Deep CNN with LM learning based myocardial ischemia detection in cardiac magnetic resonance images

Cardiovascular disease (CVD) is a chronic dysfunction caused by deterioration in cardiac physiology. It results in about 31% of mortality worldwide. Among CVDs, myocardial ischemia (MI) leads to restriction in blood supply to heart tissues. There is a need to develop an effective computer aided dete...

Full description

Saved in:
Bibliographic Details
Published inConference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.) Vol. 2019; pp. 824 - 827
Main Authors Muthulakshmi, M., Kavitha, G.
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.07.2019
Subjects
Online AccessGet full text
ISSN1557-170X
1558-4615
DOI10.1109/EMBC.2019.8856838

Cover

Abstract Cardiovascular disease (CVD) is a chronic dysfunction caused by deterioration in cardiac physiology. It results in about 31% of mortality worldwide. Among CVDs, myocardial ischemia (MI) leads to restriction in blood supply to heart tissues. There is a need to develop an effective computer aided detection (CAD) system to reduce the fatality. In this work, an attempt is made to perform mass screening of myocardial ischemic subjects and left ventricle (LV) volume estimation from cardiac magnetic resonance (CMR) images using deep convolutional neural network (CNN) with Levenberg-Marquardt (LM) learning. LV volume measurement is an important predictor of myocardial ischemia. The CMR samples used in this analysis are obtained from Medical Image Computing and Computer Assisted Intervention (MICCAI) 2009 database. The results of the proposed model are compared with deep CNN based on gradient descent (GD) learning algorithm. The results show that deep CNN architecture with LM learning classifies ischemic subjects with high accuracy (86.39%) and sensitivity (90%). The LM learning based method gives an AUC of 0.93. The estimated LV volumes obtained from the trained network gives high correlation with the ground truth. Thus the results support that proposed framework of deep CNN architecture with LM learning can be used as an effective CAD system for diagnosis of cardiovascular disorders.
AbstractList Cardiovascular disease (CVD) is a chronic dysfunction caused by deterioration in cardiac physiology. It results in about 31% of mortality worldwide. Among CVDs, myocardial ischemia (MI) leads to restriction in blood supply to heart tissues. There is a need to develop an effective computer aided detection (CAD) system to reduce the fatality. In this work, an attempt is made to perform mass screening of myocardial ischemic subjects and left ventricle (LV) volume estimation from cardiac magnetic resonance (CMR) images using deep convolutional neural network (CNN) with Levenberg-Marquardt (LM) learning. LV volume measurement is an important predictor of myocardial ischemia. The CMR samples used in this analysis are obtained from Medical Image Computing and Computer Assisted Intervention (MICCAI) 2009 database. The results of the proposed model are compared with deep CNN based on gradient descent (GD) learning algorithm. The results show that deep CNN architecture with LM learning classifies ischemic subjects with high accuracy (86.39%) and sensitivity (90%). The LM learning based method gives an AUC of 0.93. The estimated LV volumes obtained from the trained network gives high correlation with the ground truth. Thus the results support that proposed framework of deep CNN architecture with LM learning can be used as an effective CAD system for diagnosis of cardiovascular disorders.
Author Muthulakshmi, M.
Kavitha, G.
Author_xml – sequence: 1
  givenname: M.
  surname: Muthulakshmi
  fullname: Muthulakshmi, M.
  organization: Department of Electronics Engineering, Anna University, Chennai, Tamilnadu, 600044, India
– sequence: 2
  givenname: G.
  surname: Kavitha
  fullname: Kavitha, G.
  organization: Department of Electronics Engineering, Anna University, Chennai, Tamilnadu, 600044, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31946022$$D View this record in MEDLINE/PubMed
BookMark eNo9kFtPAjEQhavByEV-gDEx_QOLnZZ220dd8ZIAvmjiG-llFmqgS3bXGP69KOjTTOZ8mZNz-qSTqoSEXAIbATBzM5ndFSPOwIy0lkoLfUKGJtcghVYgAOQp6YGUOhsrkJ3fPc8gZ-9d0m-aD8Y4YxLOSVeAGSvGeY-4e8QtLeZz-hXbFZ3O6BptnWJaUmcbDHSzq7ytQ7RrGhu_wk20NGCLvo1VojHRg-rpxi4TttHTGpsq2eSRxv0NmwtyVtp1g8PjHJC3h8lr8ZRNXx6fi9tpFrk0beYCOLRBcu-UHGPJtAPBwSvwBplSVgQjS1dy_gO6sgxQGg8iD7ljXHExINeHv9tPt8Gw2NZ7_3q3-Au7B64OQETEf_lYpfgGQdlltA
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1109/EMBC.2019.8856838
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538613115
1538613115
EISSN 1558-4615
EndPage 827
ExternalDocumentID 31946022
8856838
Genre orig-research
Journal Article
GroupedDBID 6IE
6IF
6IH
AAJGR
ACGFS
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIO
RNS
29F
29G
6IK
6IM
CGR
CUY
CVF
ECM
EIF
IPLJI
NPM
ID FETCH-LOGICAL-i259t-bd1bead52cb654ef08b1321c61c9e066a3d95fbf22d1bebffd1f9c137d7b02623
IEDL.DBID RIE
ISSN 1557-170X
IngestDate Thu Jan 02 22:59:29 EST 2025
Wed Aug 27 02:41:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i259t-bd1bead52cb654ef08b1321c61c9e066a3d95fbf22d1bebffd1f9c137d7b02623
PMID 31946022
PageCount 4
ParticipantIDs pubmed_primary_31946022
ieee_primary_8856838
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Conference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.)
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Conf Proc IEEE Eng Med Biol Soc
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020051
ssj0061641
Score 2.2584045
Snippet Cardiovascular disease (CVD) is a chronic dysfunction caused by deterioration in cardiac physiology. It results in about 31% of mortality worldwide. Among...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 824
SubjectTerms Algorithms
Convolutional neural networks
Deep learning
Heart
Humans
Machine learning algorithms
Magnetic Resonance Spectroscopy
Myocardial Ischemia - diagnostic imaging
Myocardium
Neural Networks, Computer
Training
Volume measurement
Title Deep CNN with LM learning based myocardial ischemia detection in cardiac magnetic resonance images
URI https://ieeexplore.ieee.org/document/8856838
https://www.ncbi.nlm.nih.gov/pubmed/31946022
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaIHykgdG0uZhx85KaVUhUjFQqVvlx7mKoGkF6QC_HjsJBVUMbJEfcmSffPf5vrtD6MYonQgufU9JAR4Brj3hC-ZpLuKEamUvQOfRTSfxeEoeZnTWQLfbWBgAKMln0HOfpS9fr9TGPZX1Oacxj3gTNRmPq1itLbhy0lV7LQM_6Q_Tu4EjbjlJKCfV1VN2rMdSi4wOUPq9fkUeeeltCtlTnzupGf_7g4eo8xOvh5-2mugINSA_Rvu_Ug22kbwHWOPBZILdyyt-THFdL2KBnSLTePlhtZqTllecWcQLy0xgDUXJ1MpxluOqV-GlWOQu8hFboL5y6ToAZ7YN3jtoOho-D8ZeXV_ByyzoKTypA2kFiYZKxpSA8bm02DRQcaASsKaIiHRCjTRh6AZKY3RgEhVETDNpoVsYnaBWvsrhDGFm7QQDhDCIfGK0L6KIBlxx31CmCZNd1Ha7NV9XKTTm9UZ10Wl1GtsOeyOQ2NoV539PuEB77lArvuwlahVvG7iyVkEhr0tx-ALxOrlQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgALj_IoTw-MpCSNnTgrBVSgqRioxFb5cUYRNEWQDvDrsZNQUMXAZvkhWfbJd5_vuzuAU6N0Irj0PSUFehS59oQvYk9zESVMK_sAOo9uOoz6I3r7yB4bcDaPhUHEknyGHdcsffl6qmbuq-yccxbxkC_BMqOUsipaaw6vnHzVfsvAT86v0oueo245WSiX1fVTFuzHUo9cr0P6vYOKPvLcmRWyoz4XkjP-d4sbsP0TsUfu57poExqYb8Har2SDLZCXiK-kNxwS9_dKBimpK0Y8EafKNJl8WL3m5OWFZBbz4iQTRGNRcrVykuWkGlVkIp5yF_tILFSfuoQdSDLbh-_bMLq-euj1vbrCgpdZ2FN4UgfSihLrKhkxisbn0qLTQEWBStAaIyLUCTPSdLtuojRGByZRQRjrWFrw1g13oJlPc9wDEltLwSClMYY-NdoXYcgCrrhvWKxpLNvQcqc1fq2SaIzrg2rDbnUb8wH7JtDIWhb7fy84gZX-QzoYD26Gdwew6i64Ys8eQrN4m-GRtREKeVyKxhfQyryd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+annual+international+conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society&rft.atitle=Deep+CNN+with+LM+learning+based+myocardial+ischemia+detection+in+cardiac+magnetic+resonance+images&rft.au=Muthulakshmi%2C+M.&rft.au=Kavitha%2C+G.&rft.date=2019-07-01&rft.pub=IEEE&rft.eissn=1558-4615&rft.spage=824&rft.epage=827&rft_id=info:doi/10.1109%2FEMBC.2019.8856838&rft.externalDocID=8856838
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-170X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-170X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-170X&client=summon