A Type Theory for Defining Logics and Proofs
We describe a Martin-Lof-style dependent type theory, called Cocon, that allows us to mix the intensional function space that is used to represent higher-order abstract syntax (HOAS) trees with the extensional function space that describes (recursive) computations. We mediate between HOAS representa...
        Saved in:
      
    
          | Published in | 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) pp. 1 - 13 | 
|---|---|
| Main Authors | , , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.06.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/LICS.2019.8785683 | 
Cover
| Abstract | We describe a Martin-Lof-style dependent type theory, called Cocon, that allows us to mix the intensional function space that is used to represent higher-order abstract syntax (HOAS) trees with the extensional function space that describes (recursive) computations. We mediate between HOAS representations and computations using contextual modal types. Our type theory also supports an infinite hierarchy of universes and hence supports type-level computation thereby providing metaprogramming and (small-scale) reflection. Our main contribution is the development of a Kripke-style model for Cocon that allows us to prove normalization. From the normalization proof, we derive subject reduction and consistency. Our work lays the foundation to incorporate the methodology of logical frameworks into systems such as Agda and bridges the longstanding gap between these two worlds. | 
    
|---|---|
| AbstractList | We describe a Martin-Lof-style dependent type theory, called Cocon, that allows us to mix the intensional function space that is used to represent higher-order abstract syntax (HOAS) trees with the extensional function space that describes (recursive) computations. We mediate between HOAS representations and computations using contextual modal types. Our type theory also supports an infinite hierarchy of universes and hence supports type-level computation thereby providing metaprogramming and (small-scale) reflection. Our main contribution is the development of a Kripke-style model for Cocon that allows us to prove normalization. From the normalization proof, we derive subject reduction and consistency. Our work lays the foundation to incorporate the methodology of logical frameworks into systems such as Agda and bridges the longstanding gap between these two worlds. | 
    
| Author | Zucchini, Rebecca Abel, Andreas Ferreira, Francisco Pientka, Brigitte Thibodeau, David  | 
    
| Author_xml | – sequence: 1 givenname: Brigitte surname: Pientka fullname: Pientka, Brigitte organization: School of Computer Science, McGill University – sequence: 2 givenname: David surname: Thibodeau fullname: Thibodeau, David organization: School of Computer Science, McGill University – sequence: 3 givenname: Andreas surname: Abel fullname: Abel, Andreas organization: Dept. of Computer Science and Eng., Gothenburg University – sequence: 4 givenname: Francisco surname: Ferreira fullname: Ferreira, Francisco organization: Dept. of Computing, Imperial College London – sequence: 5 givenname: Rebecca surname: Zucchini fullname: Zucchini, Rebecca organization: ENS Paris Saclay  | 
    
| BookMark | eNotz7tOwzAUgGEjwUBLHwCx-AFI8LHjS8Yq3CpFAqlhrozPcbEEduWw5O0Z6PRvn_Sv2GUumRi7BdECiP5h3A37VgroW2edNk5dsBVY6UAZ4dQ1u9_yaTkRn76o1IXHUvkjxZRTPvKxHFOYuc_I32spcb5hV9F_z7Q5d80-np-m4bUZ3152w3Zskuzgt0HsgicnIUgyWluMJkTt0XdROKMAkWTQwcoAgYxXsus_KfYeySiD2qo1u_t3ExEdTjX9-LoczgPqD9vwPvk | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IH CBEJK RIE RIO  | 
    
| DOI | 10.1109/LICS.2019.8785683 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISBN | 1728136083 9781728136080  | 
    
| EndPage | 13 | 
    
| ExternalDocumentID | 8785683 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IH CBEJK RIE RIO  | 
    
| ID | FETCH-LOGICAL-i241t-dd4cae821c2e6557df6cf5ada4f08631dde2c5c72c1ce6a3249bef9ade636d573 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Thu Jun 29 18:39:01 EDT 2023 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i241t-dd4cae821c2e6557df6cf5ada4f08631dde2c5c72c1ce6a3249bef9ade636d573 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | ieee_primary_8785683 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-06-01 | 
    
| PublicationDateYYYYMMDD | 2019-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) | 
    
| PublicationTitleAbbrev | LICS | 
    
| PublicationYear | 2019 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| Score | 2.182892 | 
    
| Snippet | We describe a Martin-Lof-style dependent type theory, called Cocon, that allows us to mix the intensional function space that is used to represent higher-order... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | Computational modeling Computer science Encoding Pattern matching Shape Syntactics Writing  | 
    
| Title | A Type Theory for Defining Logics and Proofs | 
    
| URI | https://ieeexplore.ieee.org/document/8785683 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3mauom_ycHjsq1tkiZHmY4pTgQd7DbS5AVE6GS2F_96k7abKB68lVCahkfzvdd83_sArjIM1FZ0FKUdU4aoqFImkP0ZR_RJv0uCwHn-KGYLdr_kyxYMdloYRKzIZzgMl9VZvl2bMvwqG8lUciGTNrRTKWqtVnNQGY3V6OFu8hy4Wj749X0_DFMqvJh2Yb6dqaaJvA3LIhuaz19NGP_7KvvQ_1bmkacd5hxAC_ND6G6tGUjzpfZgcE1ChUlq6T3xmSm5QVeZQZBgr2w-iM5teJQHwT4sprcvkxltjBHoqwfcglrLjEYZRyZGwXlqnTCOa6uZ8xVKEvktKzbcpLGJDArtcyaVoVPaokiE5WlyBJ18neMxEOYsz4RRPouSofuXjH0Fg47ZhPk5rDiBXlj86r3ufbFq1n369_AZ7IUA1FSqc-gUmxIvPGgX2WUVrS-7apkS | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7MedDT1E38bQ4e121tkzQ5ynRs2g7BDXYbbfICInSi3cW_3qTtJooHbyWUpuHRfO813_c-gJsMHbUVjYdCDzyKKD0plSP7U4Zok34TOoFzMuXjOX1YsEUDulstDCKW5DPsucvyLF-v1Nr9KuuLSDAuwh3YZZRSVqm16qNKfyD78WT47NhaNvzVnT8sU0rEGLUg2cxVEUVee-si66nPX20Y__syB9D51uaRpy3qHEID8yNobcwZSP2ttqF7S1yNSSrxPbG5KblDU9pBEGewrD5Immv3KAuDHZiP7mfDsVdbI3gvFnILT2uqUhSBrwLkjEXacGVYqlNqbI0S-nbTChRTUaB8hTy1WZPM0MhUIw-5ZlF4DM18leMJEGo0y7iSNo8Srv-XCGwNg4bqkNo5ND-Ftlv88q3qfrGs13329_A17I1nSbyMJ9PHc9h3waiIVRfQLN7XeGkhvMiuysh9AfEtnF8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+34th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science+%28LICS%29&rft.atitle=A+Type+Theory+for+Defining+Logics+and+Proofs&rft.au=Pientka%2C+Brigitte&rft.au=Thibodeau%2C+David&rft.au=Abel%2C+Andreas&rft.au=Ferreira%2C+Francisco&rft.date=2019-06-01&rft.pub=IEEE&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FLICS.2019.8785683&rft.externalDocID=8785683 |