Comparison of machine learning models applied on anonymized data with different techniques

Anonymization techniques based on obfuscating the quasi-identifiers by means of value generalization hierarchies are widely used to achieve preset levels of privacy. To prevent different types of attacks against database privacy it is necessary to apply several anonymization techniques beyond the cl...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE International Conference on Cyber Security and Resilience (CSR) pp. 618 - 623
Main Authors Diaz, Judith Sainz-Pardo, Garcia, Alvaro Lopez
Format Conference Proceeding
LanguageEnglish
Published IEEE 31.07.2023
Subjects
Online AccessGet full text
DOI10.1109/CSR57506.2023.10224917

Cover

Abstract Anonymization techniques based on obfuscating the quasi-identifiers by means of value generalization hierarchies are widely used to achieve preset levels of privacy. To prevent different types of attacks against database privacy it is necessary to apply several anonymization techniques beyond the classical k-anonymity or l-diversity. However, the application of these methods is directly connected to a reduction of their utility in prediction and decision making tasks. In this work we study four classical machine learning methods currently used for classification purposes in order to analyze the results as a function of the anonymization techniques applied and the parameters selected for each of them. The performance of these models is studied when varying the value of k for k-anonymity and additional tools such as {\ell}-diversity , t-closeness and {\delta}-disclosure\ privacy are also deployed on the well-known adult dataset.
AbstractList Anonymization techniques based on obfuscating the quasi-identifiers by means of value generalization hierarchies are widely used to achieve preset levels of privacy. To prevent different types of attacks against database privacy it is necessary to apply several anonymization techniques beyond the classical k-anonymity or l-diversity. However, the application of these methods is directly connected to a reduction of their utility in prediction and decision making tasks. In this work we study four classical machine learning methods currently used for classification purposes in order to analyze the results as a function of the anonymization techniques applied and the parameters selected for each of them. The performance of these models is studied when varying the value of k for k-anonymity and additional tools such as {\ell}-diversity , t-closeness and {\delta}-disclosure\ privacy are also deployed on the well-known adult dataset.
Author Diaz, Judith Sainz-Pardo
Garcia, Alvaro Lopez
Author_xml – sequence: 1
  givenname: Judith Sainz-Pardo
  surname: Diaz
  fullname: Diaz, Judith Sainz-Pardo
  email: sainzpardo@ifca.unican.es
  organization: Instituto de Física de Cantabria (IFCA), CSIC-UC,Santander,Spain,39005
– sequence: 2
  givenname: Alvaro Lopez
  surname: Garcia
  fullname: Garcia, Alvaro Lopez
  email: aloga@ifca.unican.es
  organization: Instituto de Física de Cantabria (IFCA), CSIC-UC,Santander,Spain,39005
BookMark eNo1j81KxDAUhSPoQsd5A5G8QGtu0iTNUop_MCDorNwMt82NDbRpbSsyPr0FdXU48HE-zgU7TUMixq5B5ADC3VSvL9pqYXIppMpBSFk4sCds66wrlRYKwAp3zt6qoR9xivOQ-BB4j00bE_GOcEoxvfN-8NTNHMexi-T5SuFqOvbxe20eF-RfcWm5jyHQRGnhCzVtih-fNF-ys4DdTNu_3LD9_d2-esx2zw9P1e0ui1LLJcMgZSiEKYUMVJcgnXHWNMZrgw1I48kIQAW11HVD5AJ4hQ26QllA8mrDrn5nIxEdxin2OB0P_4_VD3VcUh4
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CSR57506.2023.10224917
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350311709
EndPage 623
ExternalDocumentID 10224917
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i252t-af22f406802feb81296976c6d56ac126de601a31b25bcee9f1d3aca94371aed3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:25 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i252t-af22f406802feb81296976c6d56ac126de601a31b25bcee9f1d3aca94371aed3
OpenAccessLink https://doi.org/10.1109/CSR57506.2023.10224917
PageCount 6
ParticipantIDs ieee_primary_10224917
PublicationCentury 2000
PublicationDate 2023-July-31
PublicationDateYYYYMMDD 2023-07-31
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-31
  day: 31
PublicationDecade 2020
PublicationTitle 2023 IEEE International Conference on Cyber Security and Resilience (CSR)
PublicationTitleAbbrev CSR
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9014192
Snippet Anonymization techniques based on obfuscating the quasi-identifiers by means of value generalization hierarchies are widely used to achieve preset levels of...
SourceID ieee
SourceType Publisher
StartPage 618
SubjectTerms Data models
Data privacy
Decision making
Information filtering
Machine learning
Privacy
Title Comparison of machine learning models applied on anonymized data with different techniques
URI https://ieeexplore.ieee.org/document/10224917
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kycVJ36Tg9d0bdK0zXk4huAQnTC8jOTlRYboxHWX_fUmaTtRELy1JZBHcngf_X0Qcg1lZlUlgWlRSpar1DJVGc2C9FeRAnAX1fXvJsX4Kb-dyVlLVo9cGESM4DNMwmP8l2-XsA6jskGUP_P9xS7ZLUvVkLVa1m-WqsHw8cEXH2kAHnCRdIt_2KbErDHaJ5NuvwYs8pqsa5PA5pcU478DOiD9b4Ievd-mnkOyg-9H5Hm49RSkS0ffIkwSaesL8UKj6c2K6qbupH6Vjr3_YuPfAlKUhqEs7SxTarrVd131yXR0Mx2OWWudwBZc8pppx7nLg68Gd2h8EleFrzugsLLQkPHCom_EtMgMl8bHqlxmhQatclFmGq04Jj0fAZ4Qanx9oXPt2wpQuQRUInXOVJUDiWBKd0r64VzmH404xrw7krM_vp-TvXA9zXj0gvTqzzVe-rxem6t4n1_2UaXx
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7oPOhJxYm_zcFrujZp2uY8HFO3ITpheBn5KUN04rrL_nqTtJ0oCN7aEsgjObz3vX7v-wCuVJ5oXjCFBc0ZTnmsMS-kwF76K4uVIjao6w9HWf8pvZ2wST2sHmZhjDGBfGYi_xj-5eu5WvpWWSfInzl8sQlbzMGKvBrXqud-k5h3uo8PrvyIPfWA0KhZ_sM4JeSN3i6Mmh0rushrtCxlpFa_xBj_HdIetL9H9ND9Ovnsw4Z5P4Dn7tpVEM0tegtESYNqZ4gXFGxvFkhUlSdyq0RA_7OVe_NcUeTbsqgxTSnRWuF10YZx73rc7ePaPAHPCCMlFpYQm3pnDWKNdGmcZ67yUJlmmVAJybRxUEzQRBImXazcJpoKJXhK80QYTQ-h5SIwR4CkqzBEKhywUDxlynAaWyuLwipmlMztMbT9uUw_KnmMaXMkJ398v4Tt_ng4mA5uRnensOOvqmqWnkGr_Fyac5flS3kR7vYL2kypQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Cyber+Security+and+Resilience+%28CSR%29&rft.atitle=Comparison+of+machine+learning+models+applied+on+anonymized+data+with+different+techniques&rft.au=Diaz%2C+Judith+Sainz-Pardo&rft.au=Garcia%2C+Alvaro+Lopez&rft.date=2023-07-31&rft.pub=IEEE&rft.spage=618&rft.epage=623&rft_id=info:doi/10.1109%2FCSR57506.2023.10224917&rft.externalDocID=10224917