Dynamic state estimation using particle filter and adaptive vector quantizer
Particle filter (PF) is a method for discrete approximation of dynamic and non-Gaussian probability distribution by using numerous particles, and its procedure can execute at high speed and is suitable for on-line applications. However, in conventional methods, a weighted average value or a maximum...
Saved in:
| Published in | 2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation pp. 429 - 434 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.12.2009
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 1424448085 9781424448081 |
| DOI | 10.1109/CIRA.2009.5423166 |
Cover
| Abstract | Particle filter (PF) is a method for discrete approximation of dynamic and non-Gaussian probability distribution by using numerous particles, and its procedure can execute at high speed and is suitable for on-line applications. However, in conventional methods, a weighted average value or a maximum weighted value of particles is used as a filter output, and information on most particles is disregarded. On the other hand, an adaptive vector quantization (AVQ) algorithm called competitive reinitialization learning (CRL) that can achieve high-speed adaptation without depending on initial conditions has been proposed. Then, in this research, a method for extracting information on shape of probability density distributions by combining PF with CRL is proposed. Moreover, a rapid adaptation performance and the robustness of the proposed method are shown by the simulations. |
|---|---|
| AbstractList | Particle filter (PF) is a method for discrete approximation of dynamic and non-Gaussian probability distribution by using numerous particles, and its procedure can execute at high speed and is suitable for on-line applications. However, in conventional methods, a weighted average value or a maximum weighted value of particles is used as a filter output, and information on most particles is disregarded. On the other hand, an adaptive vector quantization (AVQ) algorithm called competitive reinitialization learning (CRL) that can achieve high-speed adaptation without depending on initial conditions has been proposed. Then, in this research, a method for extracting information on shape of probability density distributions by combining PF with CRL is proposed. Moreover, a rapid adaptation performance and the robustness of the proposed method are shown by the simulations. |
| Author | Nishida, T. Takagi, N. Kurogi, S. Kogushi, W. |
| Author_xml | – sequence: 1 givenname: T. surname: Nishida fullname: Nishida, T. organization: Fac. of Eng., Mech. & Control Eng., Kyushu Inst. of Technol., Kitakyushu, Japan – sequence: 2 givenname: W. surname: Kogushi fullname: Kogushi, W. organization: Fac. of Eng., Mech. & Control Eng., Kyushu Inst. of Technol., Kitakyushu, Japan – sequence: 3 givenname: N. surname: Takagi fullname: Takagi, N. organization: Fac. of Eng., Mech. & Control Eng., Kyushu Inst. of Technol., Kitakyushu, Japan – sequence: 4 givenname: S. surname: Kurogi fullname: Kurogi, S. organization: Fac. of Eng., Mech. & Control Eng., Kyushu Inst. of Technol., Kitakyushu, Japan |
| BookMark | eNpFkNtKw0AYhFe0oKl9APFmXyDx32Oyl6WeCgFB9Lpsdv_ISrqJybZQn96KBedmGPgYhsnIRewjEnLDoGAMzN1q_bosOIAplOSCaX1GMia5lLICI87_Q6VmJPsFDSjJ2CVZTNMnHCWVgNJckfr-EO02ODolm5DilMLWptBHuptC_KCDHVNwHdI2dAlHaqOn1tshhT3SPbrUj_RrZ2MK3zhek1lruwkXJ5-T98eHt9VzXr88rVfLOg9cspR7B5ozVLbVYMAp1zYSvG846FZI7mQpGtOAZ84o2RiNqnSc2cpVVSkUWDEnt3-9ARE3w3icPB42pyvEDx3rUow |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CIRA.2009.5423166 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEL(IEEE/IET Electronic Library ) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1424448093 9781424448098 |
| EndPage | 434 |
| ExternalDocumentID | 5423166 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IG 6IK 6IL 6IM 6IN AAJGR AARBI AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IERZE OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i241t-dc0621e5af6090c5cfb40ddb206f342c473b9b0d1c954b96e57c21a8c887350a3 |
| IEDL.DBID | RIE |
| ISBN | 1424448085 9781424448081 |
| IngestDate | Wed Aug 27 03:04:38 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCN | 2009905411 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i241t-dc0621e5af6090c5cfb40ddb206f342c473b9b0d1c954b96e57c21a8c887350a3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_5423166 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-12 |
| PublicationDateYYYYMMDD | 2009-12-01 |
| PublicationDate_xml | – month: 12 year: 2009 text: 2009-12 |
| PublicationDecade | 2000 |
| PublicationTitle | 2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation |
| PublicationTitleAbbrev | CIRA |
| PublicationYear | 2009 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000453079 |
| Score | 1.4467235 |
| Snippet | Particle filter (PF) is a method for discrete approximation of dynamic and non-Gaussian probability distribution by using numerous particles, and its procedure... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 429 |
| SubjectTerms | Bayesian methods Data mining Distortion measurement Information filtering Information filters Particle filters Robustness Shape State estimation Vector quantization |
| Title | Dynamic state estimation using particle filter and adaptive vector quantizer |
| URI | https://ieeexplore.ieee.org/document/5423166 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA1tT55UWvGbHDy6bbKbZDdHqZYqVkQs9FaS7ESKsK1l10N_vcluWlE8eEtyCCEZ8oaZeW8QuiLWEgAtI61jiBjVKsoS58gZqXhCQHCbeTby5EmMp-xhxmctdL3jwgBAXXwGfT-sc_n50lQ-VDbgDvupEG3UTjPRcLV28RTnmjhzlVvuFsucL7GVdApzGrKalMjB8P7lplGrDJv-6K5Sg8toH022x2pqSt77Van7ZvNLsfG_5z5AvW8aH37eAdQhakHRRY-3TQ96XFOJsBfZaNiL2JfAv-FVsCVsFz6RjlWRY5Wrlf8W8Wcd48cflXuPxQbWPTQd3b0Ox1FoqRAtHFSXUW6IiClwZQWRxHBjNSN5rmMibMJiw9JES01yaiRnWgrgqYmpyoz7ixJOVHKEOsWygGOEZUq0EZorL8EnjFWcqZQDMdpmPt92grr-JuarRjVjHi7h9O_lM7QXh84MhJ6jTrmu4MLBfakv63f-Atamp10 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0gHvSkBozf9uDRhXa37W6PBjWgQIyBhBtpu60hJguSxQO_3nZ3wWg8eGt7aJp20jeZmfcG4AZbi41RIlAqNAElSgZJ5Bw5LSSLsOHMJp6NPBjy7pg-TdikBrdbLowxpig-My0_LHL56VyvfKiszRz2E853YJdRSlnJ1tpGVJxz4gxWbNhbNHHexEbUqZqTKq9JsGh3eq93pV5lte2P_ioFvDwewGBzsLKq5L21ylVLr39pNv735IfQ_CbyoZctRB1BzWQN6N-XXehRQSZCXmaj5C8iXwT_hhaVNSE786l0JLMUyVQu_MeIPosoP_pYuReZrc2yCePHh1GnG1RNFYKZA-s8SDXmITFMWo4F1kxbRXGaqhBzG9FQ0zhSQuGUaMGoEtywWIdEJtr9RhHDMjqGejbPzAkgEWOluWLSi_BxbSWjMmYGa2UTn3E7hYa_iemi1M2YVpdw9vfyNex1R4P-tN8bPp_Dflj1acDkAur5cmUuHfjn6qp48y_O6Kqq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+International+Symposium+on+Computational+Intelligence+in+Robotics+and+Automation&rft.atitle=Dynamic+state+estimation+using+particle+filter+and+adaptive+vector+quantizer&rft.au=Nishida%2C+T.&rft.au=Kogushi%2C+W.&rft.au=Takagi%2C+N.&rft.au=Kurogi%2C+S.&rft.date=2009-12-01&rft.pub=IEEE&rft.isbn=9781424448081&rft.spage=429&rft.epage=434&rft_id=info:doi/10.1109%2FCIRA.2009.5423166&rft.externalDocID=5423166 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424448081/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424448081/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424448081/sc.gif&client=summon&freeimage=true |