-end application throughput observations and network load variations, capturing whole-systemperformance and variations in load patterns, respectively. We develop a set of regression models to derive predictions that characterize the effect of network load variations on file transfer times. We apply these techniques to the GridFTP data movement tool, part of the Globus Toolkit?, and observe performance gains of up to 10% in prediction accuracy when compared with approaches based on past system behavior in isolation.
The increasingly common practice of replicating datasets and using resources as distributed data stores in grid environments has led to the problem of determining which replica can be accessed most efficiently. Due diverse performance characteristics and load variations of several components in the end-to-end path linking these various locations, selecting a replica from among many requires accurate prediction information of the data transfer times between the sources and sinks. In this paper we present a prediction system that is based on combining end-to-end application throughput observations and network load variations, capturing the whole-system performance and variations in load patterns, respectively. We develop a set of regression models to derive predictions that characterize the effect of network load variations on file transfer times. We apply these techniques to the GridFTP data movement tool, part of the Globus Toolkit/spl trade/, and observe performance gains of up to 10% in prediction accuracy when compared with approaches based on past system behavior in isolation.
Author Vazhkudai, S.
Schopf, J.M.
Author_xml – sequence: 1
  givenname: S.
  surname: Vazhkudai
  fullname: Vazhkudai, S.
  organization: Div. of Math. & Comput. Sci., Argonne Nat. Lab., IL, USA
– sequence: 2
  givenname: J.M.
  surname: Schopf
  fullname: Schopf, J.M.
  organization: Div. of Math. & Comput. Sci., Argonne Nat. Lab., IL, USA
BookMark eNpNj0tLw0AUhQesYFv7A8RNVrpKvTNJJjNLqY8KBbvQ9TCP2zqSJnEmQfrvTUkX3s3hwjkffDMyqZsaCbmhsKQU5MN6-7RaMgC2pMCkpOKCzKDksqBccD4hUwqCpUJCeUUWMX7DcHmRS4Apud8GdN52vt4nsW2CHp5kH7xLnO500gVdxx2GeE0ud7qKuDjnnHy-PH-s1unm_fVt9bhJPSuLLs1MSakTPNPCmFKDFoJJk0NhRM6LHNkOJXBmXW6sBWe1wFKWFJ1BYSTj2ZywkdvXrT7-6qpSbfAHHY6Kgjrpqq_WWXXSVWfdYXQ3jtrQ_PQYO3Xw0WJV6RqbPqqM5lxQXgzF27HoEfEfeMT8AaSSX9U
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1109/HPDC.2002.1029918
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EndPage 196
ExternalDocumentID oai:osti.gov:797930
1029918
Genre Conference Paper
GroupedDBID 29P
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RNS
7SC
8FD
AAVQY
JQ2
L7M
L~C
L~D
RIB
RIC
ADTOC
UNPAY
ID FETCH-LOGICAL-i275t-3b711d863a8bb7a0a8829b405b84654e2fe9062cd4bcc0dca8e7971edbe8b9263
IEDL.DBID RIE
ISBN 0769516866
9780769516868
ISSN 1082-8907
IngestDate Tue Aug 19 18:40:03 EDT 2025
Fri Jul 11 10:30:48 EDT 2025
Tue Aug 26 17:58:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i275t-3b711d863a8bb7a0a8829b405b84654e2fe9062cd4bcc0dca8e7971edbe8b9263
Notes SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/797930
PQID 31468165
PQPubID 23500
PageCount 9
ParticipantIDs ieee_primary_1029918
proquest_miscellaneous_31468165
unpaywall_primary_10_1109_hpdc_2002_1029918
PublicationCentury 2000
PublicationDate 20020000
20020724
PublicationDateYYYYMMDD 2002-01-01
2002-07-24
PublicationDate_xml – year: 2002
  text: 20020000
PublicationDecade 2000
PublicationTitle 11th International Symposium on High-Performance Distributed Computing (HPDC-11 2002)
PublicationTitleAbbrev HPDC
PublicationYear 2002
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000454900
ssj0020127
Score 1.7657682
Snippet The increasingly common practice of replicating datasets and using resources as distributed data stores in grid environments has led to the problem of...
The increasingly common practice of replicating datasets and using resources as distributed data stores in Grid environments has led to the problem of...
SourceID unpaywall
proquest
ieee
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 188
SubjectTerms Accuracy
Computer science
Distributed computing
Grid computing
Joining processes
Load management
Mathematics
Performance gain
Predictive models
Throughput
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1Ke_Cm0ooVP4IIHiRts9lNNkcpliJYerBQT2Fnd6PBkpSaIPrr3WmTWj0IHkO-lpmBecO8eUPIVahEqBiub-dAXRZI5QqquQu-wv1HYPwEB5wfJsF4xu7nfN4gl_UsDNIqcxvca04lpLBI834Y2SCyZXkr4LZCbpLWbDK9fapalN4g6r8s9VqNkKIQgQU8olqV8gM17pXZUn68y8ViJ4GM9smw_vWGN_LaKwvoqc9fqox_n-2AdL4H9JzpNvUckobJ2uR6usKuC_KYHSxWpb1wnlepdpAG6hRriGrRXofMRnePw7Fb7UFwUxrywvUh9DwtAl8KgFAOpEXFEVikBQLV0AxNDKoNK81AqYFWUhh7LM9oMAIiGvhHpJnlmTkmjrT3aWJrmEAmTCUMuGFCcbCoLWQm8rqkjYaLlxupi7iyZ5dc1IaMbfhhT0FmJi_fYh9Ht7yAd8nN1r47b8fonxj9g_suaf29k389fUqaxao0Zzb7F3Beuf8LZ2Oygg
  priority: 102
  providerName: Unpaywall
Title Predicting sporadic grid data transfers
URI https://ieeexplore.ieee.org/document/1029918
https://www.proquest.com/docview/31468165
https://www.osti.gov/biblio/797930
UnpaywallVersion submittedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB3RcgAuLC2iLCUHJA6Q0Gy2c0QsqpCKcqBSOUW24wACpVWbCMHX48lGQRy4xYoSy_sbz8x7ACdUMio9lG_3hWN6hEuTObFvClei_pFQboIJzqN7Mhx7dxN_sgLnTS6MUqoIPlMWPha-_Hgqc7wq0ytcb542a0GL0qDM1WruU5BKLsBwyMrYQpdqGVyvV7y2AEuTXeMJwgipmHfqMqvcnfYguBiG11dF5IJV1VbJrvxAoGt5OuMf7_ztbekwut2EUd2MMgbl1cozYcnPXwyP_23nFnS_0_6MsDnQtmFFpTuwWes-GNU2sAMbo4brddGB03COzh4MnzbQRua6YDzNX2IDo0-NrEDGGmR2YXx783A1NCv5BfPFoX5muoLadsyIy5kQlA-4BuOB0ABPMCRhU06ikORYxp6QchBLzhQNqK1ioZgIHOLuQjudpmoPDK7fO4k2nQhPPJl4wlcek77QYJF6KrB70MFeiGYlw0ZUdUAPjus-j_SsR1cGT9U0X0QuZozZxO_BWTMUS19HOJTR8yyWKLPp1P_b_7uaA1gvNF6Ki5VDaGfzXB1pqJGJfjHH-rA6vg8vH78A0UHL1Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VcgAu7KJszQGJA6Q0iWM75wIqS1APIHGLbMeBiiqtSiIEX48nG4s4cIsVJZb3N56Z9wCOmOJMEZRv96VrEyqUzd3Yt6WnUP9Iai_BBOfwjg4fyPWj_9iC0yYXRmtdBJ_pHj4Wvvx4qnK8KjMr3GyeDl-ARZ8Q5pbZWs2NCpLJBRgQWZlb6FQtw-vNmjc2YGm0G0RBOaUV905d5pXD0-kHZ8PR-aCIXehV9VXCKz8w6FKezsT7m5hMvh1Hl6sQ1g0po1Beenkme-rjF8fjf1u6BltfiX_WqDnS1qGl0w1YrZUfrGoj2ICVsGF7fd2E49Ec3T0YQG2hlSxMwXqaj2ML40-trMDGBmZuwcPlxf1gaFcCDPbYZX5me5I5TsypJ7iUTPSFgeOBNBBPcqRh026ikeZYxUQq1Y-V4JoFzNGx1FwGLvW2oZ1OU70DljDv3cQYT1QkRCVE-ppw5UsDFxnRgdOBTeyFaFZybERVB3SgW_d5ZOY9OjNEqqf5a-RhzphD_Q6cNEPx7esIhzJ6nsUKhTbd-n-7f1fThaXhfXgb3V7d3ezBcqH4Ulyz7EM7m-f6wACPTB4W8-0TPkHNcA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1Ke_Cm0ooVP4IIHiRts9lNNkcpliJYerBQT2Fnd6PBkpSaIPrr3WmTWj0IHkO-lpmBecO8eUPIVahEqBiub-dAXRZI5QqquQu-wv1HYPwEB5wfJsF4xu7nfN4gl_UsDNIqcxvca04lpLBI834Y2SCyZXkr4LZCbpLWbDK9fapalN4g6r8s9VqNkKIQgQU8olqV8gM17pXZUn68y8ViJ4GM9smw_vWGN_LaKwvoqc9fqox_n-2AdL4H9JzpNvUckobJ2uR6usKuC_KYHSxWpb1wnlepdpAG6hRriGrRXofMRnePw7Fb7UFwUxrywvUh9DwtAl8KgFAOpEXFEVikBQLV0AxNDKoNK81AqYFWUhh7LM9oMAIiGvhHpJnlmTkmjrT3aWJrmEAmTCUMuGFCcbCoLWQm8rqkjYaLlxupi7iyZ5dc1IaMbfhhT0FmJi_fYh9Ht7yAd8nN1r47b8fonxj9g_suaf29k389fUqaxao0Zzb7F3Beuf8LZ2Oygg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+11th+IEEE+International+Symposium+on+High+Performance+Distributed+Computing&rft.atitle=Predicting+sporadic+grid+data+transfers&rft.au=Vazhkudai%2C+S.&rft.au=Schopf%2C+J.M.&rft.date=2002-01-01&rft.pub=IEEE&rft.isbn=9780769516868&rft.issn=1082-8907&rft.spage=188&rft.epage=196&rft_id=info:doi/10.1109%2FHPDC.2002.1029918&rft.externalDocID=1029918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1082-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1082-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1082-8907&client=summon