Deep Learning Approaches for Spectrum Sensing in Cognitive Radio Networks

The number of network devices continues to rise as we advance towards 6G communication systems. A new range of frequencies is allocated while the earlier resources remain underutilized. Cognitive Radio (CR) enables the dynamic spectrum management of frequencies while detecting the unoccupied bands w...

Full description

Saved in:
Bibliographic Details
Published in2022 25th International Symposium on Wireless Personal Multimedia Communications (WPMC) pp. 480 - 485
Main Authors Syed, Sadaf Nazneen, Lazaridis, Pavlos I., Khan, Faheem A., Ahmed, Qasim Zeeshan, Hafeez, Maryam, Holmes, Violeta, Chochliouros, Ioannis P., Zaharis, Zaharias D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 30.10.2022
Subjects
Online AccessGet full text
ISSN1882-5621
DOI10.1109/WPMC55625.2022.10014805

Cover

Abstract The number of network devices continues to rise as we advance towards 6G communication systems. A new range of frequencies is allocated while the earlier resources remain underutilized. Cognitive Radio (CR) enables the dynamic spectrum management of frequencies while detecting the unoccupied bands with the aid of spectrum sensing. By adopting Deep Learning (DL) for spectrum sensing, the performance of the 6G networks can be made more robust. This paper presents a survey of several DL algorithms such as, Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks and combination of CNNs and LSTMs that have been applied for performing spectrum sensing. The application of DL to spectrum sensing is then demonstrated by considering it as a binary classification problem. An MLP with its hyperparameters optimized by using Grid Search algorithm is proposed to classify a dataset consisting of RadioML 2018.01A and noise samples with high accuracy.
AbstractList The number of network devices continues to rise as we advance towards 6G communication systems. A new range of frequencies is allocated while the earlier resources remain underutilized. Cognitive Radio (CR) enables the dynamic spectrum management of frequencies while detecting the unoccupied bands with the aid of spectrum sensing. By adopting Deep Learning (DL) for spectrum sensing, the performance of the 6G networks can be made more robust. This paper presents a survey of several DL algorithms such as, Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks and combination of CNNs and LSTMs that have been applied for performing spectrum sensing. The application of DL to spectrum sensing is then demonstrated by considering it as a binary classification problem. An MLP with its hyperparameters optimized by using Grid Search algorithm is proposed to classify a dataset consisting of RadioML 2018.01A and noise samples with high accuracy.
Author Lazaridis, Pavlos I.
Hafeez, Maryam
Chochliouros, Ioannis P.
Holmes, Violeta
Ahmed, Qasim Zeeshan
Khan, Faheem A.
Syed, Sadaf Nazneen
Zaharis, Zaharias D.
Author_xml – sequence: 1
  givenname: Sadaf Nazneen
  orcidid: 0000-0002-6966-1275
  surname: Syed
  fullname: Syed, Sadaf Nazneen
  organization: School of Computing and Engineering, University of Huddersfield,Huddersfield,United Kingdom
– sequence: 2
  givenname: Pavlos I.
  orcidid: 0000-0001-5091-2567
  surname: Lazaridis
  fullname: Lazaridis, Pavlos I.
  organization: School of Computing and Engineering, University of Huddersfield,Huddersfield,United Kingdom
– sequence: 3
  givenname: Faheem A.
  orcidid: 0000-0002-7491-8776
  surname: Khan
  fullname: Khan, Faheem A.
  organization: School of Computing and Engineering, University of Huddersfield,Huddersfield,United Kingdom
– sequence: 4
  givenname: Qasim Zeeshan
  orcidid: 0000-0002-3957-5341
  surname: Ahmed
  fullname: Ahmed, Qasim Zeeshan
  organization: School of Computing and Engineering, University of Huddersfield,Huddersfield,United Kingdom
– sequence: 5
  givenname: Maryam
  orcidid: 0000-0002-3735-1627
  surname: Hafeez
  fullname: Hafeez, Maryam
  organization: School of Computing and Engineering, University of Huddersfield,Huddersfield,United Kingdom
– sequence: 6
  givenname: Violeta
  orcidid: 0000-0002-9786-4555
  surname: Holmes
  fullname: Holmes, Violeta
  organization: School of Computing and Engineering, University of Huddersfield,Huddersfield,United Kingdom
– sequence: 7
  givenname: Ioannis P.
  surname: Chochliouros
  fullname: Chochliouros, Ioannis P.
  email: ichochliouros@oteresearch.gr
  organization: Hellenic Telecommunications, Organization S.A. (OTE),Maroussi-Athens,Greece
– sequence: 8
  givenname: Zaharias D.
  surname: Zaharis
  fullname: Zaharis, Zaharias D.
  email: zaharis@auth.gr
  organization: School of Electrical and Computing Engineering, Aristotle University of Thessaloniki,Thessaloniki,Greece
BookMark eNo1j8tOwzAURA0Cibb0D5DwDyT42rmus6zCq1J5iIJYVnZ8UyyoEzkBxN9TBKxmMUdzNGN2ENtIjJ2CyAFEefZ8f1Mhaom5FFLmIAQURuAeG4PWWMwUGNxnIzBGZjsMjti074MTEhWiFMWILc6JOr4km2KIGz7vutTa-oV63rSJrzqqh_S-5SuK_U8fIq_aTQxD-CD-YH1o-S0Nn2167Y_ZYWPfepr-5YQ9XV48VtfZ8u5qUc2XWdhZh8wYV2hEL60Eb53zvqzrRmlA40vntCE0damcnzW60L5UpLCRYDU6cICgJuzkdzcQ0bpLYWvT1_r_uvoGqr5QOQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WPMC55625.2022.10014805
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665473185
9781665473187
EISSN 1882-5621
EndPage 485
ExternalDocumentID 10014805
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIL
ID FETCH-LOGICAL-i253t-88b4655d2a21dabbdd9ccf36158d9bb68e58c93bd7f646d93e35f21a65b1b1513
IEDL.DBID RIE
IngestDate Wed Aug 27 02:11:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i253t-88b4655d2a21dabbdd9ccf36158d9bb68e58c93bd7f646d93e35f21a65b1b1513
ORCID 0000-0002-3735-1627
0000-0002-7491-8776
0000-0001-5091-2567
0000-0002-3957-5341
0000-0002-9786-4555
0000-0002-6966-1275
OpenAccessLink https://doi.org/10.1109/WPMC55625.2022.10014805
PageCount 6
ParticipantIDs ieee_primary_10014805
PublicationCentury 2000
PublicationDate 2022-Oct.-30
PublicationDateYYYYMMDD 2022-10-30
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-30
  day: 30
PublicationDecade 2020
PublicationTitle 2022 25th International Symposium on Wireless Personal Multimedia Communications (WPMC)
PublicationTitleAbbrev WPMC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib025355204
Score 2.2812178
Snippet The number of network devices continues to rise as we advance towards 6G communication systems. A new range of frequencies is allocated while the earlier...
SourceID ieee
SourceType Publisher
StartPage 480
SubjectTerms 6G mobile communication
Artificial Intelligence (AI)
Classification algorithms
Cognitive Radio
Convolutional Neural Networks (CNNs)
Deep learning
Long Short-Term Memory (LSTM) Networks
Multilayer perceptrons
Multilayer Perceptrons (MLPs)
Neural networks
Sensors
Spectrum Sensing
Spectrum Sharing
Wireless sensor networks
Title Deep Learning Approaches for Spectrum Sensing in Cognitive Radio Networks
URI https://ieeexplore.ieee.org/document/10014805
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7akycVK77Jwetud_PYx1GqRYWWohZ7KzuZiRSxLXZ78deb7ENRELwtWQLJTMhMku_7hrFLAUYjRjowlkSgtIUASGGQZISSSKYWPFF4OEpuJ-p-qqcNWb3iwhBRBT6j0H9Wb_m4NBt_VdbzekEq84ql226d1WStdvEI7SKniFSD4YqjvPc8Hva1T_DdMVCIsO39o45KFUYGu2zUDqBGj7yGmxJC8_FLm_HfI9xj3W_GHh9_xaJ9tkWLA3Z3TbTijYLqC79q5MNpzV2myn3l-fJ988YfPYbd_Z8veL8FE_GHAudLPqpB4usumwxunvq3QVM6IZg7Q5RBloEXRkNRiBgLAMTcGCtd-pJhDuA8oTOTS8DUJirBXJLUVsRFoiEGlwTIQ9ZZLBd0xDjl0hYFKjSpVRhZMFgIzFMTAyag5THrejvMVrU6xqw1wckf7adsx7uj2v-jM9ZxM6VzF9hLuKgc-gkdlKUB
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA4yD3pSceJvc_Dark2arj3KdGy6laEb7jb68l5kiNtw28W_3qRrFQXBW0gopO8Vvpf0-77H2LUArRAD5WlDwouUAQ8oQi9OCCWRbBpwQuF-FndG0f1YjUuxeqGFIaKCfEa-Gxb_8nGu1-6qrOH8gqLEOZZuK3usSDZyrerzEcpipwiiksUVBmnjedBvKVfi24OgEH71_I9OKgWQtPdYVm1hwx959dcr8PXHL3fGf-9xn9W_NXt88IVGB2yLZoese0u04KWH6gu_KQ3Eacltrcpd7_nV-_qNPzkWu12fznirohPxxxync55taOLLOhu174atjlc2T_CmNhArL0nAWaOhyEWIOQBiqrWRtoBJMAWwuVCJTiVg08RRjKkkqYwI81hBCLYMkEesNpvP6JhxSqXJc4xQN02EgQGNucC0qUPAGJQ8YXUXh8li448xqUJw-sf8FdvpDPu9Sa-bPZyxXZeaAg2Cc1azb00XFuZXcFkk9xP-CKhU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2022+25th+International+Symposium+on+Wireless+Personal+Multimedia+Communications+%28WPMC%29&rft.atitle=Deep+Learning+Approaches+for+Spectrum+Sensing+in+Cognitive+Radio+Networks&rft.au=Syed%2C+Sadaf+Nazneen&rft.au=Lazaridis%2C+Pavlos+I.&rft.au=Khan%2C+Faheem+A.&rft.au=Ahmed%2C+Qasim+Zeeshan&rft.date=2022-10-30&rft.pub=IEEE&rft.eissn=1882-5621&rft.spage=480&rft.epage=485&rft_id=info:doi/10.1109%2FWPMC55625.2022.10014805&rft.externalDocID=10014805