Deep Learning Approaches for Spectrum Sensing in Cognitive Radio Networks
The number of network devices continues to rise as we advance towards 6G communication systems. A new range of frequencies is allocated while the earlier resources remain underutilized. Cognitive Radio (CR) enables the dynamic spectrum management of frequencies while detecting the unoccupied bands w...
Saved in:
Published in | 2022 25th International Symposium on Wireless Personal Multimedia Communications (WPMC) pp. 480 - 485 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
30.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1882-5621 |
DOI | 10.1109/WPMC55625.2022.10014805 |
Cover
Abstract | The number of network devices continues to rise as we advance towards 6G communication systems. A new range of frequencies is allocated while the earlier resources remain underutilized. Cognitive Radio (CR) enables the dynamic spectrum management of frequencies while detecting the unoccupied bands with the aid of spectrum sensing. By adopting Deep Learning (DL) for spectrum sensing, the performance of the 6G networks can be made more robust. This paper presents a survey of several DL algorithms such as, Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks and combination of CNNs and LSTMs that have been applied for performing spectrum sensing. The application of DL to spectrum sensing is then demonstrated by considering it as a binary classification problem. An MLP with its hyperparameters optimized by using Grid Search algorithm is proposed to classify a dataset consisting of RadioML 2018.01A and noise samples with high accuracy. |
---|---|
AbstractList | The number of network devices continues to rise as we advance towards 6G communication systems. A new range of frequencies is allocated while the earlier resources remain underutilized. Cognitive Radio (CR) enables the dynamic spectrum management of frequencies while detecting the unoccupied bands with the aid of spectrum sensing. By adopting Deep Learning (DL) for spectrum sensing, the performance of the 6G networks can be made more robust. This paper presents a survey of several DL algorithms such as, Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks and combination of CNNs and LSTMs that have been applied for performing spectrum sensing. The application of DL to spectrum sensing is then demonstrated by considering it as a binary classification problem. An MLP with its hyperparameters optimized by using Grid Search algorithm is proposed to classify a dataset consisting of RadioML 2018.01A and noise samples with high accuracy. |
Author | Lazaridis, Pavlos I. Hafeez, Maryam Chochliouros, Ioannis P. Holmes, Violeta Ahmed, Qasim Zeeshan Khan, Faheem A. Syed, Sadaf Nazneen Zaharis, Zaharias D. |
Author_xml | – sequence: 1 givenname: Sadaf Nazneen orcidid: 0000-0002-6966-1275 surname: Syed fullname: Syed, Sadaf Nazneen organization: School of Computing and Engineering, University of Huddersfield,Huddersfield,United Kingdom – sequence: 2 givenname: Pavlos I. orcidid: 0000-0001-5091-2567 surname: Lazaridis fullname: Lazaridis, Pavlos I. organization: School of Computing and Engineering, University of Huddersfield,Huddersfield,United Kingdom – sequence: 3 givenname: Faheem A. orcidid: 0000-0002-7491-8776 surname: Khan fullname: Khan, Faheem A. organization: School of Computing and Engineering, University of Huddersfield,Huddersfield,United Kingdom – sequence: 4 givenname: Qasim Zeeshan orcidid: 0000-0002-3957-5341 surname: Ahmed fullname: Ahmed, Qasim Zeeshan organization: School of Computing and Engineering, University of Huddersfield,Huddersfield,United Kingdom – sequence: 5 givenname: Maryam orcidid: 0000-0002-3735-1627 surname: Hafeez fullname: Hafeez, Maryam organization: School of Computing and Engineering, University of Huddersfield,Huddersfield,United Kingdom – sequence: 6 givenname: Violeta orcidid: 0000-0002-9786-4555 surname: Holmes fullname: Holmes, Violeta organization: School of Computing and Engineering, University of Huddersfield,Huddersfield,United Kingdom – sequence: 7 givenname: Ioannis P. surname: Chochliouros fullname: Chochliouros, Ioannis P. email: ichochliouros@oteresearch.gr organization: Hellenic Telecommunications, Organization S.A. (OTE),Maroussi-Athens,Greece – sequence: 8 givenname: Zaharias D. surname: Zaharis fullname: Zaharis, Zaharias D. email: zaharis@auth.gr organization: School of Electrical and Computing Engineering, Aristotle University of Thessaloniki,Thessaloniki,Greece |
BookMark | eNo1j8tOwzAURA0Cibb0D5DwDyT42rmus6zCq1J5iIJYVnZ8UyyoEzkBxN9TBKxmMUdzNGN2ENtIjJ2CyAFEefZ8f1Mhaom5FFLmIAQURuAeG4PWWMwUGNxnIzBGZjsMjti074MTEhWiFMWILc6JOr4km2KIGz7vutTa-oV63rSJrzqqh_S-5SuK_U8fIq_aTQxD-CD-YH1o-S0Nn2167Y_ZYWPfepr-5YQ9XV48VtfZ8u5qUc2XWdhZh8wYV2hEL60Eb53zvqzrRmlA40vntCE0damcnzW60L5UpLCRYDU6cICgJuzkdzcQ0bpLYWvT1_r_uvoGqr5QOQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/WPMC55625.2022.10014805 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1665473185 9781665473187 |
EISSN | 1882-5621 |
EndPage | 485 |
ExternalDocumentID | 10014805 |
Genre | orig-research |
GroupedDBID | 6IE 6IL ALMA_UNASSIGNED_HOLDINGS CBEJK M43 RIE RIL |
ID | FETCH-LOGICAL-i253t-88b4655d2a21dabbdd9ccf36158d9bb68e58c93bd7f646d93e35f21a65b1b1513 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:11:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i253t-88b4655d2a21dabbdd9ccf36158d9bb68e58c93bd7f646d93e35f21a65b1b1513 |
ORCID | 0000-0002-3735-1627 0000-0002-7491-8776 0000-0001-5091-2567 0000-0002-3957-5341 0000-0002-9786-4555 0000-0002-6966-1275 |
OpenAccessLink | https://doi.org/10.1109/WPMC55625.2022.10014805 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10014805 |
PublicationCentury | 2000 |
PublicationDate | 2022-Oct.-30 |
PublicationDateYYYYMMDD | 2022-10-30 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | 2022 25th International Symposium on Wireless Personal Multimedia Communications (WPMC) |
PublicationTitleAbbrev | WPMC |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib025355204 |
Score | 2.2812178 |
Snippet | The number of network devices continues to rise as we advance towards 6G communication systems. A new range of frequencies is allocated while the earlier... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 480 |
SubjectTerms | 6G mobile communication Artificial Intelligence (AI) Classification algorithms Cognitive Radio Convolutional Neural Networks (CNNs) Deep learning Long Short-Term Memory (LSTM) Networks Multilayer perceptrons Multilayer Perceptrons (MLPs) Neural networks Sensors Spectrum Sensing Spectrum Sharing Wireless sensor networks |
Title | Deep Learning Approaches for Spectrum Sensing in Cognitive Radio Networks |
URI | https://ieeexplore.ieee.org/document/10014805 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7akycVK77Jwetud_PYx1GqRYWWohZ7KzuZiRSxLXZ78deb7ENRELwtWQLJTMhMku_7hrFLAUYjRjowlkSgtIUASGGQZISSSKYWPFF4OEpuJ-p-qqcNWb3iwhBRBT6j0H9Wb_m4NBt_VdbzekEq84ql226d1WStdvEI7SKniFSD4YqjvPc8Hva1T_DdMVCIsO39o45KFUYGu2zUDqBGj7yGmxJC8_FLm_HfI9xj3W_GHh9_xaJ9tkWLA3Z3TbTijYLqC79q5MNpzV2myn3l-fJ988YfPYbd_Z8veL8FE_GHAudLPqpB4usumwxunvq3QVM6IZg7Q5RBloEXRkNRiBgLAMTcGCtd-pJhDuA8oTOTS8DUJirBXJLUVsRFoiEGlwTIQ9ZZLBd0xDjl0hYFKjSpVRhZMFgIzFMTAyag5THrejvMVrU6xqw1wckf7adsx7uj2v-jM9ZxM6VzF9hLuKgc-gkdlKUB |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA4yD3pSceJvc_Dark2arj3KdGy6laEb7jb68l5kiNtw28W_3qRrFQXBW0gopO8Vvpf0-77H2LUArRAD5WlDwouUAQ8oQi9OCCWRbBpwQuF-FndG0f1YjUuxeqGFIaKCfEa-Gxb_8nGu1-6qrOH8gqLEOZZuK3usSDZyrerzEcpipwiiksUVBmnjedBvKVfi24OgEH71_I9OKgWQtPdYVm1hwx959dcr8PXHL3fGf-9xn9W_NXt88IVGB2yLZoese0u04KWH6gu_KQ3Eacltrcpd7_nV-_qNPzkWu12fznirohPxxxync55taOLLOhu174atjlc2T_CmNhArL0nAWaOhyEWIOQBiqrWRtoBJMAWwuVCJTiVg08RRjKkkqYwI81hBCLYMkEesNpvP6JhxSqXJc4xQN02EgQGNucC0qUPAGJQ8YXUXh8li448xqUJw-sf8FdvpDPu9Sa-bPZyxXZeaAg2Cc1azb00XFuZXcFkk9xP-CKhU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2022+25th+International+Symposium+on+Wireless+Personal+Multimedia+Communications+%28WPMC%29&rft.atitle=Deep+Learning+Approaches+for+Spectrum+Sensing+in+Cognitive+Radio+Networks&rft.au=Syed%2C+Sadaf+Nazneen&rft.au=Lazaridis%2C+Pavlos+I.&rft.au=Khan%2C+Faheem+A.&rft.au=Ahmed%2C+Qasim+Zeeshan&rft.date=2022-10-30&rft.pub=IEEE&rft.eissn=1882-5621&rft.spage=480&rft.epage=485&rft_id=info:doi/10.1109%2FWPMC55625.2022.10014805&rft.externalDocID=10014805 |