Efficient Epileptic Seizure Detection Using CNN-Aided Factor Graphs

We propose a computationally efficient algorithm for seizure detection. Instead of using a purely data-driven approach, we develop a hybrid model-based/data-driven method, combining convolutional neural networks with factor graph inference. On the CHB-MIT dataset, we demonstrate that the proposed me...

Full description

Saved in:
Bibliographic Details
Published in2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Vol. 2021; pp. 424 - 429
Main Authors Salafian, Bahareh, Fishel Ben, Eyal, Shlezinger, Nir, de Ribaupierre, Sandrine, Farsad, Nariman
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.11.2021
Subjects
Online AccessGet full text
ISSN2694-0604
DOI10.1109/EMBC46164.2021.9629917

Cover

Abstract We propose a computationally efficient algorithm for seizure detection. Instead of using a purely data-driven approach, we develop a hybrid model-based/data-driven method, combining convolutional neural networks with factor graph inference. On the CHB-MIT dataset, we demonstrate that the proposed method can generalize well in a 6 fold leave-4-patient-out evaluation. Moreover, it is shown that our algorithm can achieve as much as 5% absolute improvement in performance compared to previous data-driven methods. This is achieved while the computational complexity of the proposed technique is a fraction of the complexity of prior work, making it suitable for real-time seizure detection.
AbstractList We propose a computationally efficient algorithm for seizure detection. Instead of using a purely data-driven approach, we develop a hybrid model-based/data-driven method, combining convolutional neural networks with factor graph inference. On the CHB-MIT dataset, we demonstrate that the proposed method can generalize well in a 6 fold leave-4-patient-out evaluation. Moreover, it is shown that our algorithm can achieve as much as 5% absolute improvement in performance compared to previous data-driven methods. This is achieved while the computational complexity of the proposed technique is a fraction of the complexity of prior work, making it suitable for real-time seizure detection.
Author Shlezinger, Nir
Fishel Ben, Eyal
de Ribaupierre, Sandrine
Salafian, Bahareh
Farsad, Nariman
Author_xml – sequence: 1
  givenname: Bahareh
  surname: Salafian
  fullname: Salafian, Bahareh
  email: bsalafia@uwo.ca
  organization: University of Western Ontario,School of Biomedical Engineering,London,N6A 5B9
– sequence: 2
  givenname: Eyal
  surname: Fishel Ben
  fullname: Fishel Ben, Eyal
  email: eyalfish@post.bgu.ac.il
  organization: Ben-Gurion University of the Negev,School of Electrical and Computer Engineering,Be'er Sheva,Israel,84105
– sequence: 3
  givenname: Nir
  surname: Shlezinger
  fullname: Shlezinger, Nir
  email: nirshl@bgu.ac.il
  organization: Ben-Gurion University of the Negev,School of Electrical and Computer Engineering,Be'er Sheva,Israel,84105
– sequence: 4
  givenname: Sandrine
  surname: de Ribaupierre
  fullname: de Ribaupierre, Sandrine
  email: sderibau@uwo.ca
  organization: University of Western Ontario,School of Biomedical Engineering,London,N6A 5B9
– sequence: 5
  givenname: Nariman
  surname: Farsad
  fullname: Farsad, Nariman
  email: nfarsad@ryerson.ca
  organization: Ryerson University,Department of Computer Science,Toronto,M5B 2K3
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34891324$$D View this record in MEDLINE/PubMed
BookMark eNo9UM1OwkAYXI1GfuQJTMi-QPHbH3a7RywFTRAPSuKNbL9-1TVQmrYc9OltAnqYzGEmk5kZsKvyUBJjYwETIcDdp88PiTbC6IkEKSbOSOeEvWADYWUshLDu_ZL1pXE6AgO6x0ZN8wUA0oKzoG9YT-nYCSV1nyVpUQQMVLY8rcKOqjYgf6Xwc6yJz6klbMOh5JsmlB88Wa-jWcgp5wuP7aHmy9pXn80tuy78rqHRmYdss0jfksdo9bJ8SmarKMipayOFxhmfgSqKAi2q2FjEDt6SIcQiA5_7qQOMrccMrerKxnmnOOcItFBDNj7lVsdsT_m2qsPe19_bvzWd4e5kCET0L5__Ub_K_lmC
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1109/EMBC46164.2021.9629917
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 172811179X
9781728111797
EISSN 2694-0604
EndPage 429
ExternalDocumentID 34891324
9629917
Genre orig-research
Journal Article
GroupedDBID 6IE
6IF
6IG
6IH
6IL
6IN
AAWTH
ABLEC
ABQGA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ADZIZ
CGR
CHZPO
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-i259t-3c696ab03fffc7c3867cc67ca7e6eccfb0ada590c87acbc739708decc999e0413
IEDL.DBID RIE
IngestDate Thu Apr 03 07:08:04 EDT 2025
Wed Aug 27 05:11:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i259t-3c696ab03fffc7c3867cc67ca7e6eccfb0ada590c87acbc739708decc999e0413
PMID 34891324
PageCount 6
ParticipantIDs ieee_primary_9629917
pubmed_primary_34891324
PublicationCentury 2000
PublicationDate 2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Annu Int Conf IEEE Eng Med Biol Soc
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002709704
ssib053545923
ssib042469959
Score 2.19349
Snippet We propose a computationally efficient algorithm for seizure detection. Instead of using a purely data-driven approach, we develop a hybrid...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 424
SubjectTerms Algorithms
Brain modeling
Computational efficiency
Computational modeling
Electroencephalography
Epilepsy - diagnosis
Humans
Inference algorithms
Neural networks
Neural Networks, Computer
Real-time systems
Seizures - diagnosis
Title Efficient Epileptic Seizure Detection Using CNN-Aided Factor Graphs
URI https://ieeexplore.ieee.org/document/9629917
https://www.ncbi.nlm.nih.gov/pubmed/34891324
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na8IwFH-oh-FpG7rNfUgOO66aNjVpj1unk4EibII3adME3EDFtRf_-r2krRuyww6FQkho8sL76Hu_3wO4p752lUeZI7Vmjp-4sRNwbSpzDN-TMNzIBig8mfLx3H9dDBY1eDhgYZRStvhM9cyrzeWnG5mbX2X9kKPydEUd6iLgBVaruju-h3HeL56UAUPXoAoNPmyCjYaC-iVI2KVhfzh5inyO4QJGiZ7bKxdvwgnzTe7OYOBtw5Ujh9MantEpTKpPLupNPnt5lvTk_ojN8b97OoP2D8SPzA7G6xxqat2CaGgJJXACGW5RXaA6keRNrfb5TpFnldmyrTWxZQYkmk6dx1WqUjKyPXvIi-G-_mrDfDR8j8ZO2WXBWWHokzlM8pDHCWVaaykkC7iQEp9YKI7y1QmN03gQUhmIWCZSoANDgxRH0LVUFG3gBTTWm7W6AiJRfXLqaaENC52QGDy6YeDJgGml0W_pQMscwHJbEGksy7134LI44MNAJYHrvyfcQNOIrIAE3kIj2-XqDn2DLOlCfTqbdO3V-AYHt7MP
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BTJSTGlDxswePDruta7ejIogKxERIuJGtaxM0AYLbhb_e1w7QEA8elixp2qx9zfvYe7_fA7ihTLvKo74jtfYdlrixE3JtKnMM35Mw3MgGKNzr886QvYyCUQluN1gYpZQtPlMN82pz-elM5uZX2V3EUXm6Ygd2A8ZYUKC11reHeRjp_WJKCXx0DtbBwYdNsdFIULaCCbs0umv1HpqMY8CAcaLnNlbLV2DPZyZ7Z1DwtuXKlstpTU_7AHrrjy4qTj4beZY05HKLz_G_uzqE2g_Ij7xtzNcRlNS0Cs2WpZTACaQ1R4WBCkWSdzVZ5gtFHlVmC7emxBYakGa_79xPUpWStu3aQ54M-_VXDYbt1qDZcVZ9FpwJBj-Z40se8TihvtZaCumHXEiJTywURwnrhMZpHERUhiKWiRTowtAwxRF0LhVFK3gM5elsqk6BSFSgnHpaaMNDJySGj24UejL0tdLoudShag5gPC-oNMarvdfhpDjgzcBaAmd_T7iG_c6g1x13n_uv51Ax4isAghdQzha5ukRPIUuu7AX5BmA_tVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+43rd+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society+%28EMBC%29&rft.atitle=Efficient+Epileptic+Seizure+Detection+Using+CNN-Aided+Factor+Graphs&rft.au=Salafian%2C+Bahareh&rft.au=Fishel+Ben%2C+Eyal&rft.au=Shlezinger%2C+Nir&rft.au=de+Ribaupierre%2C+Sandrine&rft.date=2021-11-01&rft.pub=IEEE&rft.eissn=2694-0604&rft.spage=424&rft.epage=429&rft_id=info:doi/10.1109%2FEMBC46164.2021.9629917&rft_id=info%3Apmid%2F34891324&rft.externalDocID=9629917