Video Segmentation by Tracking Many Figure-Ground Segments
We propose an unsupervised video segmentation approach by simultaneously tracking multiple holistic figure-ground segments. Segment tracks are initialized from a pool of segment proposals generated from a figure-ground segmentation algorithm. Then, online non-local appearance models are trained incr...
Saved in:
| Published in | 2013 IEEE International Conference on Computer Vision pp. 2192 - 2199 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding Journal Article |
| Language | English |
| Published |
IEEE
01.12.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1550-5499 |
| DOI | 10.1109/ICCV.2013.273 |
Cover
| Abstract | We propose an unsupervised video segmentation approach by simultaneously tracking multiple holistic figure-ground segments. Segment tracks are initialized from a pool of segment proposals generated from a figure-ground segmentation algorithm. Then, online non-local appearance models are trained incrementally for each track using a multi-output regularized least squares formulation. By using the same set of training examples for all segment tracks, a computational trick allows us to track hundreds of segment tracks efficiently, as well as perform optimal online updates in closed-form. Besides, a new composite statistical inference approach is proposed for refining the obtained segment tracks, which breaks down the initial segment proposals and recombines for better ones by utilizing high-order statistic estimates from the appearance model and enforcing temporal consistency. For evaluating the algorithm, a dataset, SegTrack v2, is collected with about 1,000 frames with pixel-level annotations. The proposed framework outperforms state-of-the-art approaches in the dataset, showing its efficiency and robustness to challenges in different video sequences. |
|---|---|
| AbstractList | We propose an unsupervised video segmentation approach by simultaneously tracking multiple holistic figure-ground segments. Segment tracks are initialized from a pool of segment proposals generated from a figure-ground segmentation algorithm. Then, online non-local appearance models are trained incrementally for each track using a multi-output regularized least squares formulation. By using the same set of training examples for all segment tracks, a computational trick allows us to track hundreds of segment tracks efficiently, as well as perform optimal online updates in closed-form. Besides, a new composite statistical inference approach is proposed for refining the obtained segment tracks, which breaks down the initial segment proposals and recombines for better ones by utilizing high-order statistic estimates from the appearance model and enforcing temporal consistency. For evaluating the algorithm, a dataset, SegTrack v2, is collected with about 1,000 frames with pixel-level annotations. The proposed framework outperforms state-of-the-art approaches in the dataset, showing its efficiency and robustness to challenges in different video sequences. |
| Author | Taeyoung Kim Tsai, David Humayun, Ahmad Rehg, James M. Fuxin Li |
| Author_xml | – sequence: 1 surname: Fuxin Li fullname: Fuxin Li email: fli@cc.gatech.edu – sequence: 2 surname: Taeyoung Kim fullname: Taeyoung Kim email: cuponthetop@gmail.com – sequence: 3 givenname: Ahmad surname: Humayun fullname: Humayun, Ahmad email: ahumayun@cc.gatech.edu – sequence: 4 givenname: David surname: Tsai fullname: Tsai, David email: caihsiaoster@gmail.com – sequence: 5 givenname: James M. surname: Rehg fullname: Rehg, James M. email: rehg@cc.gatech.edu |
| BookMark | eNo9jztPwzAAhI1UJNrCyMSSkSXBr_jBhiJaKhUxULpaju1UhtQpcQLKvydVgemG--6kbwYmoQkOgGsEM4SgvFsVxTbDEJEMc3IGZohyKbGgEE_AFOU5THMq5QWYxfgOIRkrNgX3W29dk7y63d6FTne-CUk5JJtWmw8fdsmzDkOy8Lu-demybfpg_9h4Cc4rXUd39Ztz8LZ43BRP6fpluSoe1qnHlHepgBoTYoSxppKYkpJaJySsLEcGIyyE1SQniHFsYSVMxbCl0lW61AZDTDWZg-z024eDHr51XatD6_e6HRSC6qiuvDFf6qiuRvVxcHsaHNrms3exU3sfjatrHVzTR4UYk4IJwvGI3pxQ75z7v2U8R0QQ8gNUlGS1 |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO 7SC 8FD JQ2 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1109/ICCV.2013.273 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1479928402 9781479928408 |
| EndPage | 2199 |
| ExternalDocumentID | oai:smartech.gatech.edu:1853/53681 6751383 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS 7SC 8FD JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-i247t-80a233c8cdcf9243b4de890fd71c21288da3531672d0f8cf62d49efabac2024a3 |
| IEDL.DBID | UNPAY |
| ISSN | 1550-5499 |
| IngestDate | Sun Oct 26 03:43:58 EDT 2025 Thu Oct 02 06:10:56 EDT 2025 Wed Aug 27 04:21:35 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i247t-80a233c8cdcf9243b4de890fd71c21288da3531672d0f8cf62d49efabac2024a3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://repository.gatech.edu/bitstreams/60010462-35e7-49a8-b0bc-6381cfa205b6/download |
| PQID | 1669868372 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_6751383 unpaywall_primary_10_1109_iccv_2013_273 proquest_miscellaneous_1669868372 |
| PublicationCentury | 2000 |
| PublicationDate | 20131201 |
| PublicationDateYYYYMMDD | 2013-12-01 |
| PublicationDate_xml | – month: 12 year: 2013 text: 20131201 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2013 IEEE International Conference on Computer Vision |
| PublicationTitleAbbrev | iccv |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0039286 ssj0001967680 |
| Score | 2.606902 |
| Snippet | We propose an unsupervised video segmentation approach by simultaneously tracking multiple holistic figure-ground segments. Segment tracks are initialized from... |
| SourceID | unpaywall proquest ieee |
| SourceType | Open Access Repository Aggregation Database Publisher |
| StartPage | 2192 |
| SubjectTerms | Algorithms appearance model composite statistical inference Computer vision CPMC CSI Exact solutions Image segmentation Mathematical models Motion segmentation Online Predictive models Proposals Segmentation Segments Target tracking Tracking tracking segments Training Video Segmentation |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7Ui558VawvIgheTE2zyWbjtViqUBG0xVvY7E6kWJPSNor-emeTNFXx4C2HXbLZ2cz3zew8AM64Lx1F5o4tQuHbHkPfDmPBbFo0gQdq5EXh-f4d7w282yf_aQUu6lwYRCyCz7BlHou7fJ2p3LjKLonctsmiWoXVQPAyV2vpTwk5MWdnoYUJ9osuj4aB28YGWtbXvLzpdIYmqIu1XNMuveiq8oNgrufpRH68y_H4G9Z0N6G_WGUZYvLSyudxS33-KuD438_YgsYyq8-6r_FqG1Yw3YHNioZa1U8-24Wr4UhjZj3g82uVmJRa8YdFqKaMX93qk_6wuqPnfIq2cV2lejF21oBB9_qx07OrFgv2yPWCOeGTdBlTQmmVkCXGYk-jCJ1EB21FoCaElsw3yfKudhKhEu5qL8RExqayo-tJtgdraZbiPlgscXw34YH0TUl3YsM0PSH9gEEc-wF6Tdg1WxFNyioaUbULTThdbHxEJ9tcV8gUs3wWtTkPBScD2m3CeS2Ren5hvThhNFLqLTLSjEiaB3-_5BA2zIgyDOUI1ubTHI-JTMzjk-IUfQHv0cUP priority: 102 providerName: IEEE |
| Title | Video Segmentation by Tracking Many Figure-Ground Segments |
| URI | https://ieeexplore.ieee.org/document/6751383 https://www.proquest.com/docview/1669868372 http://repository.gatech.edu/bitstreams/60010462-35e7-49a8-b0bc-6381cfa205b6/download |
| UnpaywallVersion | submittedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS-RAEC10POjJXVQcdSWC4KlnMt3pTsebLDvIgiLoiJ5Cf0pwTMRJFP31Vmc-VLzsYW85dIckVXTVq9R7BXAouIoNwh0iM8lJwhwnmZaM4ENj8HDWiVZ4_uxcnI6Svzf8ZgkW3BPX9ipVeLtQRZpW2_q6qANzQj1M-qIVlBGhA92lJMmUJDrWhqAbDYxXNOZa9G3Qma-UXYYVwTFF78DK6Pzi5PZDY7NfGPMcGrtYj4aR6e1klS9J5mpTPqrXFzUef4o3w3V4nrN2pm0m972m1j3z9l3E8f--yg_Y_KAARheL4PYTlly5AcfXhXVVdOnuHmaUpTLSrxHGOxMq7tEZnizRsLhrnhwJRa3SztdONmE0_HP1-5TMhi-QgiZpjZFLUcaMNNZ4xGhMJ9bJLPY2HRgMd1JaxXig0VMbe2m8oDbJnFc6aD7SRLEt6JRV6bYhYj7m1ItU8SD2jnkybvd4crhUa566pAsb4fPnj1N9jRwxzACBcxcO5ubI0efDjwxVuqqZ5AMhMikQWtMuHC3stNjf4po4y4ON82DjHG28888rd2EtXE57VvagUz817hdmHrXeb-mB-zNvegdiq9mU |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHODELsoaJCQupKTxEodrRVWWIiQWcYsce4IqIEW0AcHXM07TFhAHbjnYiuNx5r0ZzwKwL4UODJk7voqV8DlD4cepYj4tmsADLcqy8HznUrZv-dm9uJ-Cw3EuDCKWwWdYd4_lXb7tmcK5yo6I3DbIopqGWcE5F8NsrYlHJZbEnYORHibgL_s8Og7uOytoUmHz6LTZvHNhXaweuobpZV-VHxRzrshf9Me7fnr6hjatBeiM1jkMMnmsF4O0bj5_lXD874cswuokr8-7GiPWEkxhvgwLFRH1qt-8vwLHd12LPe8aH56r1KTcSz88wjXjPOtehzSI1-o-FK_oO-dVbkdj-6tw2zq5abb9qsmC3w15NCCE0iFjRhlrMrLFWMotqjjIbNQwBGtKWc2ES5cPbZApk8nQ8hgznbrajiHXbA1m8l6O6-CxLBBhJiMtXFF34sM0PSMNgVGaigh5DVbcViQvwzoaSbULNdgbbXxCZ9tdWOgce0U_aUgZK0kmdFiDg7FExvNL-yWIk64xb4mTZkLS3Pj7Jbsw177pXCQXp5fnmzDvRg-DUrZgZvBa4DZRi0G6U56oL29pyFw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC50POhJRRfHF1lY8NQzme50p-NNxEEERdgdcU-hnxIcE3ESRX-91ZmHu3jx4C2H7pCkiq76KvV9BfBLcBUbhDtEZpKThDlOMi0ZwYfG4OGsE63w_OWVOB8lF7f8dgkW3BPX9ipVeLtQRZpW2_q6qANzQj1M-qIVlBGhA92lJMmUJDrWhqAbDYxXNOZa9G3Qma-UXYYVwTFF78DK6Or65O-Hxma_MOY5NHaxHg0j09vJKv8lmatN-aheX9R4_E-8Ga7D85y1M20zue81te6Zt88ijt_7Khuw_UEBjK4XwW0Tlly5Bcc3hXVV9NvdPcwoS2WkXyOMdyZU3KNLPFmiYXHXPDkSilqlna-dbMNoePbn9JzMhi-QgiZpjZFLUcaMNNZ4xGhMJ9bJLPY2HRgMd1JaxXig0VMbe2m8oDbJnFc6aD7SRLEf0Cmr0u1AxHzMqRep4kHsHfNk3O7x5HCp1jx1SRe2wufPH6f6GjlimAEC5y78nJsjR58PPzJU6apmkg-EyKRAaE27cLSw02J_i2viLA82zoONc7Tx7pdX7sFauJz2rOxDp35q3AFmHrU-nPnRO0552JM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Video+Segmentation+by+Tracking+Many+Figure-Ground+Segments&rft.au=Fuxin+Li&rft.au=Taeyoung+Kim&rft.au=Humayun%2C+Ahmad&rft.au=Tsai%2C+David&rft.date=2013-12-01&rft.pub=IEEE&rft.issn=1550-5499&rft.spage=2192&rft.epage=2199&rft_id=info:doi/10.1109%2FICCV.2013.273&rft.externalDocID=6751383 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-5499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-5499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-5499&client=summon |