Video Segmentation by Tracking Many Figure-Ground Segments

We propose an unsupervised video segmentation approach by simultaneously tracking multiple holistic figure-ground segments. Segment tracks are initialized from a pool of segment proposals generated from a figure-ground segmentation algorithm. Then, online non-local appearance models are trained incr...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE International Conference on Computer Vision pp. 2192 - 2199
Main Authors Fuxin Li, Taeyoung Kim, Humayun, Ahmad, Tsai, David, Rehg, James M.
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.12.2013
Subjects
Online AccessGet full text
ISSN1550-5499
DOI10.1109/ICCV.2013.273

Cover

Abstract We propose an unsupervised video segmentation approach by simultaneously tracking multiple holistic figure-ground segments. Segment tracks are initialized from a pool of segment proposals generated from a figure-ground segmentation algorithm. Then, online non-local appearance models are trained incrementally for each track using a multi-output regularized least squares formulation. By using the same set of training examples for all segment tracks, a computational trick allows us to track hundreds of segment tracks efficiently, as well as perform optimal online updates in closed-form. Besides, a new composite statistical inference approach is proposed for refining the obtained segment tracks, which breaks down the initial segment proposals and recombines for better ones by utilizing high-order statistic estimates from the appearance model and enforcing temporal consistency. For evaluating the algorithm, a dataset, SegTrack v2, is collected with about 1,000 frames with pixel-level annotations. The proposed framework outperforms state-of-the-art approaches in the dataset, showing its efficiency and robustness to challenges in different video sequences.
AbstractList We propose an unsupervised video segmentation approach by simultaneously tracking multiple holistic figure-ground segments. Segment tracks are initialized from a pool of segment proposals generated from a figure-ground segmentation algorithm. Then, online non-local appearance models are trained incrementally for each track using a multi-output regularized least squares formulation. By using the same set of training examples for all segment tracks, a computational trick allows us to track hundreds of segment tracks efficiently, as well as perform optimal online updates in closed-form. Besides, a new composite statistical inference approach is proposed for refining the obtained segment tracks, which breaks down the initial segment proposals and recombines for better ones by utilizing high-order statistic estimates from the appearance model and enforcing temporal consistency. For evaluating the algorithm, a dataset, SegTrack v2, is collected with about 1,000 frames with pixel-level annotations. The proposed framework outperforms state-of-the-art approaches in the dataset, showing its efficiency and robustness to challenges in different video sequences.
Author Taeyoung Kim
Tsai, David
Humayun, Ahmad
Rehg, James M.
Fuxin Li
Author_xml – sequence: 1
  surname: Fuxin Li
  fullname: Fuxin Li
  email: fli@cc.gatech.edu
– sequence: 2
  surname: Taeyoung Kim
  fullname: Taeyoung Kim
  email: cuponthetop@gmail.com
– sequence: 3
  givenname: Ahmad
  surname: Humayun
  fullname: Humayun, Ahmad
  email: ahumayun@cc.gatech.edu
– sequence: 4
  givenname: David
  surname: Tsai
  fullname: Tsai, David
  email: caihsiaoster@gmail.com
– sequence: 5
  givenname: James M.
  surname: Rehg
  fullname: Rehg, James M.
  email: rehg@cc.gatech.edu
BookMark eNo9jztPwzAAhI1UJNrCyMSSkSXBr_jBhiJaKhUxULpaju1UhtQpcQLKvydVgemG--6kbwYmoQkOgGsEM4SgvFsVxTbDEJEMc3IGZohyKbGgEE_AFOU5THMq5QWYxfgOIRkrNgX3W29dk7y63d6FTne-CUk5JJtWmw8fdsmzDkOy8Lu-demybfpg_9h4Cc4rXUd39Ztz8LZ43BRP6fpluSoe1qnHlHepgBoTYoSxppKYkpJaJySsLEcGIyyE1SQniHFsYSVMxbCl0lW61AZDTDWZg-z024eDHr51XatD6_e6HRSC6qiuvDFf6qiuRvVxcHsaHNrms3exU3sfjatrHVzTR4UYk4IJwvGI3pxQ75z7v2U8R0QQ8gNUlGS1
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1109/ICCV.2013.273
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1479928402
9781479928408
EndPage 2199
ExternalDocumentID oai:smartech.gatech.edu:1853/53681
6751383
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-i247t-80a233c8cdcf9243b4de890fd71c21288da3531672d0f8cf62d49efabac2024a3
IEDL.DBID UNPAY
ISSN 1550-5499
IngestDate Sun Oct 26 03:43:58 EDT 2025
Thu Oct 02 06:10:56 EDT 2025
Wed Aug 27 04:21:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i247t-80a233c8cdcf9243b4de890fd71c21288da3531672d0f8cf62d49efabac2024a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
OpenAccessLink https://proxy.k.utb.cz/login?url=http://repository.gatech.edu/bitstreams/60010462-35e7-49a8-b0bc-6381cfa205b6/download
PQID 1669868372
PQPubID 23500
PageCount 8
ParticipantIDs ieee_primary_6751383
unpaywall_primary_10_1109_iccv_2013_273
proquest_miscellaneous_1669868372
PublicationCentury 2000
PublicationDate 20131201
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 20131201
  day: 01
PublicationDecade 2010
PublicationTitle 2013 IEEE International Conference on Computer Vision
PublicationTitleAbbrev iccv
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
ssj0001967680
Score 2.606902
Snippet We propose an unsupervised video segmentation approach by simultaneously tracking multiple holistic figure-ground segments. Segment tracks are initialized from...
SourceID unpaywall
proquest
ieee
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 2192
SubjectTerms Algorithms
appearance model
composite statistical inference
Computer vision
CPMC
CSI
Exact solutions
Image segmentation
Mathematical models
Motion segmentation
Online
Predictive models
Proposals
Segmentation
Segments
Target tracking
Tracking
tracking segments
Training
Video Segmentation
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7Ui558VawvIgheTE2zyWbjtViqUBG0xVvY7E6kWJPSNor-emeTNFXx4C2HXbLZ2cz3zew8AM64Lx1F5o4tQuHbHkPfDmPBbFo0gQdq5EXh-f4d7w282yf_aQUu6lwYRCyCz7BlHou7fJ2p3LjKLonctsmiWoXVQPAyV2vpTwk5MWdnoYUJ9osuj4aB28YGWtbXvLzpdIYmqIu1XNMuveiq8oNgrufpRH68y_H4G9Z0N6G_WGUZYvLSyudxS33-KuD438_YgsYyq8-6r_FqG1Yw3YHNioZa1U8-24Wr4UhjZj3g82uVmJRa8YdFqKaMX93qk_6wuqPnfIq2cV2lejF21oBB9_qx07OrFgv2yPWCOeGTdBlTQmmVkCXGYk-jCJ1EB21FoCaElsw3yfKudhKhEu5qL8RExqayo-tJtgdraZbiPlgscXw34YH0TUl3YsM0PSH9gEEc-wF6Tdg1WxFNyioaUbULTThdbHxEJ9tcV8gUs3wWtTkPBScD2m3CeS2Ren5hvThhNFLqLTLSjEiaB3-_5BA2zIgyDOUI1ubTHI-JTMzjk-IUfQHv0cUP
  priority: 102
  providerName: IEEE
Title Video Segmentation by Tracking Many Figure-Ground Segments
URI https://ieeexplore.ieee.org/document/6751383
https://www.proquest.com/docview/1669868372
http://repository.gatech.edu/bitstreams/60010462-35e7-49a8-b0bc-6381cfa205b6/download
UnpaywallVersion submittedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS-RAEC10POjJXVQcdSWC4KlnMt3pTsebLDvIgiLoiJ5Cf0pwTMRJFP31Vmc-VLzsYW85dIckVXTVq9R7BXAouIoNwh0iM8lJwhwnmZaM4ENj8HDWiVZ4_uxcnI6Svzf8ZgkW3BPX9ipVeLtQRZpW2_q6qANzQj1M-qIVlBGhA92lJMmUJDrWhqAbDYxXNOZa9G3Qma-UXYYVwTFF78DK6Pzi5PZDY7NfGPMcGrtYj4aR6e1klS9J5mpTPqrXFzUef4o3w3V4nrN2pm0m972m1j3z9l3E8f--yg_Y_KAARheL4PYTlly5AcfXhXVVdOnuHmaUpTLSrxHGOxMq7tEZnizRsLhrnhwJRa3SztdONmE0_HP1-5TMhi-QgiZpjZFLUcaMNNZ4xGhMJ9bJLPY2HRgMd1JaxXig0VMbe2m8oDbJnFc6aD7SRLEt6JRV6bYhYj7m1ItU8SD2jnkybvd4crhUa566pAsb4fPnj1N9jRwxzACBcxcO5ubI0efDjwxVuqqZ5AMhMikQWtMuHC3stNjf4po4y4ON82DjHG28888rd2EtXE57VvagUz817hdmHrXeb-mB-zNvegdiq9mU
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHODELsoaJCQupKTxEodrRVWWIiQWcYsce4IqIEW0AcHXM07TFhAHbjnYiuNx5r0ZzwKwL4UODJk7voqV8DlD4cepYj4tmsADLcqy8HznUrZv-dm9uJ-Cw3EuDCKWwWdYd4_lXb7tmcK5yo6I3DbIopqGWcE5F8NsrYlHJZbEnYORHibgL_s8Og7uOytoUmHz6LTZvHNhXaweuobpZV-VHxRzrshf9Me7fnr6hjatBeiM1jkMMnmsF4O0bj5_lXD874cswuokr8-7GiPWEkxhvgwLFRH1qt-8vwLHd12LPe8aH56r1KTcSz88wjXjPOtehzSI1-o-FK_oO-dVbkdj-6tw2zq5abb9qsmC3w15NCCE0iFjRhlrMrLFWMotqjjIbNQwBGtKWc2ES5cPbZApk8nQ8hgznbrajiHXbA1m8l6O6-CxLBBhJiMtXFF34sM0PSMNgVGaigh5DVbcViQvwzoaSbULNdgbbXxCZ9tdWOgce0U_aUgZK0kmdFiDg7FExvNL-yWIk64xb4mTZkLS3Pj7Jbsw177pXCQXp5fnmzDvRg-DUrZgZvBa4DZRi0G6U56oL29pyFw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC50POhJRRfHF1lY8NQzme50p-NNxEEERdgdcU-hnxIcE3ESRX-91ZmHu3jx4C2H7pCkiq76KvV9BfBLcBUbhDtEZpKThDlOMi0ZwYfG4OGsE63w_OWVOB8lF7f8dgkW3BPX9ipVeLtQRZpW2_q6qANzQj1M-qIVlBGhA92lJMmUJDrWhqAbDYxXNOZa9G3Qma-UXYYVwTFF78DK6Or65O-Hxma_MOY5NHaxHg0j09vJKv8lmatN-aheX9R4_E-8Ga7D85y1M20zue81te6Zt88ijt_7Khuw_UEBjK4XwW0Tlly5Bcc3hXVV9NvdPcwoS2WkXyOMdyZU3KNLPFmiYXHXPDkSilqlna-dbMNoePbn9JzMhi-QgiZpjZFLUcaMNNZ4xGhMJ9bJLPY2HRgMd1JaxXig0VMbe2m8oDbJnFc6aD7SRLEf0Cmr0u1AxHzMqRep4kHsHfNk3O7x5HCp1jx1SRe2wufPH6f6GjlimAEC5y78nJsjR58PPzJU6apmkg-EyKRAaE27cLSw02J_i2viLA82zoONc7Tx7pdX7sFauJz2rOxDp35q3AFmHrU-nPnRO0552JM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Video+Segmentation+by+Tracking+Many+Figure-Ground+Segments&rft.au=Fuxin+Li&rft.au=Taeyoung+Kim&rft.au=Humayun%2C+Ahmad&rft.au=Tsai%2C+David&rft.date=2013-12-01&rft.pub=IEEE&rft.issn=1550-5499&rft.spage=2192&rft.epage=2199&rft_id=info:doi/10.1109%2FICCV.2013.273&rft.externalDocID=6751383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-5499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-5499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-5499&client=summon