Deep Residual Learning in the JPEG Transform Domain
We introduce a general method of performing Residual Network inference and learning in the JPEG transform domain that allows the network to consume compressed images as input. Our formulation leverages the linearity of the JPEG transform to redefine convolution and batch normalization with a tune-ab...
Saved in:
| Published in | Proceedings / IEEE International Conference on Computer Vision pp. 3483 - 3492 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.10.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2380-7504 |
| DOI | 10.1109/ICCV.2019.00358 |
Cover
| Abstract | We introduce a general method of performing Residual Network inference and learning in the JPEG transform domain that allows the network to consume compressed images as input. Our formulation leverages the linearity of the JPEG transform to redefine convolution and batch normalization with a tune-able numerical approximation for ReLu. The result is mathematically equivalent to the spatial domain network up to the ReLu approximation accuracy. A formulation for image classification and a model conversion algorithm for spatial domain networks are given as examples of the method. We show that the sparsity of the JPEG format allows for faster processing of images with little to no penalty in the network accuracy. |
|---|---|
| AbstractList | We introduce a general method of performing Residual Network inference and learning in the JPEG transform domain that allows the network to consume compressed images as input. Our formulation leverages the linearity of the JPEG transform to redefine convolution and batch normalization with a tune-able numerical approximation for ReLu. The result is mathematically equivalent to the spatial domain network up to the ReLu approximation accuracy. A formulation for image classification and a model conversion algorithm for spatial domain networks are given as examples of the method. We show that the sparsity of the JPEG format allows for faster processing of images with little to no penalty in the network accuracy. |
| Author | Davis, Larry Ehrlich, Max |
| Author_xml | – sequence: 1 givenname: Max surname: Ehrlich fullname: Ehrlich, Max organization: University of Maryland – sequence: 2 givenname: Larry surname: Davis fullname: Davis, Larry organization: University of Maryland |
| BookMark | eNotjj1PwzAUAA0CibZ0ZmDxH0h4z44_3ojSUooigVBhrZzkBYwat0rKwL-nEky3nE43FRdpn1iIG4QcEehuXZbvuQKkHEAbfybm5Dw65bHwoP25mCjtIXMGiisxHcevk0bK24nQC-aDfOUxtt9hJysOQ4rpQ8Ykj58sn16WK7kZQhq7_dDLxb4PMV2Lyy7sRp7_cybeHpab8jGrnlfr8r7KorJ0zLCzbWvROsTa1M4bQjSIARxrW2hwWtXBnx4bNEShNoVHwoYbWwRHVumZuP3rRmbeHobYh-FnS4CgnNG_zzpDTQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICCV.2019.00358 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781728148038 1728148030 |
| EISSN | 2380-7504 |
| EndPage | 3492 |
| ExternalDocumentID | 9010275 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i269t-1f6dd616711b5b785911511a07e36430732ba8281c1599ab548191cec64a79623 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:38:45 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i269t-1f6dd616711b5b785911511a07e36430732ba8281c1599ab548191cec64a79623 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9010275 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-01 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings / IEEE International Conference on Computer Vision |
| PublicationTitleAbbrev | ICCV |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0039286 |
| Score | 2.5067718 |
| Snippet | We introduce a general method of performing Residual Network inference and learning in the JPEG transform domain that allows the network to consume compressed... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3483 |
| SubjectTerms | Convolution Discrete cosine transforms Image coding Machine learning Tensile stress Transform coding |
| Title | Deep Residual Learning in the JPEG Transform Domain |
| URI | https://ieeexplore.ieee.org/document/9010275 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGP0CnDyhgvF3evDoYN3Wdj3zQyTBEAOGG1nbD0OMG5Fx8a-33QYa48Hb0st-NO17X_fe-wDutJJGWNrvMR1zL9JaekmI2rPQxXwjNTPcmZMnT3w0j8YLtqjB_cELg4iF-Aw77rL4l28yvXNHZV0nJQgEq0NdxLz0au13XQvzMa-ie6gvu4-93osTbrk0ytD1c__RO6WAjmETJvubloqRt84uVx39-SuP8b9PdQztb5MemR7g5wRqmJ5Cs2KVpFqz2xaEfcQNecZtYbsiVaDqK1mnxJI_Mp4OHshsT19JP3tP1mkb5sPBrDfyqlYJ3jrgMvfoihvDKReUKqaEC6WzUE4TX2BoOYddx4FKbHFFtaUvMlG2TrGFmkbNo0RIS4HOoJFmKZ4D8eNIB0YhjQIVyUBINIIl_srumpaJM3YBLfcNlpsyDWNZvf7l38NXcORmoZS_XUMj_9jhjYXxXN0W8_cFSsqaOA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAGP2CeNATKhh35-DRQqedhTmzCAiEGDDcSGeBEGMhUi7-emfagsZ48NbMpctk5r1v-t77AB6UFJpb2u9RVWceUUp4UWiUZ6GL-looqpkzJw-GrDMhvSmdFuBx74UxxqTiM1N1l-m_fL1SW3dUVnNSgoDTAzikhBCaubV2-64F-jrLw3uwL2rdRuPVSbdcHmXoOrr_6J6Sgke7BIPdbTPNyFt1m8iq-vyVyPjf5zqByrdND432AHQKBROfQSnnlShftZsyhE1j1ujFbFLjFcojVRdoGSNL_1Bv1HpC4x2BRc3Ve7SMKzBpt8aNjpc3S_CWAROJh-dMa4YZx1hSyV0snQVzHPnchJZ12JUcyMiWV1hZAiMiaSsVW6opoxiJuLAk6ByK8So2F4D8OlGBlgaTQBIRcGE0p5E_t_um5eKUXkLZfYPZOsvDmOWvf_X38D0cdcaD_qzfHT5fw7GbkUwMdwPF5GNrbi2oJ_IuncsvlTOdhQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Deep+Residual+Learning+in+the+JPEG+Transform+Domain&rft.au=Ehrlich%2C+Max&rft.au=Davis%2C+Larry&rft.date=2019-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=3483&rft.epage=3492&rft_id=info:doi/10.1109%2FICCV.2019.00358&rft.externalDocID=9010275 |