A Novel Method for Multi-subject fMRI Data Analysis: Independent Component Analysis with Clustering Embedded (ICA-CE)

The analysis of multi-subject functional magnetic resonance imaging (fMRI) data and the extraction of accurate brain functional networks (FNs) are of great importance. However, traditional independent component analysis (ICA) methods perform analysis on multi-subject fMRI data under the condition of...

Full description

Saved in:
Bibliographic Details
Published in2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) Vol. 2023; pp. 1 - 5
Main Authors Du, Yuhui, Zhu, Wenchao, Zhang, Yuduo
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
Subjects
Online AccessGet full text
ISSN2694-0604
DOI10.1109/EMBC40787.2023.10339989

Cover

Abstract The analysis of multi-subject functional magnetic resonance imaging (fMRI) data and the extraction of accurate brain functional networks (FNs) are of great importance. However, traditional independent component analysis (ICA) methods perform analysis on multi-subject fMRI data under the condition of known or assumed classes of subjects, which may decrease its ability to extract accurate individual brain FNs. Although a previous method named clusterwise ICA (C-ICA) clusters subjects and obtains shared FNs in group-level for each class, its clustering performance on complex data is not ideal. To address the issues, we propose a novel method called independent component analysis with clustering embedded (ICA-CE) that can achieve both the estimation of individual FNs and the clustering of subjects in an unsupervised or semi-supervised manner. Using the simulated data with different properties, ICA-CE achieved better clustering performance than group ICA followed by K-means and C-ICA, and the mean accuracy of extracted individual FNs obtained by ICA-CE was greater than 90%. Using the task-related fMRI data from Human Connectome Project (HCP), our method also achieved higher clustering accuracy, while extracting task-related class-specific FNs. In summary, ICA-CE is effective in estimating accurate brain FNs while achieving the clustering of multiple subjects.Clinical Relevance- Our method is promising in estimating accurate brain functional networks for patients with brain disorders and outputting related class label for each subject.
AbstractList The analysis of multi-subject functional magnetic resonance imaging (fMRI) data and the extraction of accurate brain functional networks (FNs) are of great importance. However, traditional independent component analysis (ICA) methods perform analysis on multi-subject fMRI data under the condition of known or assumed classes of subjects, which may decrease its ability to extract accurate individual brain FNs. Although a previous method named clusterwise ICA (C-ICA) clusters subjects and obtains shared FNs in group-level for each class, its clustering performance on complex data is not ideal. To address the issues, we propose a novel method called independent component analysis with clustering embedded (ICA-CE) that can achieve both the estimation of individual FNs and the clustering of subjects in an unsupervised or semi-supervised manner. Using the simulated data with different properties, ICA-CE achieved better clustering performance than group ICA followed by K-means and C-ICA, and the mean accuracy of extracted individual FNs obtained by ICA-CE was greater than 90%. Using the task-related fMRI data from Human Connectome Project (HCP), our method also achieved higher clustering accuracy, while extracting task-related class-specific FNs. In summary, ICA-CE is effective in estimating accurate brain FNs while achieving the clustering of multiple subjects.Clinical Relevance- Our method is promising in estimating accurate brain functional networks for patients with brain disorders and outputting related class label for each subject.
Author Zhang, Yuduo
Zhu, Wenchao
Du, Yuhui
Author_xml – sequence: 1
  givenname: Yuhui
  surname: Du
  fullname: Du, Yuhui
  email: duyuhui@sxu.edu.cn
  organization: Shanxi University,School of Computer and Information Technology,Taiyuan,China
– sequence: 2
  givenname: Wenchao
  surname: Zhu
  fullname: Zhu, Wenchao
  email: flowriver@126.com
  organization: Shanxi University,School of Computer and Information Technology,Taiyuan,China
– sequence: 3
  givenname: Yuduo
  surname: Zhang
  fullname: Zhang, Yuduo
  email: nevermore031400@gmail.com
  organization: Shanxi University,School of Computer and Information Technology,Taiyuan,China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38083018$$D View this record in MEDLINE/PubMed
BookMark eNo9kEtPwzAQhA0C0VL6DxD4CIcUP-IXtxICVGpAQr1XduxQo7yUOKD-eyJBueyuNJ9Gs3MOTuqmdgBcY7TAGKm7NHtIYiSkWBBE6AIjSpWS6gjMlVCSMkRJHAt8DKaEqzhCHMUTMO97bxCjLGaK0DMwoRJJirCcgmEJX5svV8LMhV1jYdF0MBvK4KN-MJ8uD7DI3lfwUQcNl7Uu973v7-Gqtq5146gDTJqqHTOO10GH3z7sYFIOfXCdrz9gWhlnrbPwZpUsoyS9vQCnhS57N__bM7B5SjfJS7R-ex6RdeQJRyGihmGj8gLFggktsCZW8JwSXkhMuFHGWOlMjLWkEjPOcmULLiji2BI9tjEDV7-27WAqZ7dt5yvd7beH90fg8hfwzrl_-VAq_QF5CGmi
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1109/EMBC40787.2023.10339989
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library (LUT)
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISBN 9798350324471
EISSN 2694-0604
EndPage 5
ExternalDocumentID 38083018
10339989
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IH
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
AAWTH
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-i260t-3b51b9cf04757a71a2d76c326f8126b9bbd8eb41a8381565c9df673061d2a983
IEDL.DBID RIE
IngestDate Wed Feb 19 02:08:11 EST 2025
Wed Jun 26 19:23:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i260t-3b51b9cf04757a71a2d76c326f8126b9bbd8eb41a8381565c9df673061d2a983
PMID 38083018
PageCount 5
ParticipantIDs pubmed_primary_38083018
ieee_primary_10339989
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Annu Int Conf IEEE Eng Med Biol Soc
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib053545923
ssib042469959
Score 2.208491
Snippet The analysis of multi-subject functional magnetic resonance imaging (fMRI) data and the extraction of accurate brain functional networks (FNs) are of great...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Biology
Brain - diagnostic imaging
Cluster Analysis
Connectome
Data analysis
Data mining
Estimation
Functional magnetic resonance imaging
Humans
Independent component analysis
Magnetic Resonance Imaging - methods
Task analysis
Title A Novel Method for Multi-subject fMRI Data Analysis: Independent Component Analysis with Clustering Embedded (ICA-CE)
URI https://ieeexplore.ieee.org/document/10339989
https://www.ncbi.nlm.nih.gov/pubmed/38083018
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uIHjya-r8GDl40ENq27Rp4m3WjU1oGTJhN0maBMS5ibaC_vUm_ZgyELylhLQhSd_75b33ew-Ac80FIZH0kfJDjQJJPCSki1HIdMZdKiSJLHc4ScnoIbibhbOarF5yYZRSZfCZcmyz9OXLZVZYU5n5w7HRp5S1QCuipCJrNYcn8M1F71eilBAbbGDQSx3T5bnsapDcxNZtFTm2ZrjTvK2uq7KGK0v9MtwGaTOzKqzk2Sly4WRfa0kb_z31HdD5ofLByUpJ7YINtdgDm1UFys99UPRhuvxQc5iUlaShgbCw5OSi90JYEw3Uyf0Y3vKcwyZ_yTUcr2rn5tAKlOXCtpp-aG27MJ4XNgeD-SgcvAhl5JuEF-O4j-LBZQdMh4NpPEJ1JQb0ZO47OcIi9ATLtBtEYcQjj_syIplBftrgAyKYEJIqEXicYpt9JsyY1MTIDuJJnzOKD0B7YaZyBCC3TF1mfYMiC4h5ChR3sQ6pxoIpX3VBxy7e42uVa-OxWbcuOKx2Z9WDqUGPrkeP_xhxArbsNlfmklPQzt8KdWYARC56oJVOkl55fL4BQE7CoA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5eEH3yNnVe8-CDPqS2zaWNb1onm9ohMmFvI2kSEOcm2gr6603adcpA8C0lpA1Jes6Xc853DgDHRkjGIhUiHVKDiGIBksrHiHKTCT-WikWOO5x2WfuR3PRpf0JWL7kwWusy-Ex7rln68tU4K5ypzP7h2OrTmM-DRUoIoRVdqz4-JLRXvV-pUii26MDil0lUV-Dzs1Z6mTjHVeS5quFe_b5JZZUZZFlqmOtV0K3nVgWWPHtFLr3sayZt478nvwYaP2Q-eD9VU-tgTo82wFJVg_JzExQXsDv-0EOYlrWkoQWxsGTlovdCOiMNNOlDB16JXMA6g8k57Eyr5-bQiZTxyLXqfuisuzAZFi4Lg_0obL1IbSWcgied5AIlrdMG6F23ekkbTWoxoCd748kRljSQPDM-iWgkokCEKmKZxX7GIgQmuZQq1pIEIsYu_wzNuDLMSg8WqFDwGG-BhZGdyg6AwnF1ufMOyoww-0S08LGhscGS61A3QcMt3uC1yrYxqNetCbar3Zn24NjiRz-Id_8YcQSW2730bnDX6d7ugRW35ZXxZB8s5G-FPrBwIpeH5SH6BgbFxOE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+45th+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+%26+Biology+Society+%28EMBC%29&rft.atitle=A+Novel+Method+for+Multi-subject+fMRI+Data+Analysis%3A+Independent+Component+Analysis+with+Clustering+Embedded+%28ICA-CE%29&rft.au=Du%2C+Yuhui&rft.au=Zhu%2C+Wenchao&rft.au=Zhang%2C+Yuduo&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2694-0604&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FEMBC40787.2023.10339989&rft.externalDocID=10339989