Anchored Neighborhood Regression for Fast Example-Based Super-Resolution
Recently there have been significant advances in image up scaling or image super-resolution based on a dictionary of low and high resolution exemplars. The running time of the methods is often ignored despite the fact that it is a critical factor for real applications. This paper proposes fast super...
Saved in:
| Published in | 2013 IEEE International Conference on Computer Vision pp. 1920 - 1927 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding Journal Article |
| Language | English |
| Published |
IEEE
01.12.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1550-5499 |
| DOI | 10.1109/ICCV.2013.241 |
Cover
| Abstract | Recently there have been significant advances in image up scaling or image super-resolution based on a dictionary of low and high resolution exemplars. The running time of the methods is often ignored despite the fact that it is a critical factor for real applications. This paper proposes fast super-resolution methods while making no compromise on quality. First, we support the use of sparse learned dictionaries in combination with neighbor embedding methods. In this case, the nearest neighbors are computed using the correlation with the dictionary atoms rather than the Euclidean distance. Moreover, we show that most of the current approaches reach top performance for the right parameters. Second, we show that using global collaborative coding has considerable speed advantages, reducing the super-resolution mapping to a precomputed projective matrix. Third, we propose the anchored neighborhood regression. That is to anchor the neighborhood embedding of a low resolution patch to the nearest atom in the dictionary and to precompute the corresponding embedding matrix. These proposals are contrasted with current state-of-the-art methods on standard images. We obtain similar or improved quality and one or two orders of magnitude speed improvements. |
|---|---|
| AbstractList | Recently there have been significant advances in image up scaling or image super-resolution based on a dictionary of low and high resolution exemplars. The running time of the methods is often ignored despite the fact that it is a critical factor for real applications. This paper proposes fast super-resolution methods while making no compromise on quality. First, we support the use of sparse learned dictionaries in combination with neighbor embedding methods. In this case, the nearest neighbors are computed using the correlation with the dictionary atoms rather than the Euclidean distance. Moreover, we show that most of the current approaches reach top performance for the right parameters. Second, we show that using global collaborative coding has considerable speed advantages, reducing the super-resolution mapping to a precomputed projective matrix. Third, we propose the anchored neighborhood regression. That is to anchor the neighborhood embedding of a low resolution patch to the nearest atom in the dictionary and to precompute the corresponding embedding matrix. These proposals are contrasted with current state-of-the-art methods on standard images. We obtain similar or improved quality and one or two orders of magnitude speed improvements. |
| Author | De, Vincent Van Gool, Luc Timofte, Radu |
| Author_xml | – sequence: 1 givenname: Radu surname: Timofte fullname: Timofte, Radu organization: ESAT-PSI / iMinds, KU Leuven, Leuven, Belgium – sequence: 2 givenname: Vincent surname: De fullname: De, Vincent organization: ESAT-PSI / iMinds, KU Leuven, Leuven, Belgium – sequence: 3 givenname: Luc surname: Van Gool fullname: Van Gool, Luc organization: ESAT-PSI / iMinds, KU Leuven, Leuven, Belgium |
| BookMark | eNotzEtLw0AUBeARKthWl67cZOkmdZ6Z3GUNrRWKQn1sw3Tmpo2kmTiTgP57A3V14JyPMyOT1rdIyC2jC8YoPDwXxeeCUyYWXLILMmNSA_BcUj4hU6YUTZUEuCKzGL8oFeOUTclm2dqjD-iSF6wPx70PR-9dssNDwBhr3yaVD8naxD5Z_ZhT12D6aOLI34YOQ7rD6JuhH901uaxME_HmP-fkY716Lzbp9vXpuVhu05pr2afCWgeVzdGwyjnBq9wqcAYsgLFKgdJ7q8FKOdbAneQKdWYUdTznTOdCzMn9-bcL_nvA2JenOlpsGtOiH2LJsgzyLNcqG-ndmdaIWHahPpnwW2ZaMSFB_AF3wFro |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/ICCV.2013.241 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1479928402 9781479928408 |
| EndPage | 1927 |
| ExternalDocumentID | 6751349 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-i274t-3ccd9fc8ea1fdd32f8c59da9c99ac55957bc79c44c5992d425e76a50d28217833 |
| IEDL.DBID | RIE |
| ISSN | 1550-5499 |
| IngestDate | Fri Jul 11 16:57:01 EDT 2025 Wed Aug 27 04:21:35 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i274t-3ccd9fc8ea1fdd32f8c59da9c99ac55957bc79c44c5992d425e76a50d28217833 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| PQID | 1669868756 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1669868756 ieee_primary_6751349 |
| PublicationCentury | 2000 |
| PublicationDate | 20131201 |
| PublicationDateYYYYMMDD | 2013-12-01 |
| PublicationDate_xml | – month: 12 year: 2013 text: 20131201 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2013 IEEE International Conference on Computer Vision |
| PublicationTitleAbbrev | iccv |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0039286 ssj0001967680 |
| Score | 2.6371617 |
| Snippet | Recently there have been significant advances in image up scaling or image super-resolution based on a dictionary of low and high resolution exemplars. The... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 1920 |
| SubjectTerms | anchored neighborhood regression Computer vision Conferences Dictionaries Encoding Image resolution Interpolation neighbor embedding Proposals PSNR Regression ridge regression Running Signal resolution sparse coding State of the art super-resolution Training |
| Title | Anchored Neighborhood Regression for Fast Example-Based Super-Resolution |
| URI | https://ieeexplore.ieee.org/document/6751349 https://www.proquest.com/docview/1669868756 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp6mbuL8ooJH061faXLUsTGFDREnu5XkJRURurG1IP71vrTdBurBWwltCS8veb_3kd8j5IaD1twwoCrSIQ3RqFCJL1IZAioUpMKU2fPpjE3m4eMiWjTI7e4ujDGmLD4zrn0sc_l6CYUNlfUR3Fo2vSZpxpxVd7X28RTBEDkPtqcwmv2yy6NF4NT6QHt-zf7DcPhqi7oC17eN4MuuKr-O4tK-jNtkup1ZVVby4Ra5cuHrB2njf6d-SLr7m3zO085GHZGGyY5Ju4aeTr2xNx0yucvwHFzj2MzGSlExLN2x82zeqjrZzEFw64zlJndGn9IyCtN7tH_4i2Jl1tQmASoV7pL5ePQynNC6yQJ9R4c0pwGAFilwI71U68BPOURCSwFCSEB3I4oVxALCEIeFr3GLm5jJaKDRV_NiHgQnpJUtM3NKnIHyTRSAF1sKeKWkROgQeMp4IgSPg9cjHSuYZFXxaCS1THrkeiv6BHXbJixkZpbFJvEYE5yhR8XO_v70nBzYdazKSy5IK18X5hJBQq6uSu34Bm-Humk |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qPeipaivWZwSPbm2SzWOPWlpabYtIK72FzexWREhLm4D4651N-gD14C0sSVhmZ3e-eew3ADchKhVqH1nsKc44GRUm6UUmOZJC4VToPHs-GPrdMX-ceJMS3G7uwmit8-Iz3TCPeS5fzTAzobI7AreGTW8Hdj3OuVfc1tpGVIRP2Lm5PofJ8Od9Hg0GZ8YL2jJs3vVarVdT1uU2HNMKPu-r8uswzi1MpwKD9dyKwpKPRpbGDfz6Qdv438kfQG17l8963lipQyjp5AgqK_Bprbb2sgrd-4ROwgWNDU20lFTDEB5bL_qtqJRNLIK3VkcuU6v9KQ2nMHsgC0i_yOZ6wUwaoFDiGow77VGry1ZtFtg7uaQpcxGVmGKopT1VynWmIXpCSYFCSCSHwwtiDARyTsPCUbTJdeBLr6nIW7OD0HWPoZzMEn0CVjN2tOeiHRgS-DiWksCDa8faFhztEO06VI1gonnBpBGtZFKH67XoI9Juk7KQiZ5ly8j2fRH65FP5p39_egV73dGgH_V7w6cz2DdrWhSbnEM5XWT6giBDGl_mmvINYga9tg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Anchored+Neighborhood+Regression+for+Fast+Example-Based+Super-Resolution&rft.au=Timofte%2C+Radu&rft.au=De%2C+Vincent&rft.au=Van+Gool%2C+Luc&rft.date=2013-12-01&rft.pub=IEEE&rft.issn=1550-5499&rft.spage=1920&rft.epage=1927&rft_id=info:doi/10.1109%2FICCV.2013.241&rft.externalDocID=6751349 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-5499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-5499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-5499&client=summon |