Dynamic state estimation using particle filter and adaptive vector quantizer

Particle filter (PF) is a method for discrete approximation of dynamic and non-Gaussian probability distribution by using numerous particles, and its procedure can execute at high speed and is suitable for on-line applications. However, in conventional methods, a weighted average value or a maximum...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation pp. 429 - 434
Main Authors Nishida, T., Kogushi, W., Takagi, N., Kurogi, S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2009
Subjects
Online AccessGet full text
ISBN1424448085
9781424448081
DOI10.1109/CIRA.2009.5423166

Cover

Abstract Particle filter (PF) is a method for discrete approximation of dynamic and non-Gaussian probability distribution by using numerous particles, and its procedure can execute at high speed and is suitable for on-line applications. However, in conventional methods, a weighted average value or a maximum weighted value of particles is used as a filter output, and information on most particles is disregarded. On the other hand, an adaptive vector quantization (AVQ) algorithm called competitive reinitialization learning (CRL) that can achieve high-speed adaptation without depending on initial conditions has been proposed. Then, in this research, a method for extracting information on shape of probability density distributions by combining PF with CRL is proposed. Moreover, a rapid adaptation performance and the robustness of the proposed method are shown by the simulations.
AbstractList Particle filter (PF) is a method for discrete approximation of dynamic and non-Gaussian probability distribution by using numerous particles, and its procedure can execute at high speed and is suitable for on-line applications. However, in conventional methods, a weighted average value or a maximum weighted value of particles is used as a filter output, and information on most particles is disregarded. On the other hand, an adaptive vector quantization (AVQ) algorithm called competitive reinitialization learning (CRL) that can achieve high-speed adaptation without depending on initial conditions has been proposed. Then, in this research, a method for extracting information on shape of probability density distributions by combining PF with CRL is proposed. Moreover, a rapid adaptation performance and the robustness of the proposed method are shown by the simulations.
Author Nishida, T.
Takagi, N.
Kurogi, S.
Kogushi, W.
Author_xml – sequence: 1
  givenname: T.
  surname: Nishida
  fullname: Nishida, T.
  organization: Fac. of Eng., Mech. & Control Eng., Kyushu Inst. of Technol., Kitakyushu, Japan
– sequence: 2
  givenname: W.
  surname: Kogushi
  fullname: Kogushi, W.
  organization: Fac. of Eng., Mech. & Control Eng., Kyushu Inst. of Technol., Kitakyushu, Japan
– sequence: 3
  givenname: N.
  surname: Takagi
  fullname: Takagi, N.
  organization: Fac. of Eng., Mech. & Control Eng., Kyushu Inst. of Technol., Kitakyushu, Japan
– sequence: 4
  givenname: S.
  surname: Kurogi
  fullname: Kurogi, S.
  organization: Fac. of Eng., Mech. & Control Eng., Kyushu Inst. of Technol., Kitakyushu, Japan
BookMark eNpFkNtKw0AYhFe0oKl9APFmXyDx32Oyl6WeCgFB9Lpsdv_ISrqJybZQn96KBedmGPgYhsnIRewjEnLDoGAMzN1q_bosOIAplOSCaX1GMia5lLICI87_Q6VmJPsFDSjJ2CVZTNMnHCWVgNJckfr-EO02ODolm5DilMLWptBHuptC_KCDHVNwHdI2dAlHaqOn1tshhT3SPbrUj_RrZ2MK3zhek1lruwkXJ5-T98eHt9VzXr88rVfLOg9cspR7B5ozVLbVYMAp1zYSvG846FZI7mQpGtOAZ84o2RiNqnSc2cpVVSkUWDEnt3-9ARE3w3icPB42pyvEDx3rUow
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CIRA.2009.5423166
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEL(IEEE/IET Electronic Library )
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1424448093
9781424448098
EndPage 434
ExternalDocumentID 5423166
Genre orig-research
GroupedDBID 6IE
6IF
6IG
6IK
6IL
6IM
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i241t-dc0621e5af6090c5cfb40ddb206f342c473b9b0d1c954b96e57c21a8c887350a3
IEDL.DBID RIE
ISBN 1424448085
9781424448081
IngestDate Wed Aug 27 03:04:38 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009905411
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-dc0621e5af6090c5cfb40ddb206f342c473b9b0d1c954b96e57c21a8c887350a3
PageCount 6
ParticipantIDs ieee_primary_5423166
PublicationCentury 2000
PublicationDate 2009-12
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12
PublicationDecade 2000
PublicationTitle 2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation
PublicationTitleAbbrev CIRA
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453079
Score 1.4467235
Snippet Particle filter (PF) is a method for discrete approximation of dynamic and non-Gaussian probability distribution by using numerous particles, and its procedure...
SourceID ieee
SourceType Publisher
StartPage 429
SubjectTerms Bayesian methods
Data mining
Distortion measurement
Information filtering
Information filters
Particle filters
Robustness
Shape
State estimation
Vector quantization
Title Dynamic state estimation using particle filter and adaptive vector quantizer
URI https://ieeexplore.ieee.org/document/5423166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA1tT55UWvGbHDy6bbKbZDdHqZYqVkQs9FaS7ESKsK1l10N_vcluWlE8eEtyCCEZ8oaZeW8QuiLWEgAtI61jiBjVKsoS58gZqXhCQHCbeTby5EmMp-xhxmctdL3jwgBAXXwGfT-sc_n50lQ-VDbgDvupEG3UTjPRcLV28RTnmjhzlVvuFsucL7GVdApzGrKalMjB8P7lplGrDJv-6K5Sg8toH022x2pqSt77Van7ZvNLsfG_5z5AvW8aH37eAdQhakHRRY-3TQ96XFOJsBfZaNiL2JfAv-FVsCVsFz6RjlWRY5Wrlf8W8Wcd48cflXuPxQbWPTQd3b0Ox1FoqRAtHFSXUW6IiClwZQWRxHBjNSN5rmMibMJiw9JES01yaiRnWgrgqYmpyoz7ixJOVHKEOsWygGOEZUq0EZorL8EnjFWcqZQDMdpmPt92grr-JuarRjVjHi7h9O_lM7QXh84MhJ6jTrmu4MLBfakv63f-Atamp10
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0gHvSkBozf9uDRhXa37W6PBjWgQIyBhBtpu60hJguSxQO_3nZ3wWg8eGt7aJp20jeZmfcG4AZbi41RIlAqNAElSgZJ5Bw5LSSLsOHMJp6NPBjy7pg-TdikBrdbLowxpig-My0_LHL56VyvfKiszRz2E853YJdRSlnJ1tpGVJxz4gxWbNhbNHHexEbUqZqTKq9JsGh3eq93pV5lte2P_ioFvDwewGBzsLKq5L21ylVLr39pNv735IfQ_CbyoZctRB1BzWQN6N-XXehRQSZCXmaj5C8iXwT_hhaVNSE786l0JLMUyVQu_MeIPosoP_pYuReZrc2yCePHh1GnG1RNFYKZA-s8SDXmITFMWo4F1kxbRXGaqhBzG9FQ0zhSQuGUaMGoEtywWIdEJtr9RhHDMjqGejbPzAkgEWOluWLSi_BxbSWjMmYGa2UTn3E7hYa_iemi1M2YVpdw9vfyNex1R4P-tN8bPp_Dflj1acDkAur5cmUuHfjn6qp48y_O6Kqq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+International+Symposium+on+Computational+Intelligence+in+Robotics+and+Automation&rft.atitle=Dynamic+state+estimation+using+particle+filter+and+adaptive+vector+quantizer&rft.au=Nishida%2C+T.&rft.au=Kogushi%2C+W.&rft.au=Takagi%2C+N.&rft.au=Kurogi%2C+S.&rft.date=2009-12-01&rft.pub=IEEE&rft.isbn=9781424448081&rft.spage=429&rft.epage=434&rft_id=info:doi/10.1109%2FCIRA.2009.5423166&rft.externalDocID=5423166
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424448081/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424448081/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424448081/sc.gif&client=summon&freeimage=true