A Type Theory for Defining Logics and Proofs

We describe a Martin-Lof-style dependent type theory, called Cocon, that allows us to mix the intensional function space that is used to represent higher-order abstract syntax (HOAS) trees with the extensional function space that describes (recursive) computations. We mediate between HOAS representa...

Full description

Saved in:
Bibliographic Details
Published in2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) pp. 1 - 13
Main Authors Pientka, Brigitte, Thibodeau, David, Abel, Andreas, Ferreira, Francisco, Zucchini, Rebecca
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2019
Subjects
Online AccessGet full text
DOI10.1109/LICS.2019.8785683

Cover

Abstract We describe a Martin-Lof-style dependent type theory, called Cocon, that allows us to mix the intensional function space that is used to represent higher-order abstract syntax (HOAS) trees with the extensional function space that describes (recursive) computations. We mediate between HOAS representations and computations using contextual modal types. Our type theory also supports an infinite hierarchy of universes and hence supports type-level computation thereby providing metaprogramming and (small-scale) reflection. Our main contribution is the development of a Kripke-style model for Cocon that allows us to prove normalization. From the normalization proof, we derive subject reduction and consistency. Our work lays the foundation to incorporate the methodology of logical frameworks into systems such as Agda and bridges the longstanding gap between these two worlds.
AbstractList We describe a Martin-Lof-style dependent type theory, called Cocon, that allows us to mix the intensional function space that is used to represent higher-order abstract syntax (HOAS) trees with the extensional function space that describes (recursive) computations. We mediate between HOAS representations and computations using contextual modal types. Our type theory also supports an infinite hierarchy of universes and hence supports type-level computation thereby providing metaprogramming and (small-scale) reflection. Our main contribution is the development of a Kripke-style model for Cocon that allows us to prove normalization. From the normalization proof, we derive subject reduction and consistency. Our work lays the foundation to incorporate the methodology of logical frameworks into systems such as Agda and bridges the longstanding gap between these two worlds.
Author Zucchini, Rebecca
Abel, Andreas
Ferreira, Francisco
Pientka, Brigitte
Thibodeau, David
Author_xml – sequence: 1
  givenname: Brigitte
  surname: Pientka
  fullname: Pientka, Brigitte
  organization: School of Computer Science, McGill University
– sequence: 2
  givenname: David
  surname: Thibodeau
  fullname: Thibodeau, David
  organization: School of Computer Science, McGill University
– sequence: 3
  givenname: Andreas
  surname: Abel
  fullname: Abel, Andreas
  organization: Dept. of Computer Science and Eng., Gothenburg University
– sequence: 4
  givenname: Francisco
  surname: Ferreira
  fullname: Ferreira, Francisco
  organization: Dept. of Computing, Imperial College London
– sequence: 5
  givenname: Rebecca
  surname: Zucchini
  fullname: Zucchini, Rebecca
  organization: ENS Paris Saclay
BookMark eNotz7tOwzAUgGEjwUBLHwCx-AFI8LHjS8Yq3CpFAqlhrozPcbEEduWw5O0Z6PRvn_Sv2GUumRi7BdECiP5h3A37VgroW2edNk5dsBVY6UAZ4dQ1u9_yaTkRn76o1IXHUvkjxZRTPvKxHFOYuc_I32spcb5hV9F_z7Q5d80-np-m4bUZ3152w3Zskuzgt0HsgicnIUgyWluMJkTt0XdROKMAkWTQwcoAgYxXsus_KfYeySiD2qo1u_t3ExEdTjX9-LoczgPqD9vwPvk
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS.2019.8785683
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1728136083
9781728136080
EndPage 13
ExternalDocumentID 8785683
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i241t-dd4cae821c2e6557df6cf5ada4f08631dde2c5c72c1ce6a3249bef9ade636d573
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:01 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-dd4cae821c2e6557df6cf5ada4f08631dde2c5c72c1ce6a3249bef9ade636d573
PageCount 13
ParticipantIDs ieee_primary_8785683
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationTitle 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
PublicationTitleAbbrev LICS
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.182892
Snippet We describe a Martin-Lof-style dependent type theory, called Cocon, that allows us to mix the intensional function space that is used to represent higher-order...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational modeling
Computer science
Encoding
Pattern matching
Shape
Syntactics
Writing
Title A Type Theory for Defining Logics and Proofs
URI https://ieeexplore.ieee.org/document/8785683
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3mauom_ycHjsq1tkiZHmY4pTgQd7DbS5AVE6GS2F_96k7abKB68lVCahkfzvdd83_sArjIM1FZ0FKUdU4aoqFImkP0ZR_RJv0uCwHn-KGYLdr_kyxYMdloYRKzIZzgMl9VZvl2bMvwqG8lUciGTNrRTKWqtVnNQGY3V6OFu8hy4Wj749X0_DFMqvJh2Yb6dqaaJvA3LIhuaz19NGP_7KvvQ_1bmkacd5hxAC_ND6G6tGUjzpfZgcE1ChUlq6T3xmSm5QVeZQZBgr2w-iM5teJQHwT4sprcvkxltjBHoqwfcglrLjEYZRyZGwXlqnTCOa6uZ8xVKEvktKzbcpLGJDArtcyaVoVPaokiE5WlyBJ18neMxEOYsz4RRPouSofuXjH0Fg47ZhPk5rDiBXlj86r3ufbFq1n369_AZ7IUA1FSqc-gUmxIvPGgX2WUVrS-7apkS
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7MedDT1E38bQ4e121tkzQ5ynRs2g7BDXYbbfICInSi3cW_3qTtJooHbyWUpuHRfO813_c-gJsMHbUVjYdCDzyKKD0plSP7U4Zok34TOoFzMuXjOX1YsEUDulstDCKW5DPsucvyLF-v1Nr9KuuLSDAuwh3YZZRSVqm16qNKfyD78WT47NhaNvzVnT8sU0rEGLUg2cxVEUVee-si66nPX20Y__syB9D51uaRpy3qHEID8yNobcwZSP2ttqF7S1yNSSrxPbG5KblDU9pBEGewrD5Immv3KAuDHZiP7mfDsVdbI3gvFnILT2uqUhSBrwLkjEXacGVYqlNqbI0S-nbTChRTUaB8hTy1WZPM0MhUIw-5ZlF4DM18leMJEGo0y7iSNo8Srv-XCGwNg4bqkNo5ND-Ftlv88q3qfrGs13329_A17I1nSbyMJ9PHc9h3waiIVRfQLN7XeGkhvMiuysh9AfEtnF8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+34th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science+%28LICS%29&rft.atitle=A+Type+Theory+for+Defining+Logics+and+Proofs&rft.au=Pientka%2C+Brigitte&rft.au=Thibodeau%2C+David&rft.au=Abel%2C+Andreas&rft.au=Ferreira%2C+Francisco&rft.date=2019-06-01&rft.pub=IEEE&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FLICS.2019.8785683&rft.externalDocID=8785683