Efficient and accurate approximations of nonlinear convolutional networks

This paper aims to accelerate the test-time computation of deep convolutional neural networks (CNNs). Unlike existing methods that are designed for approximating linear filters or linear responses, our method takes the nonlinear units into account. We minimize the reconstruction error of the nonline...

Full description

Saved in:
Bibliographic Details
Published in2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1984 - 1992
Main Authors Zhang, Xiangyu, Zou, Jianhua, Ming, Xiang, He, Kaiming, Sun, Jian
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.06.2015
Subjects
Online AccessGet full text
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2015.7298809

Cover

Abstract This paper aims to accelerate the test-time computation of deep convolutional neural networks (CNNs). Unlike existing methods that are designed for approximating linear filters or linear responses, our method takes the nonlinear units into account. We minimize the reconstruction error of the nonlinear responses, subject to a low-rank constraint which helps to reduce the complexity of filters. We develop an effective solution to this constrained nonlinear optimization problem. An algorithm is also presented for reducing the accumulated error when multiple layers are approximated. A whole-model speedup ratio of 4× is demonstrated on a large network trained for ImageNet, while the top-5 error rate is only increased by 0.9%. Our accelerated model has a comparably fast speed as the "AlexNet" [11], but is 4.7% more accurate.
AbstractList This paper aims to accelerate the test-time computation of deep convolutional neural networks (CNNs). Unlike existing methods that are designed for approximating linear filters or linear responses, our method takes the nonlinear units into account. We minimize the reconstruction error of the nonlinear responses, subject to a low-rank constraint which helps to reduce the complexity of filters. We develop an effective solution to this constrained nonlinear optimization problem. An algorithm is also presented for reducing the accumulated error when multiple layers are approximated. A whole-model speedup ratio of 4 is demonstrated on a large network trained for ImageNet, while the top-5 error rate is only increased by 0.9%. Our accelerated model has a comparably fast speed as the "AlexNet" [11], but is 4.7% more accurate.
This paper aims to accelerate the test-time computation of deep convolutional neural networks (CNNs). Unlike existing methods that are designed for approximating linear filters or linear responses, our method takes the nonlinear units into account. We minimize the reconstruction error of the nonlinear responses, subject to a low-rank constraint which helps to reduce the complexity of filters. We develop an effective solution to this constrained nonlinear optimization problem. An algorithm is also presented for reducing the accumulated error when multiple layers are approximated. A whole-model speedup ratio of 4× is demonstrated on a large network trained for ImageNet, while the top-5 error rate is only increased by 0.9%. Our accelerated model has a comparably fast speed as the "AlexNet" [11], but is 4.7% more accurate.
Author Jianhua Zou
Jian Sun
Kaiming He
Xiangyu Zhang
Xiang Ming
Author_xml – sequence: 1
  givenname: Xiangyu
  surname: Zhang
  fullname: Zhang, Xiangyu
– sequence: 2
  givenname: Jianhua
  surname: Zou
  fullname: Zou, Jianhua
– sequence: 3
  givenname: Xiang
  surname: Ming
  fullname: Ming, Xiang
– sequence: 4
  givenname: Kaiming
  surname: He
  fullname: He, Kaiming
– sequence: 5
  givenname: Jian
  surname: Sun
  fullname: Sun, Jian
BookMark eNpNkM1OwzAQhA0qEm3pAyAuPnJJWdtJHB9RVaBSJRACrpFjryWL1C5xws_bE9QeOM1q59NqdmZkEmJAQi4ZLBkDdbN6e3pecmDFUnJVVaBOyIzlpRSlKnM4JVMGpchKxdTk33xOFin5BgRApRSHKdmsnfPGY-ipDpZqY4ZO90j1ft_Fb7_TvY8h0ejoGKD1AXVHTQyfsR3-HN3SgP1X7N7TBTlzuk24OOqcvN6tX1YP2fbxfrO63Waey7zPcgfaKmjQWOBOKZcLwbUwYCojmQM0xpbYGCuYsnnhpK5K5No23DorxvWcXB_ujgE_Bkx9vfPJYNvqgHFINZMSBC-4UCN6dUA9Itb7bnyn-6mPhYlf6OJhhA
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2015.7298809
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1467369640
9781467369640
EISSN 1063-6919
EndPage 1992
ExternalDocumentID 7298809
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i274t-4f0ad90becd02f99f4332a3c0c8c71f0eccd6ebcd319d45f7a86e2adb2dfd3cd3
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Fri Sep 05 04:01:34 EDT 2025
Wed Aug 27 02:49:18 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i274t-4f0ad90becd02f99f4332a3c0c8c71f0eccd6ebcd319d45f7a86e2adb2dfd3cd3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1770325239
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1770325239
ieee_primary_7298809
PublicationCentury 2000
PublicationDate 20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150601
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib030089920
ssj0023720
ssj0003211698
Score 2.463297
Snippet This paper aims to accelerate the test-time computation of deep convolutional neural networks (CNNs). Unlike existing methods that are designed for...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1984
SubjectTerms Acceleration
Accuracy
Approximation
Approximation methods
Complexity theory
Computational modeling
Computer vision
Conferences
Errors
Matrix decomposition
Networks
Neural networks
Nonlinearity
Pattern recognition
Principal component analysis
Title Efficient and accurate approximations of nonlinear convolutional networks
URI https://ieeexplore.ieee.org/document/7298809
https://www.proquest.com/docview/1770325239
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA_bnnyauonziwg-2q5fS5PnsaHCZIiTvZV8wlA6WVsQ_3ovbTpBffCpJdAmTS653_XufofQTSgSSkBSPJMo41mN7zGhqUcoVQmooEjUtQEXj-RulTysJ-sOut3nwmit6-Az7dvb2pevtrKyv8rGAARB3FgXddOUNblarezEgfVfOehjT-EYLBvC9h6FyFZjqT2fMBrCQuY8nGHAxtOX5ZMN8pr4rgNXaeXX8VzrnHkfLdrRNqEmr35VCl9-_iBy_O_nHKLhd3YfXu711hHq6PwY9R0cxW6zF9DUVnxo2wboflYzTsBrMc8V5lJWlmoC18zkH5smDbLAW4PzhoKD77CNa3fyzd9w3oSdF0O0ms-ep3eeK8bgbcBwLb3EBFyxAJZcBZFhzFjiMx7LQFKZhiYAUVBEC6lgT6tkYlJOiY64EpEyKobmE9SDrvUpwhPCKaBlYQDuAFqTzCgSCgXXKOSSxiM0sJOVvTd8G5mbpxG6bpcjgz1gHRs819uqyMIUzq0ITGp29vej5-jArm8T4nWBeuWu0pcAJkpxVUvRFywSx1I
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qPeipPrE-V_Boap7b7FmUqm0p0oq3sE8QJZU2AfHXO5tsKqgHTwkLyW52Z3e-ycx8A3ARiDilKCmeiZXxrMb3mNCpR9NUxaiCQlHVBhyN6WAW3z8nzy24XOXCaK2r4DPds7eVL1_NZWl_lV0hEERxY2uwnqBV0a-ztRrpiXzrwXLgx57DEdo2lK18CqGtx1L5PnE8lAXM-TgDn11dP00ebZhX0nNduForvw7oSuvcdmDUjLcONnntlYXoyc8fVI7__aAt2PvO7yOTlebahpbOd6DjAClx232JTU3Nh6ZtF-5uKs4JfC3huSJcytKSTZCKm_zjpU6EXJK5IXlNwsEXxEa2OwnnbySvA8-XezC7vZleDzxXjsF7QdO18GLjc8V8XHTlh4YxY6nPeCR9mcp-YHwUBkW1kAp3tYoT0-cp1SFXIlRGRdi8D23sWh8ASShPES8Lg4AH8ZpkRtFAKLyGAZdp1IVdO1nZe824kbl56sJ5sxwZ7gLr2uC5npfLLOjjyRWiUc0O_370DDYG09EwG96NH45g0651HfB1DO1iUeoThBaFOK0k6gvPPMqj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2015+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Efficient+and+accurate+approximations+of+nonlinear+convolutional+networks&rft.au=Xiangyu+Zhang&rft.au=Jianhua+Zou&rft.au=Xiang+Ming&rft.au=Kaiming+He&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1984&rft.epage=1992&rft_id=info:doi/10.1109%2FCVPR.2015.7298809&rft.externalDocID=7298809
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon