A Deep Reinforcement Learning Approach for Service Migration in MEC-enabled Vehicular Networks
Multi-access edge computing (MEC) is a key enabler to reduce the latency of vehicular network. Due to the vehicles mobility, their requested services (e.g., infotainment services) should frequently be migrated across different MEC servers to guarantee their stringent quality of service requirements....
Saved in:
| Published in | 2021 IEEE 46th Conference on Local Computer Networks (LCN) pp. 273 - 280 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
04.10.2021
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/LCN52139.2021.9524882 |
Cover
| Abstract | Multi-access edge computing (MEC) is a key enabler to reduce the latency of vehicular network. Due to the vehicles mobility, their requested services (e.g., infotainment services) should frequently be migrated across different MEC servers to guarantee their stringent quality of service requirements. In this paper, we study the problem of service migration in a MEC-enabled vehicular network in order to minimize the total service latency and migration cost. This problem is formulated as a nonlinear integer program and is linearized to help obtaining the optimal solution using off-the-shelf solvers. Then, to obtain an efficient solution, it is modeled as a multi-agent Markov decision process and solved by leveraging deep Q learning (DQL) algorithm. The proposed DQL scheme performs a proactive services migration while ensuring their continuity under high mobility constraints. Finally, simulations results show that the proposed DQL scheme achieves close-to-optimal performance. |
|---|---|
| AbstractList | Multi-access edge computing (MEC) is a key enabler to reduce the latency of vehicular network. Due to the vehicles mobility, their requested services (e.g., infotainment services) should frequently be migrated across different MEC servers to guarantee their stringent quality of service requirements. In this paper, we study the problem of service migration in a MEC-enabled vehicular network in order to minimize the total service latency and migration cost. This problem is formulated as a nonlinear integer program and is linearized to help obtaining the optimal solution using off-the-shelf solvers. Then, to obtain an efficient solution, it is modeled as a multi-agent Markov decision process and solved by leveraging deep Q learning (DQL) algorithm. The proposed DQL scheme performs a proactive services migration while ensuring their continuity under high mobility constraints. Finally, simulations results show that the proposed DQL scheme achieves close-to-optimal performance. |
| Author | Kobbane, Abdellatif Filali, Abderrahime Cherkaoui, Soumaya Abouaomar, Amine Mlika, Zoubeir |
| Author_xml | – sequence: 1 givenname: Amine surname: Abouaomar fullname: Abouaomar, Amine organization: Université de Sherbrooke,Engineering Faculty,INTERLAB,Sherbrooke,QC,Canada – sequence: 2 givenname: Zoubeir surname: Mlika fullname: Mlika, Zoubeir organization: Université de Sherbrooke,Engineering Faculty,INTERLAB,Sherbrooke,QC,Canada – sequence: 3 givenname: Abderrahime surname: Filali fullname: Filali, Abderrahime organization: Université de Sherbrooke,Engineering Faculty,INTERLAB,Sherbrooke,QC,Canada – sequence: 4 givenname: Soumaya surname: Cherkaoui fullname: Cherkaoui, Soumaya organization: Université de Sherbrooke,Engineering Faculty,INTERLAB,Sherbrooke,QC,Canada – sequence: 5 givenname: Abdellatif surname: Kobbane fullname: Kobbane, Abdellatif organization: Université de Sherbrooke,Engineering Faculty,INTERLAB,Sherbrooke,QC,Canada |
| BookMark | eNotj91KwzAYQCPohZs-gQh5gdZ8aZIml6VOJ3QT_Lt0pOmXLdilJauKb6_grs7FgQNnRk7jEJGQa2A5ADM3Tb2WHAqTc8YhN5ILrfkJmYFSUoDWypyT94reIo70CUP0Q3K4xzjRBm2KIW5pNY5psG5H_xx9xvQVHNJV2CY7hSHSEOlqUWcYbdtjR99wF9xnbxNd4_Q9pI_DBTnztj_g5ZFz8nq3eKmXWfN4_1BXTRa4MlMmSt8xiQiFcsoB8k5YVnRCag-ixc4y3TIQ3hatch2UHEowniE6K50FUczJ1X83IOJmTGFv08_muFz8AhX5Ua8 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/LCN52139.2021.9524882 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665418869 9781665418867 |
| EndPage | 280 |
| ExternalDocumentID | 9524882 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada funderid: 10.13039/501100000038 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i269t-47fd05ee136c6c1e2d4a03d458f14beda08b014fa3b6cd1721719f0eeca5ca143 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jan 18 11:14:40 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i269t-47fd05ee136c6c1e2d4a03d458f14beda08b014fa3b6cd1721719f0eeca5ca143 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_9524882 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-04 |
| PublicationDateYYYYMMDD | 2021-10-04 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 IEEE 46th Conference on Local Computer Networks (LCN) |
| PublicationTitleAbbrev | LCN |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 2.0352442 |
| Snippet | Multi-access edge computing (MEC) is a key enabler to reduce the latency of vehicular network. Due to the vehicles mobility, their requested services (e.g.,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 273 |
| SubjectTerms | Energy consumption Markov processes Multi-access edge computing Quality of service Reinforcement learning Servers service migration Simulation Transforms vehicular networks |
| Title | A Deep Reinforcement Learning Approach for Service Migration in MEC-enabled Vehicular Networks |
| URI | https://ieeexplore.ieee.org/document/9524882 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ08qm_ibHDyarmnTND2OuTHEDREnOznal9dZhG7M7uJfb5rGieLBW0gCCe8lefnxfV8IudZmS4Aq0yzjITAhAJlKE2AcJMSIQmlt0RZTOZ6Ju3k0b5GbHRcGES34DL06ad_y9Qq29VVZL4kCM97MgrsXK9lwtRwph_tJ734wNbHIsk8C7rm6Pz5NsTFjdEAmX601UJE3b1tlHnz8EmL8b3cOSfebnUcfdnHniLSw7JCXPr1FXNNHtFKoYG_9qFNPXdK-kw6npoy69YFOimXjf1qUdDIcMLREKk2f8bWw-FQ6bVDi710yGw2fBmPm_k5gRSCTiok4136EyENprM4x0CL1Qy0ilXORoU59lZnTUZ6GmQRdnwNjnuQ-IqQRpGYTdUza5arEE0KVsa4GJVUQgkhyUBhK1FDP7DDVuX9KOrVtFutGHmPhzHL2d_Y52a_9Y_Fw4oK0q80WL01cr7Ir69BPvmamGg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSkBoy_7cGjHevWje5IEILKFmPAcJJsr2-wmAyi4-Jfb9dNjMaDt6Zt0ua9tq8_vu8rIddKbwlQJool3AUmBCCTcQCMgw9dRCGVMmiLyB9Nxf3MmzXIzZYLg4gGfIZWmTRv-WoFm_KqrBN4jh5vesHd8YQQXsXWqmk53A46436ko5Hhnzjcqmv_-DbFRI3hPgm_2qvAIq_Wpkgs-PglxfjfDh2Q9jc_jz5uI88haWDeIi89eou4pk9oxFDB3PvRWj91QXu1eDjVZbReIWiYLaoRQLOchoM-Q0OlUvQZl5lBqNKowom_t8l0OJj0R6z-PYFljh8UTHRTZXuI3PW13Tk6SsS2q4QnUy4SVLEtE30-SmM38UGVJ8EuD1IbEWIPYr2NOiLNfJXjMaFSW1eB9KXjgghSkOj6qKCc226sUvuEtErbzNeVQMa8Nsvp39lXZHc0Ccfz8V30cEb2Sl8ZdJw4J83ibYMXOsoXyaVx7iefWaln |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+46th+Conference+on+Local+Computer+Networks+%28LCN%29&rft.atitle=A+Deep+Reinforcement+Learning+Approach+for+Service+Migration+in+MEC-enabled+Vehicular+Networks&rft.au=Abouaomar%2C+Amine&rft.au=Mlika%2C+Zoubeir&rft.au=Filali%2C+Abderrahime&rft.au=Cherkaoui%2C+Soumaya&rft.date=2021-10-04&rft.pub=IEEE&rft.spage=273&rft.epage=280&rft_id=info:doi/10.1109%2FLCN52139.2021.9524882&rft.externalDocID=9524882 |