Hunting IoT Cyberattacks With AI - Powered Intrusion Detection

The rapid progression of the Internet of Things allows the seamless integration of cyber and physical environments, thus creating an overall hyper-connected ecosystem. It is evident that this new reality provides several capabilities and benefits, such as real-time decision-making and increased effi...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE International Conference on Cyber Security and Resilience (CSR) pp. 142 - 147
Main Authors Grigoriadou, Sevasti, Radoglou-Grammatikis, Panagiotis, Sarigiannidis, Panagiotis, Makris, Ioannis, Lagkas, Thomas, Argyriou, Vasileios, Lytos, Anastasios, Fountoukidis, Eleftherios
Format Conference Proceeding
LanguageEnglish
Published IEEE 31.07.2023
Subjects
Online AccessGet full text
DOI10.1109/CSR57506.2023.10224981

Cover

Abstract The rapid progression of the Internet of Things allows the seamless integration of cyber and physical environments, thus creating an overall hyper-connected ecosystem. It is evident that this new reality provides several capabilities and benefits, such as real-time decision-making and increased efficiency and productivity. However, it also raises crucial cybersecurity issues that can lead to disastrous consequences due to the vulnerable nature of the Internet model and the new cyber risks originating from the multiple and heterogeneous technologies involved in the loT. Therefore, intrusion detection and prevention are valuable and necessary mechanisms in the arsenal of the loT security. In light of the aforementioned remarks, in this paper, we introduce an Artificial Intelligence (AI)-powered Intrusion Detection and Prevention System (IDPS) that can detect and mitigate potential loT cyberattacks. For the detection process, Deep Neural Networks (DNNs) are used, while Software Defined Networking (SDN) and Q-Learning are combined for the mitigation procedure. The evaluation analysis demonstrates the detection efficiency of the proposed IDPS, while Q- Learning converges successfully in terms of selecting the appropriate mitigation action.
AbstractList The rapid progression of the Internet of Things allows the seamless integration of cyber and physical environments, thus creating an overall hyper-connected ecosystem. It is evident that this new reality provides several capabilities and benefits, such as real-time decision-making and increased efficiency and productivity. However, it also raises crucial cybersecurity issues that can lead to disastrous consequences due to the vulnerable nature of the Internet model and the new cyber risks originating from the multiple and heterogeneous technologies involved in the loT. Therefore, intrusion detection and prevention are valuable and necessary mechanisms in the arsenal of the loT security. In light of the aforementioned remarks, in this paper, we introduce an Artificial Intelligence (AI)-powered Intrusion Detection and Prevention System (IDPS) that can detect and mitigate potential loT cyberattacks. For the detection process, Deep Neural Networks (DNNs) are used, while Software Defined Networking (SDN) and Q-Learning are combined for the mitigation procedure. The evaluation analysis demonstrates the detection efficiency of the proposed IDPS, while Q- Learning converges successfully in terms of selecting the appropriate mitigation action.
Author Grigoriadou, Sevasti
Fountoukidis, Eleftherios
Radoglou-Grammatikis, Panagiotis
Argyriou, Vasileios
Sarigiannidis, Panagiotis
Lytos, Anastasios
Makris, Ioannis
Lagkas, Thomas
Author_xml – sequence: 1
  givenname: Sevasti
  surname: Grigoriadou
  fullname: Grigoriadou, Sevasti
  email: sevinagrigoriadou@gmail.com
  organization: University of Western Macedonia,Kozani,Greece
– sequence: 2
  givenname: Panagiotis
  surname: Radoglou-Grammatikis
  fullname: Radoglou-Grammatikis, Panagiotis
  email: pradoglou@uowm.gr
  organization: University of Western Macedonia,Kozani,Greece
– sequence: 3
  givenname: Panagiotis
  surname: Sarigiannidis
  fullname: Sarigiannidis, Panagiotis
  email: psarigiannidis@uowm.gr
  organization: University of Western Macedonia,Kozani,Greece
– sequence: 4
  givenname: Ioannis
  surname: Makris
  fullname: Makris, Ioannis
  email: imakris@metamind.gr
  organization: MetaMind Innovations P.C.,Kozani,Greece
– sequence: 5
  givenname: Thomas
  surname: Lagkas
  fullname: Lagkas, Thomas
  email: tlagkas@cs.ihu.gr
  organization: International Hellenic University,Kavala,Greece
– sequence: 6
  givenname: Vasileios
  surname: Argyriou
  fullname: Argyriou, Vasileios
  email: vasileios.argyriou@kingston.ac.uk
  organization: Kingston University London,London,UK
– sequence: 7
  givenname: Anastasios
  surname: Lytos
  fullname: Lytos, Anastasios
  email: alytos@sidroco.com
  organization: Sidroco Holdings Ltd,Nicosia,Cyprus
– sequence: 8
  givenname: Eleftherios
  surname: Fountoukidis
  fullname: Fountoukidis, Eleftherios
  email: efountoukidis@sidroco.com
  organization: Sidroco Holdings Ltd,Nicosia,Cyprus
BookMark eNo1j8tKAzEUQCPoQmv_QCQ_MGPuTZNMNkIZHx0oKFpxWfK4o0HNyEyK9O8V1NU5qwPnhB3mIRNj5yBqAGEv2scHZZTQNQqUNQjEhW3ggM2tsY1UQgIYYY_Z5WqXS8ovvBs2vN17Gl0pLrxN_DmVV77seMXvhy8aKfIul3E3pSHzKyoUyo-dsqPevU80_-OMPd1cb9pVtb677drlukqosFQ22hCkkUReKSSIGBoHKkYvhe_JS73QFILR3vZaonAaLAQtLKJR0fZyxs5-u4mItp9j-nDjfvu_Jb8BClRGbw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CSR57506.2023.10224981
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350311709
EndPage 147
ExternalDocumentID 10224981
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i252t-9d9cc373eeb552e1d2c8a15ddb30bfeb3646ecc76b9f6320a6191c6092275d9f3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:25 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i252t-9d9cc373eeb552e1d2c8a15ddb30bfeb3646ecc76b9f6320a6191c6092275d9f3
OpenAccessLink https://doi.org/10.1109/CSR57506.2023.10224981
PageCount 6
ParticipantIDs ieee_primary_10224981
PublicationCentury 2000
PublicationDate 2023-July-31
PublicationDateYYYYMMDD 2023-07-31
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-31
  day: 31
PublicationDecade 2020
PublicationTitle 2023 IEEE International Conference on Cyber Security and Resilience (CSR)
PublicationTitleAbbrev CSR
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9014169
Snippet The rapid progression of the Internet of Things allows the seamless integration of cyber and physical environments, thus creating an overall hyper-connected...
SourceID ieee
SourceType Publisher
StartPage 142
SubjectTerms Computer crime
Decision making
Intrusion detection
Productivity
Q-learning
Real-time systems
Software defined networking
Title Hunting IoT Cyberattacks With AI - Powered Intrusion Detection
URI https://ieeexplore.ieee.org/document/10224981
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NS8MwFMCD7uRJxYnf5OA1XZs0aXMRpDo6wTF0w91Gk7zgENoduoP-9SbppigI3kIIJI8X8vKS93sPoWst3EYBagnwRJC0YuDOQZMSK6w3OM4Pqjw7_DgW5Sx9mPP5BlYPLAwAhOAziHwz_OWbRq_9U9kgpD-THrTezTLZwVob6jeJ5aB4fnKXj9gHHlAWbQf_KJsSrMZwH42383XBIm_RulWR_viVivHfCzpA_W9AD0--TM8h2oH6CN2UXdkHPGqmuHhXPl1y6xF6_LJsX_HtCBM88UXRwOBR7WELpxN8B22Ixqr7aDa8nxYl2ZRHIEvKaUukkVqzjAEozikkhuq8SrgxisXKOidZpMIpKBNKWsFoXDlfKdEilpRm3EjLjlGvbmo4QTjXwogE8kpbluaW5ZVwjitQKq2ynPFT1PfCL1ZdBozFVu6zP_rP0Z7XQfcGeoF6TiS4dMa7VVdBaZ9Yo5nU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMeDzIOeVJz42xy8tmuTJm0ugkxHq9sYuuFuo0lecAw6D91B_3qTdFMUBG-hBNLHC3n9pu_zHkLXituNAsQEwGIeJCUFew7qJDDcuIBjdVDp2OHBkOeT5GHKpmtY3bMwAOCTzyB0Q_8vXy_Vyl2VdXz5M-FA621mZUXa4Fpr7jeORKf7_GQ_PyKXekBouJn-o3GKjxu9PTTcrNikiyzCVS1D9fGrGOO_X2kftb8RPTz6Cj4HaAuqQ3STN40fcLEc4-67dAWTawfR45d5_YpvCxzgkWuLBhoXlcMtrFfwHdQ-H6tqo0nvftzNg3WDhGBOGKkDoYVSNKUAkjECsSYqK2OmtaSRNFYm84RbF6VcCsMpiUqrlmLFI0FIyrQw9Ai1qmUFxwhnimseQ1YqQ5PM0KzkVroCIcJIwyg7QW1n_OytqYEx29h9-sfzK7STjwf9Wb8YPp6hXeeP5kb0HLWseXBhQ3ktL70DPwGgjp0l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Cyber+Security+and+Resilience+%28CSR%29&rft.atitle=Hunting+IoT+Cyberattacks+With+AI+-+Powered+Intrusion+Detection&rft.au=Grigoriadou%2C+Sevasti&rft.au=Radoglou-Grammatikis%2C+Panagiotis&rft.au=Sarigiannidis%2C+Panagiotis&rft.au=Makris%2C+Ioannis&rft.date=2023-07-31&rft.pub=IEEE&rft.spage=142&rft.epage=147&rft_id=info:doi/10.1109%2FCSR57506.2023.10224981&rft.externalDocID=10224981