Saliency Optimization from Robust Background Detection
Recent progresses in salient object detection have exploited the boundary prior, or background information, to assist other saliency cues such as contrast, achieving state-of-the-art results. However, their usage of boundary prior is very simple, fragile, and the integration with other cues is mostl...
Saved in:
Published in | 2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 2814 - 2821 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2014.360 |
Cover
Abstract | Recent progresses in salient object detection have exploited the boundary prior, or background information, to assist other saliency cues such as contrast, achieving state-of-the-art results. However, their usage of boundary prior is very simple, fragile, and the integration with other cues is mostly heuristic. In this work, we present new methods to address these issues. First, we propose a robust background measure, called boundary connectivity. It characterizes the spatial layout of image regions with respect to image boundaries and is much more robust. It has an intuitive geometrical interpretation and presents unique benefits that are absent in previous saliency measures. Second, we propose a principled optimization framework to integrate multiple low level cues, including our background measure, to obtain clean and uniform saliency maps. Our formulation is intuitive, efficient and achieves state-of-the-art results on several benchmark datasets. |
---|---|
AbstractList | Recent progresses in salient object detection have exploited the boundary prior, or background information, to assist other saliency cues such as contrast, achieving state-of-the-art results. However, their usage of boundary prior is very simple, fragile, and the integration with other cues is mostly heuristic. In this work, we present new methods to address these issues. First, we propose a robust background measure, called boundary connectivity. It characterizes the spatial layout of image regions with respect to image boundaries and is much more robust. It has an intuitive geometrical interpretation and presents unique benefits that are absent in previous saliency measures. Second, we propose a principled optimization framework to integrate multiple low level cues, including our background measure, to obtain clean and uniform saliency maps. Our formulation is intuitive, efficient and achieves state-of-the-art results on several benchmark datasets. |
Author | Jian Sun Wangjiang Zhu Shuang Liang Yichen Wei |
Author_xml | – sequence: 1 givenname: Wangjiang surname: Zhu fullname: Zhu, Wangjiang – sequence: 2 givenname: Shuang surname: Liang fullname: Liang, Shuang – sequence: 3 givenname: Yichen surname: Wei fullname: Wei, Yichen – sequence: 4 givenname: Jian surname: Sun fullname: Sun, Jian |
BookMark | eNpNzD1PwzAUhWGDikQpHZlYMrKk-NrxtT1C-ZQqFZWPNXKSW2SRxCFOhvLrAZWB6bzDo3PCJm1oibEz4AsAbi-Xb0-bheCQLSTyAza32kCmrVUARh2yKXCUKVqwk399zOYx-oIL1JgpiVOGz6721Ja7ZN0NvvFfbvChTbZ9aJJNKMY4JNeu_Hjvw9hWyQ0NVP6CU3a0dXWk-d_O2Ovd7cvyIV2t7x-XV6vUC50N6VZWDkCBIV2KioSiTAhNSkpXSlLOIFagTaGERpJGal4IWWAlwRmjNMoZu9j_dn34HCkOeeNjSXXtWgpjzAG1tiLjSv_Q8z31RJR3vW9cv8vRcqsVym8i6Vbg |
CODEN | IEEPAD |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/CVPR.2014.360 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEL IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781479951185 1479951188 |
EISSN | 1063-6919 |
EndPage | 2821 |
ExternalDocumentID | 6909756 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-i274t-f3da11518e7c2de25e4227e533ac3e5a866d178b5276e38370b23b6d31a885763 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Thu Sep 04 17:43:48 EDT 2025 Wed Aug 27 04:30:17 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i274t-f3da11518e7c2de25e4227e533ac3e5a866d178b5276e38370b23b6d31a885763 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
PQID | 1677924057 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | ieee_primary_6909756 proquest_miscellaneous_1677924057 |
PublicationCentury | 2000 |
PublicationDate | 20140601 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 20140601 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2014 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib026764536 ssj0023720 ssj0003211698 |
Score | 2.5305648 |
Snippet | Recent progresses in salient object detection have exploited the boundary prior, or background information, to assist other saliency cues such as contrast,... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 2814 |
SubjectTerms | Benchmark testing Boundaries Computer vision Conferences Cues Image color analysis Layout Object detection Optimization Pattern recognition Robustness State of the art |
Title | Saliency Optimization from Robust Background Detection |
URI | https://ieeexplore.ieee.org/document/6909756 https://www.proquest.com/docview/1677924057 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEN20PXmq2hrrVzDxKC2wyyxcrTaNidpUa3prdtklMY1gLFz89c4u0CbqwRvZQALLMPMeM2-GkCvtpQqdHncZpLHLEgBXIip1mcJoC8DSUNhun48wXbD7ZbhskeutFkZrbYvP9NAc2ly-ypPS_CobIZOLeQht0kYzq7Raje0EwIGF1exu64UpMhuItxmFwExjsZlPoC7Efrzrtzkav87mpsiLDanpVGmnrPxyzTbeTLrkobnTqsxkPSwLOUy-fjRx_O-j7JP-TtnnzLYx64C0dHZIujUUdeoPfYNLzbSHZq1H4BkhuxFqOk_oZt5r_aZj9CnOPJflpnBuRLI2MpFMObe6sEVeWZ8sJncv46lbT11w35ChFm5KlUCY6EeaJ4HSQahZEHCNsFAkVIciAlA-j2QYcNCG33oyoBIU9UUUIXuhR6ST5Zk-Jo7nSy58Qb1YeiyJ0zjB0zwVKSEYiEgNSM_szOqjaqyxqjdlQC6bvV-hsZsMhsh0Xm5WPnCOhBEx5snfl56SPfMiq1quM9IpPkt9jqihkBfWXL4ByeS8Wg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEJ6setCT7_gWE4-yAi1TuLpq1rfxFW-kpSUxRta4cPHXOy2wJurBG2kggTLMfB8z3wzAvgkKTU5P-ByL1Oc5oq8IlfpcU7RF5EUsXbfPaxw-8vPn-LkHBxMtjDHGFZ-Zvj10uXw9ymv7q-yQmFwqYpyCmZhYRdKotTrriVAgj5vp3c4PM-I2mE5yCpGdx-Jyn8h8TMP0u-Pm4eDp9s6WefE-s70q3ZyVX87ZRZzTebjq7rUpNHnt15Xq558_2jj-92EWYOVb2-fdTqLWIvRMuQTzLRj12k99TEvdvIdubRnwnkC7lWp6N-Ro3loFp2cVKt7dSNXjyjuS-asVipTaOzaVK_MqV-Dx9ORhMPTbuQv-C3HUyi-YlgQUw8SIPNImig2PImEIGMqcmVgmiDoUiYojgcYy3EBFTKFmoUwS4i9sFabLUWnWwAtCJWQoWZCqgOdpkeZ0WqATLSVHmeh1WLY7k703rTWydlPWYa_b-4zM3eYwZGlG9TgLUQiijIQyN_6-dBdmhw9Xl9nl2fXFJszZl9pUdm3BdPVRm23CEJXacabzBeVAv60 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Saliency+Optimization+from+Robust+Background+Detection&rft.au=Wangjiang+Zhu&rft.au=Shuang+Liang&rft.au=Yichen+Wei&rft.au=Jian+Sun&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2814&rft.epage=2821&rft_id=info:doi/10.1109%2FCVPR.2014.360&rft.externalDocID=6909756 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |