On Gradient Based Descent Algorithms for Joint Diagonalization of Matrices

Joint diagonalization of collections of matrices, i.e. the problem of finding a joint set of approximate eigenvectors, is an important problem that appears in many applicative contexts. It is commonly formulated as finding the minimizer, over the set of all possible bases, for a certain non-convex f...

Full description

Saved in:
Bibliographic Details
Published in2024 32nd European Signal Processing Conference (EUSIPCO) pp. 2632 - 2636
Main Authors Troedsson, Erik, Carlsson, Marcus, Wendt, Herwig
Format Conference Proceeding
LanguageEnglish
Published European Association for Signal Processing - EURASIP 26.08.2024
Subjects
Online AccessGet full text
ISSN2076-1465
DOI10.23919/EUSIPCO63174.2024.10715124

Cover

Abstract Joint diagonalization of collections of matrices, i.e. the problem of finding a joint set of approximate eigenvectors, is an important problem that appears in many applicative contexts. It is commonly formulated as finding the minimizer, over the set of all possible bases, for a certain non-convex functional that measures the size of off-diagonal elements. Many approaches have been studied in the literature, some of the most popular ones working with approximations of this cost functional. In this work, we deviate from this philosophy and instead propose to directly attempt to find a minimizer making use of the gradient and Hessian of the original functional. Our main contributions are as follows. First, we design and study gradient descent and conjugate gradient algorithms. Second, we show that the intricate geometry of the functional makes it beneficial to change basis at each iteration, leading to faster convergence. Third, we conduct large sets of numerical experiments that indicate that our proposed descent methods yield competitive results when compared to popular methods such as WJDTE.
AbstractList Joint diagonalization of collections of matrices, i.e. the problem of finding a joint set of approximate eigenvectors, is an important problem that appears in many applicative contexts. It is commonly formulated as finding the minimizer, over the set of all possible bases, for a certain non-convex functional that measures the size of off-diagonal elements. Many approaches have been studied in the literature, some of the most popular ones working with approximations of this cost functional. In this work, we deviate from this philosophy and instead propose to directly attempt to find a minimizer making use of the gradient and Hessian of the original functional. Our main contributions are as follows. First, we design and study gradient descent and conjugate gradient algorithms. Second, we show that the intricate geometry of the functional makes it beneficial to change basis at each iteration, leading to faster convergence. Third, we conduct large sets of numerical experiments that indicate that our proposed descent methods yield competitive results when compared to popular methods such as WJDTE.
Author Troedsson, Erik
Wendt, Herwig
Carlsson, Marcus
Author_xml – sequence: 1
  givenname: Erik
  surname: Troedsson
  fullname: Troedsson, Erik
  email: erik.troedsson@math.lu.se
  organization: Lund University,Centre for Mathematical Sciences,Lund,Sweden
– sequence: 2
  givenname: Marcus
  surname: Carlsson
  fullname: Carlsson, Marcus
  email: marcus.carlsson@math.lu.se
  organization: Lund University,Centre for Mathematical Sciences,Lund,Sweden
– sequence: 3
  givenname: Herwig
  surname: Wendt
  fullname: Wendt, Herwig
  email: herwig.wendt@irit.fr
  organization: Université de Toulouse,CNRS, IRIT,Toulouse,France
BookMark eNo1j01PAjEURavRRET-gYsmrgf7_aZLBEQIBhNlTd7MvGITmJrpbPTXi1FX9567OMm9ZhdtaomxOynGSnvp7-fb1-XLdOO0BDNWQpmxFCCtVOaMjTyU3jhjvXYSztlACXCFNM5esVHOsRKqFCVI4QZstWn5osMmUtvzB8zU8Bnl-ocmh33qYv9-zDykjq9SPI2ziPvU4iF-YR9Ty1Pgz9h3saZ8wy4DHjKN_nLIto_zt-lTsd4sltPJuojKub4IDQAY56S3eOq1IdJIJgTEWrgKGgnkrPCVDlQjWG1ByUaYGoUsKxJ6yG5_vZGIdh9dPGL3ufu_r78BDy9SnQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/EUSIPCO63174.2024.10715124
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9789464593617
946459361X
EISSN 2076-1465
EndPage 2636
ExternalDocumentID 10715124
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i266t-fd777466195afd7c4ee3ae4ffaac06b7d17e6509b3feca7535721d04ca018be03
IEDL.DBID RIE
IngestDate Wed Aug 27 03:06:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i266t-fd777466195afd7c4ee3ae4ffaac06b7d17e6509b3feca7535721d04ca018be03
PageCount 5
ParticipantIDs ieee_primary_10715124
PublicationCentury 2000
PublicationDate 2024-Aug.-26
PublicationDateYYYYMMDD 2024-08-26
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-Aug.-26
  day: 26
PublicationDecade 2020
PublicationTitle 2024 32nd European Signal Processing Conference (EUSIPCO)
PublicationTitleAbbrev EUSIPCO
PublicationYear 2024
Publisher European Association for Signal Processing - EURASIP
Publisher_xml – name: European Association for Signal Processing - EURASIP
SSID ssib028087106
ssib025355106
Score 1.920645
Snippet Joint diagonalization of collections of matrices, i.e. the problem of finding a joint set of approximate eigenvectors, is an important problem that appears in...
SourceID ieee
SourceType Publisher
StartPage 2632
SubjectTerms conjugate gradient
Convergence
Geometry
gradient descent
Gradient methods
Harmonic analysis
joint eigen-decomposition
Linear programming
matrix diagonalization
Philosophical considerations
Robustness
Signal processing
Signal processing algorithms
simultaneous diagonalization
Size measurement
Title On Gradient Based Descent Algorithms for Joint Diagonalization of Matrices
URI https://ieeexplore.ieee.org/document/10715124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62B_GkYsU3Ab3umn1ld4_ah7XQB2iht5JnXdRdabcXf72TbNcXCN5CDiFkMnwzk_m-IHQlWcwUjZkjE2JEtRVxEgF-pamE8J9HMdGmoD8c0f40HMyi2YasbrkwSinbfKZcM7Rv-bIQa1MqAw-PDUCFDdSIE1qRterL40eAnN-eDP2EQC5A6Da6tO3OqZded6cP95P2mAJmmnKKH7r1ij_-VrHQ0ttFo3pTVUfJs7suuSvef-k1_nvXe6j1xeLDk0982kdbKj9Ag3GO75a2z6vEtwBhEncqRSd887Iolln59LrCEMniQZHBZCdjCxusV3RNXGg8tKr-atVC0173sd13Nv8pOBnAcOloGUOwB4CcRgzGIlQqYCrUmjFBKI-lFysjqMcDrQSDPCaC9FCSUDDiJVyR4BA18yJXRwhDGAZWDgxNV0OCF3BYMGB-6olQcEbpMWqZg5i_VZIZ8_oMTv6YP0U7xh6mWOvTM9Qsl2t1Dmhf8gtr5Q-Jyaej
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QX1SceLdgL62Zm2ato-6Obe5G7jB3kaaJrOorWzdi7_ek3T1BoJvIQ8h5OTwnXNyvi8IXcXc55L53IoDokW1JbECAX6lWAzhf-T5ROmCfq_PWmPamXiTFVndcGGklKb5TNp6aN7y40wsdakMPNzXAEXX0YZHKfUKulZ5fRwPsPPbo6ETEMgGCNtEl6bhOayF13fjx_awPmCAmrqg4lC7XPPH7yoGXJo7qF9uq-gpebaXeWSL91-Kjf_e9y6qfvH48PATofbQmkz3UWeQ4vu56fTK8S2AWIwbhaYTvnmZZfMkf3pdYIhlcSdLYLKR8JkJ1wvCJs4U7hldf7moonHzblRvWasfFawEgDi3VOxDuAeQHHocxoJK6XJJleJcEBb5cc2XWlIvcpUUHDIZDxLEmFDBSS2IJHEPUCXNUnmIMARiYGdXE3UVpHhuBAu63AlrgoqIM3aEqvogpm-FaMa0PIPjP-Yv0FZr1OtOu-3-wwna1rbRpVuHnaJKPl_KM8D-PDo3Fv8Ag2Oq8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+32nd+European+Signal+Processing+Conference+%28EUSIPCO%29&rft.atitle=On+Gradient+Based+Descent+Algorithms+for+Joint+Diagonalization+of+Matrices&rft.au=Troedsson%2C+Erik&rft.au=Carlsson%2C+Marcus&rft.au=Wendt%2C+Herwig&rft.date=2024-08-26&rft.pub=European+Association+for+Signal+Processing+-+EURASIP&rft.eissn=2076-1465&rft.spage=2632&rft.epage=2636&rft_id=info:doi/10.23919%2FEUSIPCO63174.2024.10715124&rft.externalDocID=10715124