Muscular fatigue detection using sEMG in dynamic contractions

In this work we have studied different indicators of muscle fatigue from the electrical signal produced by the muscles when contract (sEMG or EMG: surface electromyography): Mean Frequency of the power spectrum (MNF), Median Frequency (F med ), Dimitrov Spectral Index (FI nsm5 ), Root Mean Square (R...

Full description

Saved in:
Bibliographic Details
Published in2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Vol. 2015; pp. 494 - 497
Main Authors Bueno, Diana R., Lizano, J. M., Montano, L.
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.08.2015
Subjects
Online AccessGet full text
ISSN1094-687X
1557-170X
DOI10.1109/EMBC.2015.7318407

Cover

Abstract In this work we have studied different indicators of muscle fatigue from the electrical signal produced by the muscles when contract (sEMG or EMG: surface electromyography): Mean Frequency of the power spectrum (MNF), Median Frequency (F med ), Dimitrov Spectral Index (FI nsm5 ), Root Mean Square (RMS), and Zerocrossing (ZC). The most reliable features are selected to develop a detection algorithm that estimates muscle fatigue. The approach used in the algorithm is probabilistic and is based on the technique of Gaussian Mixture Model (GMM). The system is divided into two stages: training and validation. During training, the algorithm learns the distribution of data regarding fatigue evolution; after that, the algorithm is validated with data that have not been used to train. Therefore, two experimental sessions have been performed with 6 healthy subjects for biceps.
AbstractList In this work we have studied different indicators of muscle fatigue from the electrical signal produced by the muscles when contract (sEMG or EMG: surface electromyography): Mean Frequency of the power spectrum (MNF), Median Frequency (Fmed), Dimitrov Spectral Index (FInsm5), Root Mean Square (RMS), and Zerocrossing (ZC). The most reliable features are selected to develop a detection algorithm that estimates muscle fatigue. The approach used in the algorithm is probabilistic and is based on the technique of Gaussian Mixture Model (GMM). The system is divided into two stages: training and validation. During training, the algorithm learns the distribution of data regarding fatigue evolution; after that, the algorithm is validated with data that have not been used to train. Therefore, two experimental sessions have been performed with 6 healthy subjects for biceps.
In this work we have studied different indicators of muscle fatigue from the electrical signal produced by the muscles when contract (sEMG or EMG: surface electromyography): Mean Frequency of the power spectrum (MNF), Median Frequency (F med ), Dimitrov Spectral Index (FI nsm5 ), Root Mean Square (RMS), and Zerocrossing (ZC). The most reliable features are selected to develop a detection algorithm that estimates muscle fatigue. The approach used in the algorithm is probabilistic and is based on the technique of Gaussian Mixture Model (GMM). The system is divided into two stages: training and validation. During training, the algorithm learns the distribution of data regarding fatigue evolution; after that, the algorithm is validated with data that have not been used to train. Therefore, two experimental sessions have been performed with 6 healthy subjects for biceps.
Author Montano, L.
Bueno, Diana R.
Lizano, J. M.
Author_xml – sequence: 1
  givenname: Diana R.
  surname: Bueno
  fullname: Bueno, Diana R.
  email: drbueno@unizar.es
  organization: Aragon Inst. of Eng. Res., Univ. of Zaragoza, Zaragoza, Spain
– sequence: 2
  givenname: J. M.
  surname: Lizano
  fullname: Lizano, J. M.
  organization: Dept. of Comput. Sci. & Syst. Eng., Univ. of Zaragoza, Zaragoza, Spain
– sequence: 3
  givenname: L.
  surname: Montano
  fullname: Montano, L.
  email: montano@unizar.es
  organization: Aragon Inst. of Eng. Res., Univ. of Zaragoza, Zaragoza, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26736307$$D View this record in MEDLINE/PubMed
BookMark eNo9kM1KAzEUhSNUbK3zACJIXmDqzc_kZhYutIxVaHGj4K6kdzIl0qZlMrPo21tsdXUW5-PAd67ZIO6iZ-xWwEQIKB-qxfN0IkEUE1TCasALlpVohZZalxKFHbDRkdO5sfg1ZFlK3wAg0Bipiys2lAaVUYAj9rjoE_Ub1_LGdWHde177zlMXdpH3KcQ1T9VixkPk9SG6bSBOu9i17pdIN-yycZvks3OO2edL9TF9zefvs7fp0zwP0uguR6kVuRURQeFqqtERGVuqQoInDc1RAVcCrS2tbLQmB6RcoUEWNapGoBqz-9Puvl9tfb3ct2Hr2sPyz-MI3J2A4L3_r8_nqB8j71Zz
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
NPM
DOI 10.1109/EMBC.2015.7318407
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424492718
1424492718
EndPage 497
ExternalDocumentID 26736307
7318407
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 6IE
6IF
6IH
AAJGR
ACGFS
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIO
RNS
29F
29G
6IK
6IM
IPLJI
NPM
ID FETCH-LOGICAL-i264t-7243cabccc05adcd7acc6893520ec40f1847b1788982f44ca0c3a54025d73f173
IEDL.DBID RIE
ISSN 1094-687X
1557-170X
IngestDate Thu Apr 03 07:13:41 EDT 2025
Wed Aug 27 02:58:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i264t-7243cabccc05adcd7acc6893520ec40f1847b1788982f44ca0c3a54025d73f173
PMID 26736307
PageCount 4
ParticipantIDs ieee_primary_7318407
pubmed_primary_26736307
PublicationCentury 2000
PublicationDate 2015-08-00
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Conf Proc IEEE Eng Med Biol Soc
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001766245
ssj0020051
ssj0061641
Score 2.0989068
Snippet In this work we have studied different indicators of muscle fatigue from the electrical signal produced by the muscles when contract (sEMG or EMG: surface...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 494
SubjectTerms Correlation
Electromyography
Fatigue
Indexes
Muscles
Read only memory
Training
Title Muscular fatigue detection using sEMG in dynamic contractions
URI https://ieeexplore.ieee.org/document/7318407
https://www.ncbi.nlm.nih.gov/pubmed/26736307
Volume 2015
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJ734ABVf2YNHC-0-26sEJCY1HiThRvZVQkyKkfbir3e3LWCIB2_bNG22M5vutzPffAPwQEQscUSigHFhA6q4DhLlRtYk7o_MmY2Vj3ekr3w6oy9zNm_B464Wxlpbkc_swA-rXL5Z69KHyoaC-POIaENbxLyu1drHUwTnmO519vxqqzKdCQ14LOZNRtNdD8fp08iTutigeaFXBPb8JhJum6wcgMxqs5mcQLqdZs0x-RiUhRro7wMFx_9-xyn09mV96G23YZ1By-bncPxLkbALzvA1MxVlzmXL0iJji4qtlSNPkV-izTh9RqscmbqVPaq47nV1xKYHs8n4fTQNmg4LwcoBoSIQmBItldY6ZNJoI6TW3CEYhkOraZi5aQoVuVNyEuOMUi1DTaTDeJgZQbJIkAvo5OvcXgEykTBU2TjhSlJlsGRJRjISGSVEpnDYh643xOKzFtFYNDbow2Vt6N2NrSeu_37gBo6862oO3i10iq_S3jlcUKj7akH8ACraskk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtSLD1DxuQePFtruq71KQFRKPEDCjXQfJcSkGGkv_np32wKGePC2TdNmO7PpfjvzzTcAD5gHse9hz6GMa4cIJp1QmJFWofkjM6oDYeMd0YgNJuR1Sqc1eNzUwmitC_KZbtthkctXS5nbUFmHY3se4XuwTwkhtKzW2kZUOGM-2Srt2fVW5DpD4rCAT6ucprnu9KKnrqV10Xb1SqsJbBlO2F23WdmBmcV20z-GaD3RkmXy0c4z0ZbfOxqO__2SE2huC_vQ-2bLOoWaTs_g6JcmYQOM6UtuKkqM0-a5RkpnBV8rRZYkP0erXvSMFilSZTN7VLDdy_qIVRMm_d64O3CqHgvOwkChzOE-wTIWUkqXxkoqHkvJDIahvqslcRMzTS48c04OAz8hRMauxLFBeT5VHCcex-dQT5epvgSkPK6I0EHIREyE8mMaJjjBnhKcJ8J3W9Cwhph9ljIas8oGLbgoDb25sfbE1d8P3MPBYBwNZ8OX0ds1HFo3loy8G6hnX7m-NSghE3fF4vgBtWm1lg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+37th+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society+%28EMBC%29&rft.atitle=Muscular+fatigue+detection+using+sEMG+in+dynamic+contractions&rft.au=Bueno%2C+Diana+R.&rft.au=Lizano%2C+J.+M.&rft.au=Montano%2C+L.&rft.date=2015-08-01&rft.pub=IEEE&rft.issn=1094-687X&rft.spage=494&rft.epage=497&rft_id=info:doi/10.1109%2FEMBC.2015.7318407&rft_id=info%3Apmid%2F26736307&rft.externalDocID=7318407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-687X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-687X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-687X&client=summon