Efficient Epileptic Seizure Detection Using CNN-Aided Factor Graphs
We propose a computationally efficient algorithm for seizure detection. Instead of using a purely data-driven approach, we develop a hybrid model-based/data-driven method, combining convolutional neural networks with factor graph inference. On the CHB-MIT dataset, we demonstrate that the proposed me...
        Saved in:
      
    
          | Published in | 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Vol. 2021; pp. 424 - 429 | 
|---|---|
| Main Authors | , , , , | 
| Format | Conference Proceeding Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.11.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2694-0604 | 
| DOI | 10.1109/EMBC46164.2021.9629917 | 
Cover
| Abstract | We propose a computationally efficient algorithm for seizure detection. Instead of using a purely data-driven approach, we develop a hybrid model-based/data-driven method, combining convolutional neural networks with factor graph inference. On the CHB-MIT dataset, we demonstrate that the proposed method can generalize well in a 6 fold leave-4-patient-out evaluation. Moreover, it is shown that our algorithm can achieve as much as 5% absolute improvement in performance compared to previous data-driven methods. This is achieved while the computational complexity of the proposed technique is a fraction of the complexity of prior work, making it suitable for real-time seizure detection. | 
    
|---|---|
| AbstractList | We propose a computationally efficient algorithm for seizure detection. Instead of using a purely data-driven approach, we develop a hybrid model-based/data-driven method, combining convolutional neural networks with factor graph inference. On the CHB-MIT dataset, we demonstrate that the proposed method can generalize well in a 6 fold leave-4-patient-out evaluation. Moreover, it is shown that our algorithm can achieve as much as 5% absolute improvement in performance compared to previous data-driven methods. This is achieved while the computational complexity of the proposed technique is a fraction of the complexity of prior work, making it suitable for real-time seizure detection. | 
    
| Author | Shlezinger, Nir Fishel Ben, Eyal de Ribaupierre, Sandrine Salafian, Bahareh Farsad, Nariman  | 
    
| Author_xml | – sequence: 1 givenname: Bahareh surname: Salafian fullname: Salafian, Bahareh email: bsalafia@uwo.ca organization: University of Western Ontario,School of Biomedical Engineering,London,N6A 5B9 – sequence: 2 givenname: Eyal surname: Fishel Ben fullname: Fishel Ben, Eyal email: eyalfish@post.bgu.ac.il organization: Ben-Gurion University of the Negev,School of Electrical and Computer Engineering,Be'er Sheva,Israel,84105 – sequence: 3 givenname: Nir surname: Shlezinger fullname: Shlezinger, Nir email: nirshl@bgu.ac.il organization: Ben-Gurion University of the Negev,School of Electrical and Computer Engineering,Be'er Sheva,Israel,84105 – sequence: 4 givenname: Sandrine surname: de Ribaupierre fullname: de Ribaupierre, Sandrine email: sderibau@uwo.ca organization: University of Western Ontario,School of Biomedical Engineering,London,N6A 5B9 – sequence: 5 givenname: Nariman surname: Farsad fullname: Farsad, Nariman email: nfarsad@ryerson.ca organization: Ryerson University,Department of Computer Science,Toronto,M5B 2K3  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34891324$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNo9UM1OwkAYXI1GfuQJTMi-QPHbH3a7RywFTRAPSuKNbL9-1TVQmrYc9OltAnqYzGEmk5kZsKvyUBJjYwETIcDdp88PiTbC6IkEKSbOSOeEvWADYWUshLDu_ZL1pXE6AgO6x0ZN8wUA0oKzoG9YT-nYCSV1nyVpUQQMVLY8rcKOqjYgf6Xwc6yJz6klbMOh5JsmlB88Wa-jWcgp5wuP7aHmy9pXn80tuy78rqHRmYdss0jfksdo9bJ8SmarKMipayOFxhmfgSqKAi2q2FjEDt6SIcQiA5_7qQOMrccMrerKxnmnOOcItFBDNj7lVsdsT_m2qsPe19_bvzWd4e5kCET0L5__Ub_K_lmC | 
    
| ContentType | Conference Proceeding Journal Article  | 
    
| DBID | 6IE 6IH CBEJK RIE RIO CGR CUY CVF ECM EIF NPM  | 
    
| DOI | 10.1109/EMBC46164.2021.9629917 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed  | 
    
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid)  | 
    
| DatabaseTitleList | MEDLINE | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 172811179X 9781728111797  | 
    
| EISSN | 2694-0604 | 
    
| EndPage | 429 | 
    
| ExternalDocumentID | 34891324 9629917  | 
    
| Genre | orig-research Journal Article  | 
    
| GroupedDBID | 6IE 6IF 6IG 6IH 6IL 6IN AAWTH ABLEC ABQGA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IJVOP OCL RIE RIL RIO ADZIZ CGR CHZPO CUY CVF ECM EIF NPM  | 
    
| ID | FETCH-LOGICAL-i259t-3c696ab03fffc7c3867cc67ca7e6eccfb0ada590c87acbc739708decc999e0413 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Thu Apr 03 07:08:04 EDT 2025 Wed Aug 27 05:11:13 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i259t-3c696ab03fffc7c3867cc67ca7e6eccfb0ada590c87acbc739708decc999e0413 | 
    
| PMID | 34891324 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_9629917 pubmed_primary_34891324  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-11-00 | 
    
| PublicationDateYYYYMMDD | 2021-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) | 
    
| PublicationTitleAbbrev | EMBC | 
    
| PublicationTitleAlternate | Annu Int Conf IEEE Eng Med Biol Soc | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0002709704 ssib053545923 ssib042469959  | 
    
| Score | 2.19349 | 
    
| Snippet | We propose a computationally efficient algorithm for seizure detection. Instead of using a purely data-driven approach, we develop a hybrid... | 
    
| SourceID | pubmed ieee  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 424 | 
    
| SubjectTerms | Algorithms Brain modeling Computational efficiency Computational modeling Electroencephalography Epilepsy - diagnosis Humans Inference algorithms Neural networks Neural Networks, Computer Real-time systems Seizures - diagnosis  | 
    
| Title | Efficient Epileptic Seizure Detection Using CNN-Aided Factor Graphs | 
    
| URI | https://ieeexplore.ieee.org/document/9629917 https://www.ncbi.nlm.nih.gov/pubmed/34891324  | 
    
| Volume | 2021 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na8IwFH-oh-FpG7rNfUgOO66aNjVpj1unk4EibII3adME3EDFtRf_-r2krRuyww6FQkho8sL76Hu_3wO4p752lUeZI7Vmjp-4sRNwbSpzDN-TMNzIBig8mfLx3H9dDBY1eDhgYZRStvhM9cyrzeWnG5mbX2X9kKPydEUd6iLgBVaruju-h3HeL56UAUPXoAoNPmyCjYaC-iVI2KVhfzh5inyO4QJGiZ7bKxdvwgnzTe7OYOBtw5Ujh9MantEpTKpPLupNPnt5lvTk_ojN8b97OoP2D8SPzA7G6xxqat2CaGgJJXACGW5RXaA6keRNrfb5TpFnldmyrTWxZQYkmk6dx1WqUjKyPXvIi-G-_mrDfDR8j8ZO2WXBWWHokzlM8pDHCWVaaykkC7iQEp9YKI7y1QmN03gQUhmIWCZSoANDgxRH0LVUFG3gBTTWm7W6AiJRfXLqaaENC52QGDy6YeDJgGml0W_pQMscwHJbEGksy7134LI44MNAJYHrvyfcQNOIrIAE3kIj2-XqDn2DLOlCfTqbdO3V-AYHt7MP | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BTJSTGlDxswePDruta7ejIogKxERIuJGtaxM0AYLbhb_e1w7QEA8elixp2qx9zfvYe7_fA7ihTLvKo74jtfYdlrixE3JtKnMM35Mw3MgGKNzr886QvYyCUQluN1gYpZQtPlMN82pz-elM5uZX2V3EUXm6Ygd2A8ZYUKC11reHeRjp_WJKCXx0DtbBwYdNsdFIULaCCbs0umv1HpqMY8CAcaLnNlbLV2DPZyZ7Z1DwtuXKlstpTU_7AHrrjy4qTj4beZY05HKLz_G_uzqE2g_Ij7xtzNcRlNS0Cs2WpZTACaQ1R4WBCkWSdzVZ5gtFHlVmC7emxBYakGa_79xPUpWStu3aQ54M-_VXDYbt1qDZcVZ9FpwJBj-Z40se8TihvtZaCumHXEiJTywURwnrhMZpHERUhiKWiRTowtAwxRF0LhVFK3gM5elsqk6BSFSgnHpaaMNDJySGj24UejL0tdLoudShag5gPC-oNMarvdfhpDjgzcBaAmd_T7iG_c6g1x13n_uv51Ax4isAghdQzha5ukRPIUuu7AX5BmA_tVA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+43rd+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society+%28EMBC%29&rft.atitle=Efficient+Epileptic+Seizure+Detection+Using+CNN-Aided+Factor+Graphs&rft.au=Salafian%2C+Bahareh&rft.au=Fishel+Ben%2C+Eyal&rft.au=Shlezinger%2C+Nir&rft.au=de+Ribaupierre%2C+Sandrine&rft.date=2021-11-01&rft.pub=IEEE&rft.eissn=2694-0604&rft.spage=424&rft.epage=429&rft_id=info:doi/10.1109%2FEMBC46164.2021.9629917&rft_id=info%3Apmid%2F34891324&rft.externalDocID=9629917 |