Enhancing Automated COVID-19 Chest X-ray Diagnosis by Image-to-Image GAN Translation
The severe pneumonia induced by the infection of the SARS-CoV-2 virus causes massive death in the ongoing COVID-19 pandemic. The early detection of the SARS-CoV-2 induced pneumonia relies on the unique patterns of the chest XRay images. Deep learning is a data-greedy algorithm to achieve high perfor...
        Saved in:
      
    
          | Published in | 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) pp. 1068 - 1071 | 
|---|---|
| Main Authors | , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        16.12.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/BIBM49941.2020.9313466 | 
Cover
| Summary: | The severe pneumonia induced by the infection of the SARS-CoV-2 virus causes massive death in the ongoing COVID-19 pandemic. The early detection of the SARS-CoV-2 induced pneumonia relies on the unique patterns of the chest XRay images. Deep learning is a data-greedy algorithm to achieve high performance when adequately trained. A common challenge for machine learning in the medical domain is the accessibility to properly annotated data. In this study, we apply a conditional adversarial network (cGAN) to perform image to image (Pix2Pix) translation from the non-COVID-19 chest X-Ray domain to the COVID-19 chest X-Ray domain. The objective is to learn a mapping from the normal chest X-Ray visual patterns to the COVID-19 pneumonia chest X-ray patterns. The original dataset has a typical imbalanced issue because it contains only 219 COVID-19 positive images but has 1,341 images for normal chest X-Ray and 1,345 images for viral pneumonia. A U-Net based architecture is applied for the image-to-image translation to generate synthesized COVID-19 X-Ray chest images from the normal chest X-ray images. A 50-convolutional-layer residual net (ResNet) architecture is applied for the final classification task. After training the GAN model for 100 epochs, we use the GAN generator to translate 1,100 COVID-19 images from the normal X-Ray to form a balanced training dataset (3,762 images) for the classification task. The ResNet based classifier trained by the enhanced dataset achieves the classification accuracy of 97.8% compared to 96.1% in the transfer learning mode. When trained with the original imbalanced dataset, the model achieves an accuracy of 96.1% compared to 95.6% in the training from trainby-scratch model. In addition, the classifier trained by the enhanced dataset has more stable measures in precision, recall, and F1 scores across different image classes. We conclude that the GAN-based data enhancement strategy is applicable to most medical image pattern recognition tasks, and it provides an effective way to solve the common expertise dependence issue in the medical domain. | 
|---|---|
| DOI: | 10.1109/BIBM49941.2020.9313466 |