Comparison of machine learning models applied on anonymized data with different techniques
Anonymization techniques based on obfuscating the quasi-identifiers by means of value generalization hierarchies are widely used to achieve preset levels of privacy. To prevent different types of attacks against database privacy it is necessary to apply several anonymization techniques beyond the cl...
Saved in:
Published in | 2023 IEEE International Conference on Cyber Security and Resilience (CSR) pp. 618 - 623 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
31.07.2023
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/CSR57506.2023.10224917 |
Cover
Abstract | Anonymization techniques based on obfuscating the quasi-identifiers by means of value generalization hierarchies are widely used to achieve preset levels of privacy. To prevent different types of attacks against database privacy it is necessary to apply several anonymization techniques beyond the classical k-anonymity or l-diversity. However, the application of these methods is directly connected to a reduction of their utility in prediction and decision making tasks. In this work we study four classical machine learning methods currently used for classification purposes in order to analyze the results as a function of the anonymization techniques applied and the parameters selected for each of them. The performance of these models is studied when varying the value of k for k-anonymity and additional tools such as {\ell}-diversity , t-closeness and {\delta}-disclosure\ privacy are also deployed on the well-known adult dataset. |
---|---|
AbstractList | Anonymization techniques based on obfuscating the quasi-identifiers by means of value generalization hierarchies are widely used to achieve preset levels of privacy. To prevent different types of attacks against database privacy it is necessary to apply several anonymization techniques beyond the classical k-anonymity or l-diversity. However, the application of these methods is directly connected to a reduction of their utility in prediction and decision making tasks. In this work we study four classical machine learning methods currently used for classification purposes in order to analyze the results as a function of the anonymization techniques applied and the parameters selected for each of them. The performance of these models is studied when varying the value of k for k-anonymity and additional tools such as {\ell}-diversity , t-closeness and {\delta}-disclosure\ privacy are also deployed on the well-known adult dataset. |
Author | Diaz, Judith Sainz-Pardo Garcia, Alvaro Lopez |
Author_xml | – sequence: 1 givenname: Judith Sainz-Pardo surname: Diaz fullname: Diaz, Judith Sainz-Pardo email: sainzpardo@ifca.unican.es organization: Instituto de Física de Cantabria (IFCA), CSIC-UC,Santander,Spain,39005 – sequence: 2 givenname: Alvaro Lopez surname: Garcia fullname: Garcia, Alvaro Lopez email: aloga@ifca.unican.es organization: Instituto de Física de Cantabria (IFCA), CSIC-UC,Santander,Spain,39005 |
BookMark | eNo1j81KxDAUhSPoQsd5A5G8QGtu0iTNUop_MCDorNwMt82NDbRpbSsyPr0FdXU48HE-zgU7TUMixq5B5ADC3VSvL9pqYXIppMpBSFk4sCds66wrlRYKwAp3zt6qoR9xivOQ-BB4j00bE_GOcEoxvfN-8NTNHMexi-T5SuFqOvbxe20eF-RfcWm5jyHQRGnhCzVtih-fNF-ys4DdTNu_3LD9_d2-esx2zw9P1e0ui1LLJcMgZSiEKYUMVJcgnXHWNMZrgw1I48kIQAW11HVD5AJ4hQ26QllA8mrDrn5nIxEdxin2OB0P_4_VD3VcUh4 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CSR57506.2023.10224917 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350311709 |
EndPage | 623 |
ExternalDocumentID | 10224917 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i252t-af22f406802feb81296976c6d56ac126de601a31b25bcee9f1d3aca94371aed3 |
IEDL.DBID | RIE |
IngestDate | Thu Jan 18 11:14:25 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i252t-af22f406802feb81296976c6d56ac126de601a31b25bcee9f1d3aca94371aed3 |
OpenAccessLink | https://doi.org/10.1109/CSR57506.2023.10224917 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10224917 |
PublicationCentury | 2000 |
PublicationDate | 2023-July-31 |
PublicationDateYYYYMMDD | 2023-07-31 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-July-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | 2023 IEEE International Conference on Cyber Security and Resilience (CSR) |
PublicationTitleAbbrev | CSR |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9014192 |
Snippet | Anonymization techniques based on obfuscating the quasi-identifiers by means of value generalization hierarchies are widely used to achieve preset levels of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 618 |
SubjectTerms | Data models Data privacy Decision making Information filtering Machine learning Privacy |
Title | Comparison of machine learning models applied on anonymized data with different techniques |
URI | https://ieeexplore.ieee.org/document/10224917 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kycVJ36Tg9d0bdK0zXk4huAQnTC8jOTlRYboxHWX_fUmaTtRELy1JZBHcngf_X0Qcg1lZlUlgWlRSpar1DJVGc2C9FeRAnAX1fXvJsX4Kb-dyVlLVo9cGESM4DNMwmP8l2-XsA6jskGUP_P9xS7ZLUvVkLVa1m-WqsHw8cEXH2kAHnCRdIt_2KbErDHaJ5NuvwYs8pqsa5PA5pcU478DOiD9b4Ievd-mnkOyg-9H5Hm49RSkS0ffIkwSaesL8UKj6c2K6qbupH6Vjr3_YuPfAlKUhqEs7SxTarrVd131yXR0Mx2OWWudwBZc8pppx7nLg68Gd2h8EleFrzugsLLQkPHCom_EtMgMl8bHqlxmhQatclFmGq04Jj0fAZ4Qanx9oXPt2wpQuQRUInXOVJUDiWBKd0r64VzmH404xrw7krM_vp-TvXA9zXj0gvTqzzVe-rxem6t4n1_2UaXx |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7oPOhJxYm_zcFrujZp2uY8HFO3ITpheBn5KUN04rrL_nqTtJ0oCN7aEsgjObz3vX7v-wCuVJ5oXjCFBc0ZTnmsMS-kwF76K4uVIjao6w9HWf8pvZ2wST2sHmZhjDGBfGYi_xj-5eu5WvpWWSfInzl8sQlbzMGKvBrXqud-k5h3uo8PrvyIPfWA0KhZ_sM4JeSN3i6Mmh0rushrtCxlpFa_xBj_HdIetL9H9ND9Ovnsw4Z5P4Dn7tpVEM0tegtESYNqZ4gXFGxvFkhUlSdyq0RA_7OVe_NcUeTbsqgxTSnRWuF10YZx73rc7ePaPAHPCCMlFpYQm3pnDWKNdGmcZ67yUJlmmVAJybRxUEzQRBImXazcJpoKJXhK80QYTQ-h5SIwR4CkqzBEKhywUDxlynAaWyuLwipmlMztMbT9uUw_KnmMaXMkJ398v4Tt_ng4mA5uRnensOOvqmqWnkGr_Fyac5flS3kR7vYL2kypQg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Cyber+Security+and+Resilience+%28CSR%29&rft.atitle=Comparison+of+machine+learning+models+applied+on+anonymized+data+with+different+techniques&rft.au=Diaz%2C+Judith+Sainz-Pardo&rft.au=Garcia%2C+Alvaro+Lopez&rft.date=2023-07-31&rft.pub=IEEE&rft.spage=618&rft.epage=623&rft_id=info:doi/10.1109%2FCSR57506.2023.10224917&rft.externalDocID=10224917 |