Network-Based Visualization of Opinion Mining and Sentiment Analysis on Twitter

Visualizing the result of users' opinion mining on twitter using social network graph can play a crucial role in decision-making. Available data visualizing tools, such as NodeXL, use a specific file format as an input to construct and visualize the social network graph. One of the main compone...

Full description

Saved in:
Bibliographic Details
Published in2014 International Conference on IT Convergence and Security (ICITCS) pp. 1 - 4
Main Authors Molla, Alemu, Biadgie, Yenewondim, Kyung-Ah Sohn
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2014
Subjects
Online AccessGet full text
DOI10.1109/ICITCS.2014.7021790

Cover

Abstract Visualizing the result of users' opinion mining on twitter using social network graph can play a crucial role in decision-making. Available data visualizing tools, such as NodeXL, use a specific file format as an input to construct and visualize the social network graph. One of the main components of the input file is the sentimental score of the users' opinion. This motivates us to develop a free and open source system that can take the opinion of users in raw text format and produce easy-to-interpret visualization of opinion mining and sentiment analysis result on a social network. We use a public machine learning library called LingPipe Library to classify the sentiments of users' opinion into positive, negative and neutral classes. Our proposed system can be used to analyze and visualize users' opinion on the network level to determine sub-social structures (sub-groups). Moreover, the proposed system can also identify influential people in the social network by using node level metrics such as betweenness centrality. In addition to the network level and node level analysis, our proposed method also provides an efficient filtering mechanism by either time and date, or the sentiment score. We tested our proposed system using user opinions about different Samsung products and related issues that are collected from five official twitter accounts of Samsung Company. The test results show that our proposed system will be helpful to analyze and visualize the opinion of users at both network level and node level.
AbstractList Visualizing the result of users' opinion mining on twitter using social network graph can play a crucial role in decision-making. Available data visualizing tools, such as NodeXL, use a specific file format as an input to construct and visualize the social network graph. One of the main components of the input file is the sentimental score of the users' opinion. This motivates us to develop a free and open source system that can take the opinion of users in raw text format and produce easy-to-interpret visualization of opinion mining and sentiment analysis result on a social network. We use a public machine learning library called LingPipe Library to classify the sentiments of users' opinion into positive, negative and neutral classes. Our proposed system can be used to analyze and visualize users' opinion on the network level to determine sub-social structures (sub-groups). Moreover, the proposed system can also identify influential people in the social network by using node level metrics such as betweenness centrality. In addition to the network level and node level analysis, our proposed method also provides an efficient filtering mechanism by either time and date, or the sentiment score. We tested our proposed system using user opinions about different Samsung products and related issues that are collected from five official twitter accounts of Samsung Company. The test results show that our proposed system will be helpful to analyze and visualize the opinion of users at both network level and node level.
Author Kyung-Ah Sohn
Molla, Alemu
Biadgie, Yenewondim
Author_xml – sequence: 1
  givenname: Alemu
  surname: Molla
  fullname: Molla, Alemu
  organization: Dept. of Comput. Eng., Ajou Univ., Suwon, South Korea
– sequence: 2
  givenname: Yenewondim
  surname: Biadgie
  fullname: Biadgie, Yenewondim
  organization: Dept. of Comput. Eng., Ajou Univ., Suwon, South Korea
– sequence: 3
  surname: Kyung-Ah Sohn
  fullname: Kyung-Ah Sohn
  email: kasohn@ajou.ac.kr
  organization: Dept. of Comput. Eng., Ajou Univ., Suwon, South Korea
BookMark eNotj01OwzAYRI0EErT0BN34Agm24594WSKgkQpZNLCt7PQzskidKjaqyukJopt5s3gaaWboOgwBEFpSklNK9ENd1W21zRmhPFeEUaXJFZpRrrSWgtPiFi1i9JYwqSSXhb5DzRuk0zB-ZY8mwh5_-Phtev9jkh8CHhxujj781dcJ4RObsMdbCMkfpsCrYPpz9BFPQnvyKcF4j26c6SMsLpyj9-entlpnm-alrlabzDMuUuaYsaZUwjJeWiYlUwXteNcB4Up21NiSOc2Fc4w6a6DUpJRaWt0JQYQEUszR8n_XA8DuOPqDGc-7y-fiF8fqT50
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICITCS.2014.7021790
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1479965413
9781479965410
EndPage 4
ExternalDocumentID 7021790
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i245t-f2aba875b248b2662731c4cce0476c1ab82f945ff21fbae8908696b9c55056e03
IEDL.DBID RIE
IngestDate Wed Dec 20 05:19:00 EST 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i245t-f2aba875b248b2662731c4cce0476c1ab82f945ff21fbae8908696b9c55056e03
PageCount 4
ParticipantIDs ieee_primary_7021790
PublicationCentury 2000
PublicationDate 2014-Oct.
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-Oct.
PublicationDecade 2010
PublicationTitle 2014 International Conference on IT Convergence and Security (ICITCS)
PublicationTitleAbbrev ICITCS
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764639
Score 1.6355476
Snippet Visualizing the result of users' opinion mining on twitter using social network graph can play a crucial role in decision-making. Available data visualizing...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Data mining
Data visualization
Libraries
Receivers
Sentiment analysis
Twitter
Title Network-Based Visualization of Opinion Mining and Sentiment Analysis on Twitter
URI https://ieeexplore.ieee.org/document/7021790
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qT55UWvGbPXg0abOZbDZXi8UKbYW20lvZTwhCWjRF8Ne7k6QVxYOXsIQsG3YCb97mvRlCbrUDwbSJA608VwVIIZCJv_jMO5GCW0-E0Cg8nvDHBTwtk2WL3O29MNbaSnxmQxxW__LNWm_xqKyXYgKdeYJ-kApee7V23w7jKQePtk1hoaif9UaD0XwwQ_UWhM3MHy1UKgQZHpHxbu1aOPIabksV6s9fZRn_-3LHpPvt1aPPexQ6IS1bdMh0Uqu7g3sPUoa-5O_onawdl3Tt6HSTFzgcV-0hqCwMnaFsCJeguzol1D8w_8jR7tMli-HDfPAYNK0TgpxBUgaOSSU9FVEMhGJY5D2ONGht-5ByHUklmMsgcY5FTkkrMs9sMq4yjYSF2358StrFurBnhMaQGkwEMqM0REpKENwHnhlP9IRM3Dnp4GasNnV1jFWzDxd_374khxiQWg53Rdrl29Zee1gv1U0Vzy-jkKLs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5jHvSksom_zcGj7db0JW2vDsem6yask91GkiZQhHZoh-Bfb9J2E8WDlxJKQ0pe4Xtf-n3vIXQrNYREpr4jheGqAAE4nJqLybwpD5kyRMgaheMpGy3gcUmXLXS388IopSrxmXLtsPqXnxZyY4_KeoFNoCND0PcoANDarbX9eggLGBi8bUoLef2oNx6Mk8Hc6rfAbeb-aKJSYcjwEMXb1WvpyKu7KYUrP38VZvzv6x2h7rdbDz_vcOgYtVTeQbNpre927g1Mpfgle7fuydpziQuNZ-sst8O4ahCBeZ7iuRUO2SXwtlIJNg8kH5k1_HTRYviQDEZO0zzByQjQ0tGEC27IiCAQCmLLvPueBClVHwImPS5CoiOgWhNPC67CyHCbiIlIWsrCVN8_Qe28yNUpwj4EqU0FolRI8ATnEDITepIaqhdyqs9Qx27Gal3Xx1g1-3D-9-0btD9K4slqMp4-XaADG5xaHHeJ2uXbRl0ZkC_FdRXbL1uupjk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+International+Conference+on+IT+Convergence+and+Security+%28ICITCS%29&rft.atitle=Network-Based+Visualization+of+Opinion+Mining+and+Sentiment+Analysis+on+Twitter&rft.au=Molla%2C+Alemu&rft.au=Biadgie%2C+Yenewondim&rft.au=Kyung-Ah+Sohn&rft.date=2014-10-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICITCS.2014.7021790&rft.externalDocID=7021790