Saliency Optimization from Robust Background Detection

Recent progresses in salient object detection have exploited the boundary prior, or background information, to assist other saliency cues such as contrast, achieving state-of-the-art results. However, their usage of boundary prior is very simple, fragile, and the integration with other cues is mostl...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 2814 - 2821
Main Authors Zhu, Wangjiang, Liang, Shuang, Wei, Yichen, Sun, Jian
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2014.360

Cover

Abstract Recent progresses in salient object detection have exploited the boundary prior, or background information, to assist other saliency cues such as contrast, achieving state-of-the-art results. However, their usage of boundary prior is very simple, fragile, and the integration with other cues is mostly heuristic. In this work, we present new methods to address these issues. First, we propose a robust background measure, called boundary connectivity. It characterizes the spatial layout of image regions with respect to image boundaries and is much more robust. It has an intuitive geometrical interpretation and presents unique benefits that are absent in previous saliency measures. Second, we propose a principled optimization framework to integrate multiple low level cues, including our background measure, to obtain clean and uniform saliency maps. Our formulation is intuitive, efficient and achieves state-of-the-art results on several benchmark datasets.
AbstractList Recent progresses in salient object detection have exploited the boundary prior, or background information, to assist other saliency cues such as contrast, achieving state-of-the-art results. However, their usage of boundary prior is very simple, fragile, and the integration with other cues is mostly heuristic. In this work, we present new methods to address these issues. First, we propose a robust background measure, called boundary connectivity. It characterizes the spatial layout of image regions with respect to image boundaries and is much more robust. It has an intuitive geometrical interpretation and presents unique benefits that are absent in previous saliency measures. Second, we propose a principled optimization framework to integrate multiple low level cues, including our background measure, to obtain clean and uniform saliency maps. Our formulation is intuitive, efficient and achieves state-of-the-art results on several benchmark datasets.
Author Jian Sun
Wangjiang Zhu
Shuang Liang
Yichen Wei
Author_xml – sequence: 1
  givenname: Wangjiang
  surname: Zhu
  fullname: Zhu, Wangjiang
– sequence: 2
  givenname: Shuang
  surname: Liang
  fullname: Liang, Shuang
– sequence: 3
  givenname: Yichen
  surname: Wei
  fullname: Wei, Yichen
– sequence: 4
  givenname: Jian
  surname: Sun
  fullname: Sun, Jian
BookMark eNpNzD1PwzAUhWGDikQpHZlYMrKk-NrxtT1C-ZQqFZWPNXKSW2SRxCFOhvLrAZWB6bzDo3PCJm1oibEz4AsAbi-Xb0-bheCQLSTyAza32kCmrVUARh2yKXCUKVqwk399zOYx-oIL1JgpiVOGz6721Ja7ZN0NvvFfbvChTbZ9aJJNKMY4JNeu_Hjvw9hWyQ0NVP6CU3a0dXWk-d_O2Ovd7cvyIV2t7x-XV6vUC50N6VZWDkCBIV2KioSiTAhNSkpXSlLOIFagTaGERpJGal4IWWAlwRmjNMoZu9j_dn34HCkOeeNjSXXtWgpjzAG1tiLjSv_Q8z31RJR3vW9cv8vRcqsVym8i6Vbg
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2014.360
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781479951185
1479951188
EISSN 1063-6919
EndPage 2821
ExternalDocumentID 6909756
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i274t-f3da11518e7c2de25e4227e533ac3e5a866d178b5276e38370b23b6d31a885763
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Thu Sep 04 17:43:48 EDT 2025
Wed Aug 27 04:30:17 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i274t-f3da11518e7c2de25e4227e533ac3e5a866d178b5276e38370b23b6d31a885763
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1677924057
PQPubID 23500
PageCount 8
ParticipantIDs ieee_primary_6909756
proquest_miscellaneous_1677924057
PublicationCentury 2000
PublicationDate 20140601
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 20140601
  day: 01
PublicationDecade 2010
PublicationTitle 2014 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764536
ssj0023720
ssj0003211698
Score 2.5305648
Snippet Recent progresses in salient object detection have exploited the boundary prior, or background information, to assist other saliency cues such as contrast,...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 2814
SubjectTerms Benchmark testing
Boundaries
Computer vision
Conferences
Cues
Image color analysis
Layout
Object detection
Optimization
Pattern recognition
Robustness
State of the art
Title Saliency Optimization from Robust Background Detection
URI https://ieeexplore.ieee.org/document/6909756
https://www.proquest.com/docview/1677924057
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEN20PXmq2hrrVzDxKC2wyyxcrTaNidpUa3prdtklMY1gLFz89c4u0CbqwRvZQALLMPMeM2-GkCvtpQqdHncZpLHLEgBXIip1mcJoC8DSUNhun48wXbD7ZbhskeutFkZrbYvP9NAc2ly-ypPS_CobIZOLeQht0kYzq7Raje0EwIGF1exu64UpMhuItxmFwExjsZlPoC7Efrzrtzkav87mpsiLDanpVGmnrPxyzTbeTLrkobnTqsxkPSwLOUy-fjRx_O-j7JP-TtnnzLYx64C0dHZIujUUdeoPfYNLzbSHZq1H4BkhuxFqOk_oZt5r_aZj9CnOPJflpnBuRLI2MpFMObe6sEVeWZ8sJncv46lbT11w35ChFm5KlUCY6EeaJ4HSQahZEHCNsFAkVIciAlA-j2QYcNCG33oyoBIU9UUUIXuhR6ST5Zk-Jo7nSy58Qb1YeiyJ0zjB0zwVKSEYiEgNSM_szOqjaqyxqjdlQC6bvV-hsZsMhsh0Xm5WPnCOhBEx5snfl56SPfMiq1quM9IpPkt9jqihkBfWXL4ByeS8Wg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEJ6setCT7_gWE4-yAi1TuLpq1rfxFW-kpSUxRta4cPHXOy2wJurBG2kggTLMfB8z3wzAvgkKTU5P-ByL1Oc5oq8IlfpcU7RF5EUsXbfPaxw-8vPn-LkHBxMtjDHGFZ-Zvj10uXw9ymv7q-yQmFwqYpyCmZhYRdKotTrriVAgj5vp3c4PM-I2mE5yCpGdx-Jyn8h8TMP0u-Pm4eDp9s6WefE-s70q3ZyVX87ZRZzTebjq7rUpNHnt15Xq558_2jj-92EWYOVb2-fdTqLWIvRMuQTzLRj12k99TEvdvIdubRnwnkC7lWp6N-Ro3loFp2cVKt7dSNXjyjuS-asVipTaOzaVK_MqV-Dx9ORhMPTbuQv-C3HUyi-YlgQUw8SIPNImig2PImEIGMqcmVgmiDoUiYojgcYy3EBFTKFmoUwS4i9sFabLUWnWwAtCJWQoWZCqgOdpkeZ0WqATLSVHmeh1WLY7k703rTWydlPWYa_b-4zM3eYwZGlG9TgLUQiijIQyN_6-dBdmhw9Xl9nl2fXFJszZl9pUdm3BdPVRm23CEJXacabzBeVAv60
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Saliency+Optimization+from+Robust+Background+Detection&rft.au=Wangjiang+Zhu&rft.au=Shuang+Liang&rft.au=Yichen+Wei&rft.au=Jian+Sun&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2814&rft.epage=2821&rft_id=info:doi/10.1109%2FCVPR.2014.360&rft.externalDocID=6909756
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon