A Deep Reinforcement Learning Approach for Service Migration in MEC-enabled Vehicular Networks

Multi-access edge computing (MEC) is a key enabler to reduce the latency of vehicular network. Due to the vehicles mobility, their requested services (e.g., infotainment services) should frequently be migrated across different MEC servers to guarantee their stringent quality of service requirements....

Full description

Saved in:
Bibliographic Details
Published in2021 IEEE 46th Conference on Local Computer Networks (LCN) pp. 273 - 280
Main Authors Abouaomar, Amine, Mlika, Zoubeir, Filali, Abderrahime, Cherkaoui, Soumaya, Kobbane, Abdellatif
Format Conference Proceeding
LanguageEnglish
Published IEEE 04.10.2021
Subjects
Online AccessGet full text
DOI10.1109/LCN52139.2021.9524882

Cover

Abstract Multi-access edge computing (MEC) is a key enabler to reduce the latency of vehicular network. Due to the vehicles mobility, their requested services (e.g., infotainment services) should frequently be migrated across different MEC servers to guarantee their stringent quality of service requirements. In this paper, we study the problem of service migration in a MEC-enabled vehicular network in order to minimize the total service latency and migration cost. This problem is formulated as a nonlinear integer program and is linearized to help obtaining the optimal solution using off-the-shelf solvers. Then, to obtain an efficient solution, it is modeled as a multi-agent Markov decision process and solved by leveraging deep Q learning (DQL) algorithm. The proposed DQL scheme performs a proactive services migration while ensuring their continuity under high mobility constraints. Finally, simulations results show that the proposed DQL scheme achieves close-to-optimal performance.
AbstractList Multi-access edge computing (MEC) is a key enabler to reduce the latency of vehicular network. Due to the vehicles mobility, their requested services (e.g., infotainment services) should frequently be migrated across different MEC servers to guarantee their stringent quality of service requirements. In this paper, we study the problem of service migration in a MEC-enabled vehicular network in order to minimize the total service latency and migration cost. This problem is formulated as a nonlinear integer program and is linearized to help obtaining the optimal solution using off-the-shelf solvers. Then, to obtain an efficient solution, it is modeled as a multi-agent Markov decision process and solved by leveraging deep Q learning (DQL) algorithm. The proposed DQL scheme performs a proactive services migration while ensuring their continuity under high mobility constraints. Finally, simulations results show that the proposed DQL scheme achieves close-to-optimal performance.
Author Kobbane, Abdellatif
Filali, Abderrahime
Cherkaoui, Soumaya
Abouaomar, Amine
Mlika, Zoubeir
Author_xml – sequence: 1
  givenname: Amine
  surname: Abouaomar
  fullname: Abouaomar, Amine
  organization: Université de Sherbrooke,Engineering Faculty,INTERLAB,Sherbrooke,QC,Canada
– sequence: 2
  givenname: Zoubeir
  surname: Mlika
  fullname: Mlika, Zoubeir
  organization: Université de Sherbrooke,Engineering Faculty,INTERLAB,Sherbrooke,QC,Canada
– sequence: 3
  givenname: Abderrahime
  surname: Filali
  fullname: Filali, Abderrahime
  organization: Université de Sherbrooke,Engineering Faculty,INTERLAB,Sherbrooke,QC,Canada
– sequence: 4
  givenname: Soumaya
  surname: Cherkaoui
  fullname: Cherkaoui, Soumaya
  organization: Université de Sherbrooke,Engineering Faculty,INTERLAB,Sherbrooke,QC,Canada
– sequence: 5
  givenname: Abdellatif
  surname: Kobbane
  fullname: Kobbane, Abdellatif
  organization: Université de Sherbrooke,Engineering Faculty,INTERLAB,Sherbrooke,QC,Canada
BookMark eNotj91KwzAYQCPohZs-gQh5gdZ8aZIml6VOJ3QT_Lt0pOmXLdilJauKb6_grs7FgQNnRk7jEJGQa2A5ADM3Tb2WHAqTc8YhN5ILrfkJmYFSUoDWypyT94reIo70CUP0Q3K4xzjRBm2KIW5pNY5psG5H_xx9xvQVHNJV2CY7hSHSEOlqUWcYbdtjR99wF9xnbxNd4_Q9pI_DBTnztj_g5ZFz8nq3eKmXWfN4_1BXTRa4MlMmSt8xiQiFcsoB8k5YVnRCag-ixc4y3TIQ3hatch2UHEowniE6K50FUczJ1X83IOJmTGFv08_muFz8AhX5Ua8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/LCN52139.2021.9524882
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665418869
9781665418867
EndPage 280
ExternalDocumentID 9524882
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 10.13039/501100000038
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i269t-47fd05ee136c6c1e2d4a03d458f14beda08b014fa3b6cd1721719f0eeca5ca143
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:40 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i269t-47fd05ee136c6c1e2d4a03d458f14beda08b014fa3b6cd1721719f0eeca5ca143
PageCount 8
ParticipantIDs ieee_primary_9524882
PublicationCentury 2000
PublicationDate 2021-10-04
PublicationDateYYYYMMDD 2021-10-04
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-04
  day: 04
PublicationDecade 2020
PublicationTitle 2021 IEEE 46th Conference on Local Computer Networks (LCN)
PublicationTitleAbbrev LCN
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.0352442
Snippet Multi-access edge computing (MEC) is a key enabler to reduce the latency of vehicular network. Due to the vehicles mobility, their requested services (e.g.,...
SourceID ieee
SourceType Publisher
StartPage 273
SubjectTerms Energy consumption
Markov processes
Multi-access edge computing
Quality of service
Reinforcement learning
Servers
service migration
Simulation
Transforms
vehicular networks
Title A Deep Reinforcement Learning Approach for Service Migration in MEC-enabled Vehicular Networks
URI https://ieeexplore.ieee.org/document/9524882
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ08qm_ibHDyarmnTND2OuTHEDREnOznal9dZhG7M7uJfb5rGieLBW0gCCe8lefnxfV8IudZmS4Aq0yzjITAhAJlKE2AcJMSIQmlt0RZTOZ6Ju3k0b5GbHRcGES34DL06ad_y9Qq29VVZL4kCM97MgrsXK9lwtRwph_tJ734wNbHIsk8C7rm6Pz5NsTFjdEAmX601UJE3b1tlHnz8EmL8b3cOSfebnUcfdnHniLSw7JCXPr1FXNNHtFKoYG_9qFNPXdK-kw6npoy69YFOimXjf1qUdDIcMLREKk2f8bWw-FQ6bVDi710yGw2fBmPm_k5gRSCTiok4136EyENprM4x0CL1Qy0ilXORoU59lZnTUZ6GmQRdnwNjnuQ-IqQRpGYTdUza5arEE0KVsa4GJVUQgkhyUBhK1FDP7DDVuX9KOrVtFutGHmPhzHL2d_Y52a_9Y_Fw4oK0q80WL01cr7Ir69BPvmamGg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSkBoy_7cGjHevWje5IEILKFmPAcJJsr2-wmAyi4-Jfb9dNjMaDt6Zt0ua9tq8_vu8rIddKbwlQJool3AUmBCCTcQCMgw9dRCGVMmiLyB9Nxf3MmzXIzZYLg4gGfIZWmTRv-WoFm_KqrBN4jh5vesHd8YQQXsXWqmk53A46436ko5Hhnzjcqmv_-DbFRI3hPgm_2qvAIq_Wpkgs-PglxfjfDh2Q9jc_jz5uI88haWDeIi89eou4pk9oxFDB3PvRWj91QXu1eDjVZbReIWiYLaoRQLOchoM-Q0OlUvQZl5lBqNKowom_t8l0OJj0R6z-PYFljh8UTHRTZXuI3PW13Tk6SsS2q4QnUy4SVLEtE30-SmM38UGVJ8EuD1IbEWIPYr2NOiLNfJXjMaFSW1eB9KXjgghSkOj6qKCc226sUvuEtErbzNeVQMa8Nsvp39lXZHc0Ccfz8V30cEb2Sl8ZdJw4J83ibYMXOsoXyaVx7iefWaln
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+46th+Conference+on+Local+Computer+Networks+%28LCN%29&rft.atitle=A+Deep+Reinforcement+Learning+Approach+for+Service+Migration+in+MEC-enabled+Vehicular+Networks&rft.au=Abouaomar%2C+Amine&rft.au=Mlika%2C+Zoubeir&rft.au=Filali%2C+Abderrahime&rft.au=Cherkaoui%2C+Soumaya&rft.date=2021-10-04&rft.pub=IEEE&rft.spage=273&rft.epage=280&rft_id=info:doi/10.1109%2FLCN52139.2021.9524882&rft.externalDocID=9524882