Muscular fatigue detection using sEMG in dynamic contractions
In this work we have studied different indicators of muscle fatigue from the electrical signal produced by the muscles when contract (sEMG or EMG: surface electromyography): Mean Frequency of the power spectrum (MNF), Median Frequency (F med ), Dimitrov Spectral Index (FI nsm5 ), Root Mean Square (R...
Saved in:
| Published in | 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Vol. 2015; pp. 494 - 497 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding Journal Article |
| Language | English |
| Published |
United States
IEEE
01.08.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1094-687X 1557-170X |
| DOI | 10.1109/EMBC.2015.7318407 |
Cover
| Abstract | In this work we have studied different indicators of muscle fatigue from the electrical signal produced by the muscles when contract (sEMG or EMG: surface electromyography): Mean Frequency of the power spectrum (MNF), Median Frequency (F med ), Dimitrov Spectral Index (FI nsm5 ), Root Mean Square (RMS), and Zerocrossing (ZC). The most reliable features are selected to develop a detection algorithm that estimates muscle fatigue. The approach used in the algorithm is probabilistic and is based on the technique of Gaussian Mixture Model (GMM). The system is divided into two stages: training and validation. During training, the algorithm learns the distribution of data regarding fatigue evolution; after that, the algorithm is validated with data that have not been used to train. Therefore, two experimental sessions have been performed with 6 healthy subjects for biceps. |
|---|---|
| AbstractList | In this work we have studied different indicators of muscle fatigue from the electrical signal produced by the muscles when contract (sEMG or EMG: surface electromyography): Mean Frequency of the power spectrum (MNF), Median Frequency (Fmed), Dimitrov Spectral Index (FInsm5), Root Mean Square (RMS), and Zerocrossing (ZC). The most reliable features are selected to develop a detection algorithm that estimates muscle fatigue. The approach used in the algorithm is probabilistic and is based on the technique of Gaussian Mixture Model (GMM). The system is divided into two stages: training and validation. During training, the algorithm learns the distribution of data regarding fatigue evolution; after that, the algorithm is validated with data that have not been used to train. Therefore, two experimental sessions have been performed with 6 healthy subjects for biceps. In this work we have studied different indicators of muscle fatigue from the electrical signal produced by the muscles when contract (sEMG or EMG: surface electromyography): Mean Frequency of the power spectrum (MNF), Median Frequency (F med ), Dimitrov Spectral Index (FI nsm5 ), Root Mean Square (RMS), and Zerocrossing (ZC). The most reliable features are selected to develop a detection algorithm that estimates muscle fatigue. The approach used in the algorithm is probabilistic and is based on the technique of Gaussian Mixture Model (GMM). The system is divided into two stages: training and validation. During training, the algorithm learns the distribution of data regarding fatigue evolution; after that, the algorithm is validated with data that have not been used to train. Therefore, two experimental sessions have been performed with 6 healthy subjects for biceps. |
| Author | Montano, L. Bueno, Diana R. Lizano, J. M. |
| Author_xml | – sequence: 1 givenname: Diana R. surname: Bueno fullname: Bueno, Diana R. email: drbueno@unizar.es organization: Aragon Inst. of Eng. Res., Univ. of Zaragoza, Zaragoza, Spain – sequence: 2 givenname: J. M. surname: Lizano fullname: Lizano, J. M. organization: Dept. of Comput. Sci. & Syst. Eng., Univ. of Zaragoza, Zaragoza, Spain – sequence: 3 givenname: L. surname: Montano fullname: Montano, L. email: montano@unizar.es organization: Aragon Inst. of Eng. Res., Univ. of Zaragoza, Zaragoza, Spain |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26736307$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kM1KAzEUhSNUbK3zACJIXmDqzc_kZhYutIxVaHGj4K6kdzIl0qZlMrPo21tsdXUW5-PAd67ZIO6iZ-xWwEQIKB-qxfN0IkEUE1TCasALlpVohZZalxKFHbDRkdO5sfg1ZFlK3wAg0Bipiys2lAaVUYAj9rjoE_Ub1_LGdWHde177zlMXdpH3KcQ1T9VixkPk9SG6bSBOu9i17pdIN-yycZvks3OO2edL9TF9zefvs7fp0zwP0uguR6kVuRURQeFqqtERGVuqQoInDc1RAVcCrS2tbLQmB6RcoUEWNapGoBqz-9Puvl9tfb3ct2Hr2sPyz-MI3J2A4L3_r8_nqB8j71Zz |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO NPM |
| DOI | 10.1109/EMBC.2015.7318407 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present PubMed |
| DatabaseTitle | PubMed |
| DatabaseTitleList | PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781424492718 1424492718 |
| EndPage | 497 |
| ExternalDocumentID | 26736307 7318407 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | 6IE 6IF 6IH AAJGR ACGFS AFFNX ALMA_UNASSIGNED_HOLDINGS CBEJK M43 RIE RIO RNS 29F 29G 6IK 6IM IPLJI NPM |
| ID | FETCH-LOGICAL-i264t-7243cabccc05adcd7acc6893520ec40f1847b1788982f44ca0c3a54025d73f173 |
| IEDL.DBID | RIE |
| ISSN | 1094-687X 1557-170X |
| IngestDate | Thu Apr 03 07:13:41 EDT 2025 Wed Aug 27 02:58:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i264t-7243cabccc05adcd7acc6893520ec40f1847b1788982f44ca0c3a54025d73f173 |
| PMID | 26736307 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_7318407 pubmed_primary_26736307 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-08-00 |
| PublicationDateYYYYMMDD | 2015-08-01 |
| PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-00 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) |
| PublicationTitleAbbrev | EMBC |
| PublicationTitleAlternate | Conf Proc IEEE Eng Med Biol Soc |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001766245 ssj0020051 ssj0061641 |
| Score | 2.0989068 |
| Snippet | In this work we have studied different indicators of muscle fatigue from the electrical signal produced by the muscles when contract (sEMG or EMG: surface... |
| SourceID | pubmed ieee |
| SourceType | Index Database Publisher |
| StartPage | 494 |
| SubjectTerms | Correlation Electromyography Fatigue Indexes Muscles Read only memory Training |
| Title | Muscular fatigue detection using sEMG in dynamic contractions |
| URI | https://ieeexplore.ieee.org/document/7318407 https://www.ncbi.nlm.nih.gov/pubmed/26736307 |
| Volume | 2015 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJ734ABVf2YNHC-0-26sEJCY1HiThRvZVQkyKkfbir3e3LWCIB2_bNG22M5vutzPffAPwQEQscUSigHFhA6q4DhLlRtYk7o_MmY2Vj3ekr3w6oy9zNm_B464Wxlpbkc_swA-rXL5Z69KHyoaC-POIaENbxLyu1drHUwTnmO519vxqqzKdCQ14LOZNRtNdD8fp08iTutigeaFXBPb8JhJum6wcgMxqs5mcQLqdZs0x-RiUhRro7wMFx_9-xyn09mV96G23YZ1By-bncPxLkbALzvA1MxVlzmXL0iJji4qtlSNPkV-izTh9RqscmbqVPaq47nV1xKYHs8n4fTQNmg4LwcoBoSIQmBItldY6ZNJoI6TW3CEYhkOraZi5aQoVuVNyEuOMUi1DTaTDeJgZQbJIkAvo5OvcXgEykTBU2TjhSlJlsGRJRjISGSVEpnDYh643xOKzFtFYNDbow2Vt6N2NrSeu_37gBo6862oO3i10iq_S3jlcUKj7akH8ACraskk |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtSLD1DxuQePFtruq71KQFRKPEDCjXQfJcSkGGkv_np32wKGePC2TdNmO7PpfjvzzTcAD5gHse9hz6GMa4cIJp1QmJFWofkjM6oDYeMd0YgNJuR1Sqc1eNzUwmitC_KZbtthkctXS5nbUFmHY3se4XuwTwkhtKzW2kZUOGM-2Srt2fVW5DpD4rCAT6ucprnu9KKnrqV10Xb1SqsJbBlO2F23WdmBmcV20z-GaD3RkmXy0c4z0ZbfOxqO__2SE2huC_vQ-2bLOoWaTs_g6JcmYQOM6UtuKkqM0-a5RkpnBV8rRZYkP0erXvSMFilSZTN7VLDdy_qIVRMm_d64O3CqHgvOwkChzOE-wTIWUkqXxkoqHkvJDIahvqslcRMzTS48c04OAz8hRMauxLFBeT5VHCcex-dQT5epvgSkPK6I0EHIREyE8mMaJjjBnhKcJ8J3W9Cwhph9ljIas8oGLbgoDb25sfbE1d8P3MPBYBwNZ8OX0ds1HFo3loy8G6hnX7m-NSghE3fF4vgBtWm1lg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+37th+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society+%28EMBC%29&rft.atitle=Muscular+fatigue+detection+using+sEMG+in+dynamic+contractions&rft.au=Bueno%2C+Diana+R.&rft.au=Lizano%2C+J.+M.&rft.au=Montano%2C+L.&rft.date=2015-08-01&rft.pub=IEEE&rft.issn=1094-687X&rft.spage=494&rft.epage=497&rft_id=info:doi/10.1109%2FEMBC.2015.7318407&rft_id=info%3Apmid%2F26736307&rft.externalDocID=7318407 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-687X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-687X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-687X&client=summon |