Anchored Neighborhood Regression for Fast Example-Based Super-Resolution

Recently there have been significant advances in image up scaling or image super-resolution based on a dictionary of low and high resolution exemplars. The running time of the methods is often ignored despite the fact that it is a critical factor for real applications. This paper proposes fast super...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE International Conference on Computer Vision pp. 1920 - 1927
Main Authors Timofte, Radu, De, Vincent, Van Gool, Luc
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.12.2013
Subjects
Online AccessGet full text
ISSN1550-5499
DOI10.1109/ICCV.2013.241

Cover

Abstract Recently there have been significant advances in image up scaling or image super-resolution based on a dictionary of low and high resolution exemplars. The running time of the methods is often ignored despite the fact that it is a critical factor for real applications. This paper proposes fast super-resolution methods while making no compromise on quality. First, we support the use of sparse learned dictionaries in combination with neighbor embedding methods. In this case, the nearest neighbors are computed using the correlation with the dictionary atoms rather than the Euclidean distance. Moreover, we show that most of the current approaches reach top performance for the right parameters. Second, we show that using global collaborative coding has considerable speed advantages, reducing the super-resolution mapping to a precomputed projective matrix. Third, we propose the anchored neighborhood regression. That is to anchor the neighborhood embedding of a low resolution patch to the nearest atom in the dictionary and to precompute the corresponding embedding matrix. These proposals are contrasted with current state-of-the-art methods on standard images. We obtain similar or improved quality and one or two orders of magnitude speed improvements.
AbstractList Recently there have been significant advances in image up scaling or image super-resolution based on a dictionary of low and high resolution exemplars. The running time of the methods is often ignored despite the fact that it is a critical factor for real applications. This paper proposes fast super-resolution methods while making no compromise on quality. First, we support the use of sparse learned dictionaries in combination with neighbor embedding methods. In this case, the nearest neighbors are computed using the correlation with the dictionary atoms rather than the Euclidean distance. Moreover, we show that most of the current approaches reach top performance for the right parameters. Second, we show that using global collaborative coding has considerable speed advantages, reducing the super-resolution mapping to a precomputed projective matrix. Third, we propose the anchored neighborhood regression. That is to anchor the neighborhood embedding of a low resolution patch to the nearest atom in the dictionary and to precompute the corresponding embedding matrix. These proposals are contrasted with current state-of-the-art methods on standard images. We obtain similar or improved quality and one or two orders of magnitude speed improvements.
Author De, Vincent
Van Gool, Luc
Timofte, Radu
Author_xml – sequence: 1
  givenname: Radu
  surname: Timofte
  fullname: Timofte, Radu
  organization: ESAT-PSI / iMinds, KU Leuven, Leuven, Belgium
– sequence: 2
  givenname: Vincent
  surname: De
  fullname: De, Vincent
  organization: ESAT-PSI / iMinds, KU Leuven, Leuven, Belgium
– sequence: 3
  givenname: Luc
  surname: Van Gool
  fullname: Van Gool, Luc
  organization: ESAT-PSI / iMinds, KU Leuven, Leuven, Belgium
BookMark eNotzEtLw0AUBeARKthWl67cZOkmdZ6Z3GUNrRWKQn1sw3Tmpo2kmTiTgP57A3V14JyPMyOT1rdIyC2jC8YoPDwXxeeCUyYWXLILMmNSA_BcUj4hU6YUTZUEuCKzGL8oFeOUTclm2dqjD-iSF6wPx70PR-9dssNDwBhr3yaVD8naxD5Z_ZhT12D6aOLI34YOQ7rD6JuhH901uaxME_HmP-fkY716Lzbp9vXpuVhu05pr2afCWgeVzdGwyjnBq9wqcAYsgLFKgdJ7q8FKOdbAneQKdWYUdTznTOdCzMn9-bcL_nvA2JenOlpsGtOiH2LJsgzyLNcqG-ndmdaIWHahPpnwW2ZaMSFB_AF3wFro
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/ICCV.2013.241
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1479928402
9781479928408
EndPage 1927
ExternalDocumentID 6751349
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i274t-3ccd9fc8ea1fdd32f8c59da9c99ac55957bc79c44c5992d425e76a50d28217833
IEDL.DBID RIE
ISSN 1550-5499
IngestDate Fri Jul 11 16:57:01 EDT 2025
Wed Aug 27 04:21:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i274t-3ccd9fc8ea1fdd32f8c59da9c99ac55957bc79c44c5992d425e76a50d28217833
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1669868756
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1669868756
ieee_primary_6751349
PublicationCentury 2000
PublicationDate 20131201
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 20131201
  day: 01
PublicationDecade 2010
PublicationTitle 2013 IEEE International Conference on Computer Vision
PublicationTitleAbbrev iccv
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
ssj0001967680
Score 2.6371617
Snippet Recently there have been significant advances in image up scaling or image super-resolution based on a dictionary of low and high resolution exemplars. The...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1920
SubjectTerms anchored neighborhood regression
Computer vision
Conferences
Dictionaries
Encoding
Image resolution
Interpolation
neighbor embedding
Proposals
PSNR
Regression
ridge regression
Running
Signal resolution
sparse coding
State of the art
super-resolution
Training
Title Anchored Neighborhood Regression for Fast Example-Based Super-Resolution
URI https://ieeexplore.ieee.org/document/6751349
https://www.proquest.com/docview/1669868756
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp6mbuL8ooJH061faXLUsTGFDREnu5XkJRURurG1IP71vrTdBurBWwltCS8veb_3kd8j5IaD1twwoCrSIQ3RqFCJL1IZAioUpMKU2fPpjE3m4eMiWjTI7e4ujDGmLD4zrn0sc_l6CYUNlfUR3Fo2vSZpxpxVd7X28RTBEDkPtqcwmv2yy6NF4NT6QHt-zf7DcPhqi7oC17eN4MuuKr-O4tK-jNtkup1ZVVby4Ra5cuHrB2njf6d-SLr7m3zO085GHZGGyY5Ju4aeTr2xNx0yucvwHFzj2MzGSlExLN2x82zeqjrZzEFw64zlJndGn9IyCtN7tH_4i2Jl1tQmASoV7pL5ePQynNC6yQJ9R4c0pwGAFilwI71U68BPOURCSwFCSEB3I4oVxALCEIeFr3GLm5jJaKDRV_NiHgQnpJUtM3NKnIHyTRSAF1sKeKWkROgQeMp4IgSPg9cjHSuYZFXxaCS1THrkeiv6BHXbJixkZpbFJvEYE5yhR8XO_v70nBzYdazKSy5IK18X5hJBQq6uSu34Bm-Humk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qPeipaivWZwSPbm2SzWOPWlpabYtIK72FzexWREhLm4D4651N-gD14C0sSVhmZ3e-eew3ADchKhVqH1nsKc44GRUm6UUmOZJC4VToPHs-GPrdMX-ceJMS3G7uwmit8-Iz3TCPeS5fzTAzobI7AreGTW8Hdj3OuVfc1tpGVIRP2Lm5PofJ8Od9Hg0GZ8YL2jJs3vVarVdT1uU2HNMKPu-r8uswzi1MpwKD9dyKwpKPRpbGDfz6Qdv438kfQG17l8963lipQyjp5AgqK_Bprbb2sgrd-4ROwgWNDU20lFTDEB5bL_qtqJRNLIK3VkcuU6v9KQ2nMHsgC0i_yOZ6wUwaoFDiGow77VGry1ZtFtg7uaQpcxGVmGKopT1VynWmIXpCSYFCSCSHwwtiDARyTsPCUbTJdeBLr6nIW7OD0HWPoZzMEn0CVjN2tOeiHRgS-DiWksCDa8faFhztEO06VI1gonnBpBGtZFKH67XoI9Juk7KQiZ5ly8j2fRH65FP5p39_egV73dGgH_V7w6cz2DdrWhSbnEM5XWT6giBDGl_mmvINYga9tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Anchored+Neighborhood+Regression+for+Fast+Example-Based+Super-Resolution&rft.au=Timofte%2C+Radu&rft.au=De%2C+Vincent&rft.au=Van+Gool%2C+Luc&rft.date=2013-12-01&rft.pub=IEEE&rft.issn=1550-5499&rft.spage=1920&rft.epage=1927&rft_id=info:doi/10.1109%2FICCV.2013.241&rft.externalDocID=6751349
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-5499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-5499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-5499&client=summon