Deep CNN with LM learning based myocardial ischemia detection in cardiac magnetic resonance images
Cardiovascular disease (CVD) is a chronic dysfunction caused by deterioration in cardiac physiology. It results in about 31% of mortality worldwide. Among CVDs, myocardial ischemia (MI) leads to restriction in blood supply to heart tissues. There is a need to develop an effective computer aided dete...
Saved in:
| Published in | Conference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.) Vol. 2019; pp. 824 - 827 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding Journal Article |
| Language | English |
| Published |
United States
IEEE
01.07.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1557-170X 1558-4615 |
| DOI | 10.1109/EMBC.2019.8856838 |
Cover
| Abstract | Cardiovascular disease (CVD) is a chronic dysfunction caused by deterioration in cardiac physiology. It results in about 31% of mortality worldwide. Among CVDs, myocardial ischemia (MI) leads to restriction in blood supply to heart tissues. There is a need to develop an effective computer aided detection (CAD) system to reduce the fatality. In this work, an attempt is made to perform mass screening of myocardial ischemic subjects and left ventricle (LV) volume estimation from cardiac magnetic resonance (CMR) images using deep convolutional neural network (CNN) with Levenberg-Marquardt (LM) learning. LV volume measurement is an important predictor of myocardial ischemia. The CMR samples used in this analysis are obtained from Medical Image Computing and Computer Assisted Intervention (MICCAI) 2009 database. The results of the proposed model are compared with deep CNN based on gradient descent (GD) learning algorithm. The results show that deep CNN architecture with LM learning classifies ischemic subjects with high accuracy (86.39%) and sensitivity (90%). The LM learning based method gives an AUC of 0.93. The estimated LV volumes obtained from the trained network gives high correlation with the ground truth. Thus the results support that proposed framework of deep CNN architecture with LM learning can be used as an effective CAD system for diagnosis of cardiovascular disorders. |
|---|---|
| AbstractList | Cardiovascular disease (CVD) is a chronic dysfunction caused by deterioration in cardiac physiology. It results in about 31% of mortality worldwide. Among CVDs, myocardial ischemia (MI) leads to restriction in blood supply to heart tissues. There is a need to develop an effective computer aided detection (CAD) system to reduce the fatality. In this work, an attempt is made to perform mass screening of myocardial ischemic subjects and left ventricle (LV) volume estimation from cardiac magnetic resonance (CMR) images using deep convolutional neural network (CNN) with Levenberg-Marquardt (LM) learning. LV volume measurement is an important predictor of myocardial ischemia. The CMR samples used in this analysis are obtained from Medical Image Computing and Computer Assisted Intervention (MICCAI) 2009 database. The results of the proposed model are compared with deep CNN based on gradient descent (GD) learning algorithm. The results show that deep CNN architecture with LM learning classifies ischemic subjects with high accuracy (86.39%) and sensitivity (90%). The LM learning based method gives an AUC of 0.93. The estimated LV volumes obtained from the trained network gives high correlation with the ground truth. Thus the results support that proposed framework of deep CNN architecture with LM learning can be used as an effective CAD system for diagnosis of cardiovascular disorders. |
| Author | Muthulakshmi, M. Kavitha, G. |
| Author_xml | – sequence: 1 givenname: M. surname: Muthulakshmi fullname: Muthulakshmi, M. organization: Department of Electronics Engineering, Anna University, Chennai, Tamilnadu, 600044, India – sequence: 2 givenname: G. surname: Kavitha fullname: Kavitha, G. organization: Department of Electronics Engineering, Anna University, Chennai, Tamilnadu, 600044, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31946022$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kFtPAjEQhavByEV-gDEx_QOLnZZ220dd8ZIAvmjiG-llFmqgS3bXGP69KOjTTOZ8mZNz-qSTqoSEXAIbATBzM5ndFSPOwIy0lkoLfUKGJtcghVYgAOQp6YGUOhsrkJ3fPc8gZ-9d0m-aD8Y4YxLOSVeAGSvGeY-4e8QtLeZz-hXbFZ3O6BptnWJaUmcbDHSzq7ytQ7RrGhu_wk20NGCLvo1VojHRg-rpxi4TttHTGpsq2eSRxv0NmwtyVtp1g8PjHJC3h8lr8ZRNXx6fi9tpFrk0beYCOLRBcu-UHGPJtAPBwSvwBplSVgQjS1dy_gO6sgxQGg8iD7ljXHExINeHv9tPt8Gw2NZ7_3q3-Au7B64OQETEf_lYpfgGQdlltA |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO CGR CUY CVF ECM EIF NPM |
| DOI | 10.1109/EMBC.2019.8856838 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
| DatabaseTitleList | MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781538613115 1538613115 |
| EISSN | 1558-4615 |
| EndPage | 827 |
| ExternalDocumentID | 31946022 8856838 |
| Genre | orig-research Journal Article |
| GroupedDBID | 6IE 6IF 6IH AAJGR ACGFS AFFNX ALMA_UNASSIGNED_HOLDINGS CBEJK M43 RIE RIO RNS 29F 29G 6IK 6IM CGR CUY CVF ECM EIF IPLJI NPM |
| ID | FETCH-LOGICAL-i259t-bd1bead52cb654ef08b1321c61c9e066a3d95fbf22d1bebffd1f9c137d7b02623 |
| IEDL.DBID | RIE |
| ISSN | 1557-170X |
| IngestDate | Thu Jan 02 22:59:29 EST 2025 Wed Aug 27 02:41:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i259t-bd1bead52cb654ef08b1321c61c9e066a3d95fbf22d1bebffd1f9c137d7b02623 |
| PMID | 31946022 |
| PageCount | 4 |
| ParticipantIDs | pubmed_primary_31946022 ieee_primary_8856838 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-01 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Conference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.) |
| PublicationTitleAbbrev | EMBC |
| PublicationTitleAlternate | Conf Proc IEEE Eng Med Biol Soc |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020051 ssj0061641 |
| Score | 2.2584045 |
| Snippet | Cardiovascular disease (CVD) is a chronic dysfunction caused by deterioration in cardiac physiology. It results in about 31% of mortality worldwide. Among... |
| SourceID | pubmed ieee |
| SourceType | Index Database Publisher |
| StartPage | 824 |
| SubjectTerms | Algorithms Convolutional neural networks Deep learning Heart Humans Machine learning algorithms Magnetic Resonance Spectroscopy Myocardial Ischemia - diagnostic imaging Myocardium Neural Networks, Computer Training Volume measurement |
| Title | Deep CNN with LM learning based myocardial ischemia detection in cardiac magnetic resonance images |
| URI | https://ieeexplore.ieee.org/document/8856838 https://www.ncbi.nlm.nih.gov/pubmed/31946022 |
| Volume | 2019 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaIHykgdG0uZhx85KaVUhUjFQqVvlx7mKoGkF6QC_HjsJBVUMbJEfcmSffPf5vrtD6MYonQgufU9JAR4Brj3hC-ZpLuKEamUvQOfRTSfxeEoeZnTWQLfbWBgAKMln0HOfpS9fr9TGPZX1Oacxj3gTNRmPq1itLbhy0lV7LQM_6Q_Tu4EjbjlJKCfV1VN2rMdSi4wOUPq9fkUeeeltCtlTnzupGf_7g4eo8xOvh5-2mugINSA_Rvu_Ug22kbwHWOPBZILdyyt-THFdL2KBnSLTePlhtZqTllecWcQLy0xgDUXJ1MpxluOqV-GlWOQu8hFboL5y6ToAZ7YN3jtoOho-D8ZeXV_ByyzoKTypA2kFiYZKxpSA8bm02DRQcaASsKaIiHRCjTRh6AZKY3RgEhVETDNpoVsYnaBWvsrhDGFm7QQDhDCIfGK0L6KIBlxx31CmCZNd1Ha7NV9XKTTm9UZ10Wl1GtsOeyOQ2NoV539PuEB77lArvuwlahVvG7iyVkEhr0tx-ALxOrlQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgALj_IoTw-MpCSNnTgrBVSgqRioxFb5cUYRNEWQDvDrsZNQUMXAZvkhWfbJd5_vuzuAU6N0Irj0PSUFehS59oQvYk9zESVMK_sAOo9uOoz6I3r7yB4bcDaPhUHEknyGHdcsffl6qmbuq-yccxbxkC_BMqOUsipaaw6vnHzVfsvAT86v0oueo245WSiX1fVTFuzHUo9cr0P6vYOKPvLcmRWyoz4XkjP-d4sbsP0TsUfu57poExqYb8Har2SDLZCXiK-kNxwS9_dKBimpK0Y8EafKNJl8WL3m5OWFZBbz4iQTRGNRcrVykuWkGlVkIp5yF_tILFSfuoQdSDLbh-_bMLq-euj1vbrCgpdZ2FN4UgfSihLrKhkxisbn0qLTQEWBStAaIyLUCTPSdLtuojRGByZRQRjrWFrw1g13oJlPc9wDEltLwSClMYY-NdoXYcgCrrhvWKxpLNvQcqc1fq2SaIzrg2rDbnUb8wH7JtDIWhb7fy84gZX-QzoYD26Gdwew6i64Ys8eQrN4m-GRtREKeVyKxhfQyryd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+annual+international+conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society&rft.atitle=Deep+CNN+with+LM+learning+based+myocardial+ischemia+detection+in+cardiac+magnetic+resonance+images&rft.au=Muthulakshmi%2C+M.&rft.au=Kavitha%2C+G.&rft.date=2019-07-01&rft.pub=IEEE&rft.eissn=1558-4615&rft.spage=824&rft.epage=827&rft_id=info:doi/10.1109%2FEMBC.2019.8856838&rft.externalDocID=8856838 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-170X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-170X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-170X&client=summon |