Deep Residual Learning in the JPEG Transform Domain

We introduce a general method of performing Residual Network inference and learning in the JPEG transform domain that allows the network to consume compressed images as input. Our formulation leverages the linearity of the JPEG transform to redefine convolution and batch normalization with a tune-ab...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE International Conference on Computer Vision pp. 3483 - 3492
Main Authors Ehrlich, Max, Davis, Larry
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2019
Subjects
Online AccessGet full text
ISSN2380-7504
DOI10.1109/ICCV.2019.00358

Cover

Abstract We introduce a general method of performing Residual Network inference and learning in the JPEG transform domain that allows the network to consume compressed images as input. Our formulation leverages the linearity of the JPEG transform to redefine convolution and batch normalization with a tune-able numerical approximation for ReLu. The result is mathematically equivalent to the spatial domain network up to the ReLu approximation accuracy. A formulation for image classification and a model conversion algorithm for spatial domain networks are given as examples of the method. We show that the sparsity of the JPEG format allows for faster processing of images with little to no penalty in the network accuracy.
AbstractList We introduce a general method of performing Residual Network inference and learning in the JPEG transform domain that allows the network to consume compressed images as input. Our formulation leverages the linearity of the JPEG transform to redefine convolution and batch normalization with a tune-able numerical approximation for ReLu. The result is mathematically equivalent to the spatial domain network up to the ReLu approximation accuracy. A formulation for image classification and a model conversion algorithm for spatial domain networks are given as examples of the method. We show that the sparsity of the JPEG format allows for faster processing of images with little to no penalty in the network accuracy.
Author Davis, Larry
Ehrlich, Max
Author_xml – sequence: 1
  givenname: Max
  surname: Ehrlich
  fullname: Ehrlich, Max
  organization: University of Maryland
– sequence: 2
  givenname: Larry
  surname: Davis
  fullname: Davis, Larry
  organization: University of Maryland
BookMark eNotjj1PwzAUAA0CibZ0ZmDxH0h4z44_3ojSUooigVBhrZzkBYwat0rKwL-nEky3nE43FRdpn1iIG4QcEehuXZbvuQKkHEAbfybm5Dw65bHwoP25mCjtIXMGiisxHcevk0bK24nQC-aDfOUxtt9hJysOQ4rpQ8Ykj58sn16WK7kZQhq7_dDLxb4PMV2Lyy7sRp7_cybeHpab8jGrnlfr8r7KorJ0zLCzbWvROsTa1M4bQjSIARxrW2hwWtXBnx4bNEShNoVHwoYbWwRHVumZuP3rRmbeHobYh-FnS4CgnNG_zzpDTQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCV.2019.00358
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728148038
1728148030
EISSN 2380-7504
EndPage 3492
ExternalDocumentID 9010275
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i269t-1f6dd616711b5b785911511a07e36430732ba8281c1599ab548191cec64a79623
IEDL.DBID RIE
IngestDate Wed Aug 27 02:38:45 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i269t-1f6dd616711b5b785911511a07e36430732ba8281c1599ab548191cec64a79623
PageCount 10
ParticipantIDs ieee_primary_9010275
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings / IEEE International Conference on Computer Vision
PublicationTitleAbbrev ICCV
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
Score 2.5067718
Snippet We introduce a general method of performing Residual Network inference and learning in the JPEG transform domain that allows the network to consume compressed...
SourceID ieee
SourceType Publisher
StartPage 3483
SubjectTerms Convolution
Discrete cosine transforms
Image coding
Machine learning
Tensile stress
Transform coding
Title Deep Residual Learning in the JPEG Transform Domain
URI https://ieeexplore.ieee.org/document/9010275
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGP0CnDyhgvF3evDoYN3Wdj3zQyTBEAOGG1nbD0OMG5Fx8a-33QYa48Hb0st-NO17X_fe-wDutJJGWNrvMR1zL9JaekmI2rPQxXwjNTPcmZMnT3w0j8YLtqjB_cELg4iF-Aw77rL4l28yvXNHZV0nJQgEq0NdxLz0au13XQvzMa-ie6gvu4-93osTbrk0ytD1c__RO6WAjmETJvubloqRt84uVx39-SuP8b9PdQztb5MemR7g5wRqmJ5Cs2KVpFqz2xaEfcQNecZtYbsiVaDqK1mnxJI_Mp4OHshsT19JP3tP1mkb5sPBrDfyqlYJ3jrgMvfoihvDKReUKqaEC6WzUE4TX2BoOYddx4FKbHFFtaUvMlG2TrGFmkbNo0RIS4HOoJFmKZ4D8eNIB0YhjQIVyUBINIIl_srumpaJM3YBLfcNlpsyDWNZvf7l38NXcORmoZS_XUMj_9jhjYXxXN0W8_cFSsqaOA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAGP2CeNATKhh35-DRQqedhTmzCAiEGDDcSGeBEGMhUi7-emfagsZ48NbMpctk5r1v-t77AB6UFJpb2u9RVWceUUp4UWiUZ6GL-looqpkzJw-GrDMhvSmdFuBx74UxxqTiM1N1l-m_fL1SW3dUVnNSgoDTAzikhBCaubV2-64F-jrLw3uwL2rdRuPVSbdcHmXoOrr_6J6Sgke7BIPdbTPNyFt1m8iq-vyVyPjf5zqByrdND432AHQKBROfQSnnlShftZsyhE1j1ujFbFLjFcojVRdoGSNL_1Bv1HpC4x2BRc3Ve7SMKzBpt8aNjpc3S_CWAROJh-dMa4YZx1hSyV0snQVzHPnchJZ12JUcyMiWV1hZAiMiaSsVW6opoxiJuLAk6ByK8So2F4D8OlGBlgaTQBIRcGE0p5E_t_um5eKUXkLZfYPZOsvDmOWvf_X38D0cdcaD_qzfHT5fw7GbkUwMdwPF5GNrbi2oJ_IuncsvlTOdhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Deep+Residual+Learning+in+the+JPEG+Transform+Domain&rft.au=Ehrlich%2C+Max&rft.au=Davis%2C+Larry&rft.date=2019-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=3483&rft.epage=3492&rft_id=info:doi/10.1109%2FICCV.2019.00358&rft.externalDocID=9010275